

SCIENCE ()DIRECT.

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 2167-2172

Muscarinic M₃ Receptor Antagonists with (2*R*)-2-[(1*R*)-3,3-Difluorocyclopentyl]-2-hydroxyphenylacetamide Structures. Part 2

Yoshio Ogino, Norikazu Ohtake,* Kensuke Kobayashi, Toshifumi Kimura, Toru Fujikawa, Takuro Hasegawa, Kazuhito Noguchi and Toshiaki Mase

Banyu Tsukuba Research Institute in collaboration with Merck Research Laboratories, Okubo-3, Tsukuba 300-2611, Ibaraki, Japan

Received 3 March 2003; accepted 2 April 2003

Abstract—Optimization of the amine part of our original muscarinic M_3 receptor antagonist 1 was performed to identify M_3 receptor antagonists that are superior to 1. Compounds carrying a variety of diamine moieties without hydrophobic substituent on the nitrogen atom were screened against the binding affinity for the M_3 receptor and the selectivity for M_3 over the M_1 and M_2 receptors. This process led to a 4-aminopiperidinamide (2l) with a K_i value of 5.1 nM and with a selectivity of the M_3 receptor that was 46-fold greater than that of the M_2 receptor. Further derivatization of 2l by inserting a spacer group or by incorporating alkyl group(s) into the amine part resulted in the identification of an 4-(aminoethyl)piperidinamide 2l-b with a K_i value of 3.7 nM for the M_3 receptor and a selectivity for the M_3 receptor that was 170-fold greater than that of the M_2 receptor.

Introduction

Pharmaceutical research into therapeutic agents that are selective for muscarinic receptor subtypes has focused on exploration of orally-active, muscarinic M₃ receptorselective antagonists for the treatment of respiratory disorders such as chronic obstructive pulmonary disease (COPD) and urinary tract disorders such as urinary incontinence (UI). Some muscarinic M3 receptor antagonists have been identified and are under clinical development.¹⁻⁶ Among them, an inhaled M₃ antagonist, tiotropium, has been developed for the treatment of COPD. Tiotropium was non-selective toward the muscarinic receptor subtypes in the binding assay, however, it showed kinetic selectivity toward the M₃ receptor over the M₂ receptor (dissociation from the M₂ receptor is faster than from the M₃ receptor).⁷ Based on a hypothesis that M₂-sparing M₃ receptor antagonists in the binding basis would have clinical benefit over nonselective muscarinic antagonists or kinetically selective antagonists, we focused our search on this type of M_3 receptor antagonists. As a result, we identified an 1-(6-aminopyridyn-2-ylmethyl)piperidinamide (1) that possesses high binding affinity ($K_i = 2.8 \text{ nM}$) for the M₃ receptor and has selectivity for the M₃ receptor that is 190-fold greater than that of the M₂ receptor in the class (2R)-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2of phenylacetamides. The in vitro metabolism study of 1 indicated that this compound was easily metabolized to an N-dealkylated one (2a) in rats. The binding data of **2a** ($K_1 = 320$ nM for the M₃ receptor, M₂/M₃ = 47-fold) suggested that the piperidinyl side chain was essential for the compound's potency for the M₃ receptor and for its selectivity for the M_3 receptor over the M_2 receptor. We considered that new antagonists lacking the aminopyridylmethyl moiety would be more metabolically stable and would lead to more potent and longer-acting M₃ antagonists. Therefore, we focused on optimization of the amine part of 1. As a result of extensive derivatization, we have found a 4-(2-aminoethyl)piperidinamide (21-b) that showed better in vitro metabolic stability in the rat, dog, and human hepatic microsomes, that had potent binding affinity for the M₃ receptor, and that had a higher selectivity (170-fold) for the M₃ receptor than for the M₂ receptor. In this paper, we describe the synthesis and structure-activity relationships (SARs)

^{*}Corresponding author. Tel.: +81-298-77-2221; fax: +81-298-77-2029; e-mail: ootakenr@banyu.co.uk

of (2R)-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamides that contained a variety of diamine moieties (Fig. 1).

Chemistry

Synthetic methods of representative compounds (2c, 2d, 2k, 2l–c, 2l–g and 2l–i) are summarized in Schemes 1 and 2. First, the synthesis of compound 2c was started with the preparation of its amine part. Treatment of *N*-Boc-piperidone 3 with Horner–Emmonds reagent gave 4, in which the double bond was hydrogenated and subsequently the ester moiety was reduced with LAH to

produce an alcohol 5 in a 85% yield. The primary alcohol moiety of 5 was converted to an azide 6 via substitution of the corresponding mesylate with NaN₃. Coupling of 6 with a 2-(3,3-difluorocyclopentyl)-2-hydroxy-2-phenyl acetic acid 7 under a standard condition (WSC, HOBT) followed by hydrogenation of the azide group produced 2c in 21% yield.

In order to prepare compound 2d, methyl *p*-aminobenzoate was coupled with the corresponding acid chloride of 7 in a 51% yield. The ester moiety of the coupling product was reduced with LAH to yield an alcohol, which was converted to an azide 9 in a 57% yield in a manner similar to that described above. The azide group was reduced with PPh₃ in THF-H₂O yielded 2d in a quantitative yield.

Compound 2k was synthesized from *N*-(2-hydroxyethyl)pyperazine 10. After the coupling of 10 with 7 (47% yield), the primary alcohol of the resulting compound 11 was converted to the amine in a similar manner to that described for the preparation of 2d to produce 2k in 87% yield.

Scheme 2 shows the synthesis of the representative piperidinamides (21-c, 21-g, 21-i). The Boc group of the

Scheme 1. Synthesis of the representative piperidinamides (2c, 2d, and 2k). Reagents and conditions: (a) 60% NaH, (EtO)₂CH₂CO₂Et, THF, 0°C; (b) 10% Pd/C, H₂, MeOH, rt; (c) LAH, THF, rt; (d) MsCl, NEt₃, THF, 0°C; (e) NaN₃, DMF, rt; (f) 7, WSC, HOBt, DMF, rt; (g) TFA, rt; (h) SOCl₂, DMA, -10°C; (i) PPh₃, THF–H₂O, rt.

Scheme 2. Synthesis of the representative piperidinamides (2I–c, 2I–g, and 2I–i). Reagents and conditions: (a) TFA, CHCl₃, rt; (b) 7, WSC, HOBt, CHCl₃, rt; (c) 10% Pd/C, H₂, MeOH, rt; (d) 60% NaH, (EtO)₂CH₂CO₂Et, THF, 0°C; (e) LDA, Mel, THF, -78 °C; (f) NaOH, MeOH, rt; (g) (PhO)₂PON₃, BnOH, THF, 80 °C; (h) LDA, EtBr, THF, -78 °C; (i) LAH, THF, rt; (j) SO₃Py, DMSO, Net₃, rt; (k) PPh₃CH₃Br, *n*-BuLi, THF, -78 °C; (l) BH₃, THF, 0 °C, then 30% H₂O₂; (m) MsCl, NEt₃, THF, 0 °C; (n) NaN₃, DMF, rt.

piperidines (6, 15, 20) with a protected primary amine or an azide group (a precursor of an amine) was deprotected by treatment with TFA to produce the corresponding 1-(non-protected)-piperidines, which were coupled with the acid 7 to yield in 50-70% yield. Finally, the benzyloxycarbonyl group or the azide of the coupling products were reduced by a catalytic hydrogenation to produce the target compounds in a good yield.

Results and Discussion

Compounds were tested in initial screens for binding affinity (K_i values) against human muscarinic receptor subtypes (hM₁, hM₂ and hM₃) in transfected CHO cells.^{8,9} Subsequently, selected compounds were examined for their in vitro metabolic stability in rat, dog, and human hepatic microsomes.⁶

As described above, the 4-piperidinamide **2a** lost much of its binding affinity ($K_i = 320 \text{ nM}$) for the M₃ receptor (Table 1). In contrast, the 4-aminomethylpiperidinamide **2b** showed a 18-fold improvement in the binding affinity ($K_i = 17 \text{ nM}$) for the M₃ receptor as compared with that of **2a**. However, an 4-aminoethylpiperidine **2c** showed only a 4-fold improvement ($K_i = 89$ nM) in the M₃ binding affinity. These compounds retained the selectivity for M₃ over the M₂ receptor to some extent, which was probably due to the 2-(3,3-difluoro-cyclopentyl)-2-hydroxyphenylacetic acid moiety.⁶

Compounds with a substituted aniline (2d, 2e, 2f) or a cyclohexylamine (2g) showed low binding affinity (Table 2). Based on our previous finding that an amide hydrogen in the 2-cyclobutyl-2-hydroxyphenylacetamide enhanced the compound's binding affinity for the M₃ receptor and increased the compound's selectivity for the M_3 receptor over that for the M_2 receptor,⁸ both piperazinamide 2h and homopiprazinamide 2i were predicted to show low M_3 binding affinity and M_3 selectivity over the M_2 receptor subtype. However, 2i showed moderate M_3 affinity ($K_i = 17$ nM) and M_3 selectivity (66-fold) over the M₂ receptor. Furthermore, a 4-aminoethylpiperazinamide 2k showed a nano-molar order M₃ binding affinity ($K_i = 9.6 \text{ nM}$) with 85-fold M₃ selectivity over the M_2 receptor. We assumed that the primary amine moiety of 2k played a key role in enhancing both the M₃ affinity and selectivity, while the tertiary amine moiety of the piperazine group did not

 Table 1. The binding affinity of the compounds (2a-2m) to the muscarinic receptor subtypes

Compd	R	Binding affinity ^a (K_i, nM)			Selectivity
		M ₃	M_1	M_2	M_2/M_3
2a	-N-N-NH	320	310	15,000	47
2b	-NH NH	17	23	2200	130
2c	-N-NH	89	140	3900	43
2d	$-H$ NH_2	650	740	5300	8
2e		93	210	2900	31
2f		290	630	15,000	51
2g		100	55	6800	68
2h	-N_NH	50	30	1200	24
2i		17	14	1100	66
2j		16	21	300	18
2k	-N_NNH ₂	9.6	11	820	85
21	-N_NH ₂	5.1	3.0	240	46
2m	-N, NH ₂	2.9	2.1	130	44

^aValues are the mean of two or more independent assays.

contribute to either the binding affinity or the selectivity. Based on this assumption, we prepared a 4-aminopiperidinamide **21** and assessed its binding affinity. As expected, **21** showed a potent M₃ binding affinity $(K_i = 5.1 \text{ nM})$ and moderate M₃ selectivity $(M_2/M_3 = 46$ fold). A pyrolidinamide **2m** exhibited higher M₃ binding Table 2. The binding affinity of the compounds (21-a-11-1) to the muscarinic receptor subtypes

Compd	R Binding affinity ^a (K _i , nM)				Selectivity
		M ₃	M_1	M_2	M_2/M_3
2I-a		11	11	760	69
21-b		3.7	6.6	630	170
2 I -c		47	92	2800	45
21-d		76	140	4200	56
2I-e		1.2	1.3	55	46
21-f	-N	120	140	5400	45
2l-g	-NNMe2	930	760	15,000	16
21-h		2400	1900	36,000	15
2 1 -i	-N-NH ₂ Me	8.3	4.7	640	77
2I-j	-NMeNH2	3.3	1.5	210	65
21-k		7.0	1.0	300	43
21-1	−NNH₂ Me Me	26	37	1000	39

^aValues are the mean of two or more independent assays.

affinity than **2l** did; however, its selectivity was comparable. Therefore, further derivatization on the amine part of the piperidinamide **2l** was prioritized.

With respect to optimization of M_3 affinity and selectivity, a methylene (2l-a), an ethylene (2l-b), a propylene (2l-c), or a butylene (2l-d) spacer was inserted between the piperidine and primary amine moiety of 2l. Compound 2l-b with an ethylene spacer showed the most potent M_3 binding affinity (K_i =3.7 nM) and

 Table 3.
 The binding affinity to the muscarinic receptor subtypes and metabolic stability of the representative compounds

Compd	Х	R	Bine	Binding affinity ^a (K _i nM)			Metabolic stability % ^b
_			M ₃	M_1	M ₂	M_2/M_3	(Rat, dog, human)
23	Н	-N-NH ₂	1.4	0.98	11	7.9	40, 89, 92
21	F		5.1	3.0	240	46	100, 88, 86
24	Н		1.7	1.8	28	16	72, 100, 91
2 I -a	F		11	11	760	69	98, 100, 100
25	Н		1.1	2.1	41	36	77, 84, 86
21-b	F		3.7	6.6	630	170	100, 100, 82
1			2.8	1.5	530	190	46, 84, 80

^aValues are in the mean of two or more independent assays.

^b% remaining after 30-min incubation in each hepatic microsomes.

selectivity $(M_2/M_3 = 170$ -fold), while compound **2I-d** $(K_i = 76 \text{ nM})$ with a butylene spacer showed an approximately 15-fold reduction in the M₃ binding affinity as compared to **2I**. Replacement of the ethylene spacer with an ethylidene one (2I-e) resulted in an increase in M₃ binding affinity $(K_i = 1.2 \text{ nM})$, while the M₃ selectivity of **2I-d** significantly decreased $(M_2/M_3 = 46$ -fold). It is interesting to note that compound **2I-b** showed high M₃ binding affinity and selectivity since the piperidine nitrogen of the amine part was acylated with the acid 7. In contrast, compound **2c**, in which the primary amine moiety of the same amine part was connected with the acid 7, resulted in a large reduction in M₃ binding affinity and selectivity in comparison with that of **2I-b**.

The effects of the substituents on the nitrogen of the primary amine moiety in $2\mathbf{l}-\mathbf{b}$ on the M_3 affinity and selectivity were investigated. Replacement of the *N*-methylamono ($2\mathbf{l}-\mathbf{f}$), *N*,*N*-dimethylamino ($2\mathbf{l}-\mathbf{g}$) or pentamethylene imine ($2\mathbf{l}-\mathbf{h}$) group with the primary amine of $2\mathbf{l}-\mathbf{b}$ significantly reduced the M_3 binding affinity and M_3 selectivity over the M_2 subtype. In particular, M_3 binding affinity decreased in $2\mathbf{l}-\mathbf{h}$, which suggests that the bulkiness around the primary amine moiety affects the binding interaction between the antagonist molecule and M_3 receptor subtype. Also, incorporation of alkyl

group(s) into the α -carbon (2l–l) or the γ -carbon (2l–j and 2l–k) to the primary amine group in 2l–b resulted in a decrease in M₃ selectivity over the M₂ receptor.

The effects of the 3,3-difluorocyclopentyl moiety of the representative compounds (**2l**, **2l–a**, and **2l–b**) on the M_3 binding affinity and selectivity, and in vitro metabolic stability were examined (Table 3). Incorporation of the 3,3-difluorocyclopentyl group resulted in a 3- to 6-fold decrease in the M_3 binding affinity, but a 4- to 6-fold improvement in the selectivity for the M_3 receptor over that of the M_2 receptor. In particular, the 3,3-difluorocyclopentyl moiety contributed to an enhancement in the in vitro metabolic stability especially against rat hepatic microsomes.

With respect to the pharmacokinetic profiles of 2l-b in dogs (Table 4), the oral bioavailablity (F) of 2l-b was

Table 4. Pharmacokinetic parameters of 2l-b after iv (0.1 mg/kg) and po (0.3 mg/kg) administration to dogs

iv		ро	
AUC (ng h/mL)	150	AUC (ng h/mL)	440
CLtot (mL/min/kg)	13	F (%)	98
V _{dss} (mL/kg)	9400	C _{max} (ng/mL)	43
		$t_{1/2}$ (h)	6.9

approximately 100%. The excellent in vitro metabolic stability of **2l–b** would reflect its high oral bioavailability. The total clearance of **2l–b** (Cl_{tot} = 13 mL/min/kg) in dogs was slow, which resulted in a long plasma half life ($T_{1/2}$ = 15 h).

Conclusion

Optimization of the (2R)-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamides by focusing on the amine part of the molecule led to 4-aminopiperadinamide 21, which has potent binding affinity for the M_3 receptor ($K_i = 5.1$ nM) and moderate selectivity for M_3 over the M_2 receptor ($M_2/M_3 = 46$ -fold). Further optimization of the primary amine part of 21 resulted in the identification of 21-b with an 4-(2-aminoethyl)piperidine group ($K_i = 3.7$ nM, $M_2/M_3 = 170$ -fold). As expected, this compound showed improved metabolic stability in the rat and dog in vitro hepatic microsome assays because the major metabolic site of 1 was deleted. In addition, this compound showed good oral bioavailability in dogs. These results suggested that a heteroaromatic side chain of the piperidine moiety in 1 was not essential to maintain the high M₃ binding affinity and selectivity over the M₂ receptor and that deletion of this side chain contributed the metabolic stability of the molecules as well.

Acknowledgements

We are grateful to Kimberley Marcopul and Clinical Literature Information Center (CLIC), Merck & Co., Ltd. for their critical reading of this manuscript.

References and Notes

1. Doods, H. N. Drug News Perspect. 1992, 345.

2. Wang, P.; Luthin, G. R.; Ruggieri, M. R. J. Pharmacol. Exp. Ther. 1995, 273, 959.

3. Alabaster, V. A. Life Sci. 1997, 60, 1053.

4. Takeuchi, M.; Naito, M.; Morihira, K.; Ikeda, M.; Isomura, Y. Jpn. Kokai Tokkyo Koho 1995, JP 07258250; Chem. Abstr. 175858.

5. Miyachi, H.; Kiyota, H.; Segawa, M. Bioorg. Med. Chem. Lett. 1998, 8, 2163.

6. Mitsuya, M.; Kobayashi, K.; Kawakami, K.; Satoh, A.; Ogino, Y.; Kakikawa, T.; Ohtake, N.; Kimura, T.; Hirose, H.; Sato, N.; Numazawa, T.; Hasegawa, T.; Noguchi, K.; Mase, T. J. Med. Chem. **2000**, *43*, 5017.

7. Disse, B.; Speck, G. A.; Rominger, K. L.; Witek, T. J., Jr.; Hammer, R. Life Sci. 1999, 64, 457.

8. Mitsuya, M.; Mase, T.; Tsuchiya, Y.; Kawakami, K.; Hattori, H.; Kobayashi, K.; Ogino, Y.; Fujikawa, T.; Satoh, A.; Kimura, T.; Noguchi, K.; Ohtake, N.; Tomimoto, K. *Bioorg. Med. Chem.* **1999**, *7*, 2555.

9. Cheng, Y. C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.