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Abstract: A simple preparation of N-substituted 3-pyrroline boro-
mic esters from primary amines is described. The Suzuki–Miyaura
coupling of these heterocycles with aryl halides proceeds in good
yields. Alternatively, oxidation with DDQ or MnO2 gives the
corresponding pyrroles, which can be also engaged in subsequent
palladium cross-coupling reactions.
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Nitrogen five-membered heterocyclic units occur widely
in a range of natural products, drugs, dyes and polymers,
and, as such, represent important synthetic targets.1 A
wide variety of chemistry has been developed to prepare
this class of molecules,2 but, in contrast to the significant
number of syntheses of polysubstituted compounds, there
are relatively few methods for the construction of simple
3-substituted derivatives.3 Recent preparations of 3-
arylpyrroles are based on rhodium-catalyzed hydrofor-
mylation of �-alkynylamines with CO/H2,

4 and condensa-
tion of tosylmethylisocyanide with activated alkenes.5 3-
Arylpyrrolines were preferentially obtained by ring clo-
sure methathesis.6 Palladium catalyzed reactions, a po-
werful method for preparing biaryls, have also found
some applications in the synthesis of nitrogen five-mem-
bered heterocycles.7 However, in the case of the Suzuki–
Miyaura reaction, the relative inaccessibility of starting
boronic acids often restricts the interest of this method to
particular substrates.8–10

Herein, we report an easy and versatile access to 3-substi-
tuted pyrrolines and pyrroles from primary amines and
aryl halides (Scheme 1).

Scheme 1

To initiate our work, commercially available 1,4-dichlo-
robut-2-yne was first hydroborated with diisopinocam-
pheylborane. Dealkylation with acetaldehyde and ester
exchange with pinacol were then effected, as reported by
Miyaura and coworkers.11 The reaction of the resulting
alkenylboronate 1 with three equivalents of amine in chlo-
roform at room temperature was followed by elimination
of the solvent. The treatment with excess of potassium
carbonate in acetonitrile afforded pyrrolines 2, which
were isolated in good to moderate yields by distillation
(Scheme 2, Table 1).12,13 They can be stored at –15 °C for
several weeks, but slowly decompose at room tempera-
ture. Only traces of product were observed with ammonia
(R1 = H). 
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Table 1 Synthesis of N-Substituted 3-Pyrrolines 2

Entry R1 Product Yield (%)

1 C6H5CH2 2a 78

2 (CH3)2CH 2b 65

3 CH2=CH-CH2 2c 50

4 C6H5 2d 72

5 (C6H5)2CH 2e 60

6 (2-furyl)-CH2 2f 75

7 n-(C4H9) 2g 40
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iii)  pinacol

ii) K2CO3, CH3CN
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With boronic esters 2a–2g in hand, we then turned our at-
tention to the reactivity of these compounds in Suzuki–
Miyaura coupling reactions. Due to the wide availability
of aryl or heteroaryl halides, such transformations would
extend the utility of this class of compounds in the prepa-
ration, and the further synthetic elaboration, of pyrroline
derivatives. Palladium-mediated reaction of 2 with aro-
matic substrates led to the desired cross-coupled products
3 in good yields. In addition, depending on the nature of
palladium catalyst, variable amounts (3–12%) of 3-
arylpyrroles were formed, presumably via a dehydrogena-
tive aromatization during coupling.14 Best results were
obtained with tetrakis(triphenylphosphine)palladium as
catalyst (5%), CsF as a base in THF at reflux (Scheme 3,
Table 2). Purification was readily achieved by extraction
of the pyrroline with 1 M HCl. The resulting hydrochlo-
ride was treated with 1 M NaOH to give pure 3a–3e after
bulb-to-bulb distillation.15

Scheme 3

Compounds 2 are also good precursors of the correspon-
ding pyrrole-3-boronates 4. Oxidation with 2,3-dichloro-
5,6-dicyano-1,4-benzoquinone (DDQ)16 was achieved
without isolation of the corresponding pyrrolines 2. After
condensation of the primary amine with alkenyl boronic
ester 1 and chloroform elimination, the crude mixture was
stirred overnight in toluene with one equivalent of DDQ
(Scheme 4, Table 3).17 The aromatization of N-isopropyl
derivative 2b failed under these conditions and was ac-
complished by action of MnO2 at reflux (entry 2).18,19 N-
benzyl pyrrole 3a was then chosen to test the efficiency of
Suzuki–Miyaura coupling reaction with this class of he-
terocyclic boronates. Dichloro [1,1�-bis(diphenylphosphi-
no)ferrocene]palladium(II) was used as catalyst in the
presence of CsCO3 in THF at 80 °C.20 Good yields of the

desired cross-coupling products were obtained after puri-
fication by bulb to bulb distillation (Scheme 4, Table 3).

Scheme 4

In summary, we have reported a new route to a series of
N-substituted pyrroline boronic esters from primary
amines. Subsequent aromatizations to pyrroles were easi-
ly achieved with DDQ or MnO2. Suzuki–Miyaura cou-
pling reactions of these two heterocyclic boronates afford
the corresponding 3-aryl derivatives in good yields.
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Table 3 Synthesis of Pyrroles 4 and 5

Entry R1 Ar Product Yield (%)
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