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The first transition metal-free highly stereoselective positional isomerization of various α-alkyl styrenes through a carbocation mecha-
nism triggered strategy is developed by using Al(OTf)3 as a hidden Brønsted acid catalyst, which provides facile access to value-added 
acyclic tri- and tetra-substituted alkenes in good yields with high stereoselectivity under mild conditions. The practicality of this protocol 
is further highlighted by the gram-scale synthesis, high stereoselectivity, good functional group tolerance, and simple operation. Mech-
anistic studies support that Al(OTf)3 act as a hidden Brønsted acid catalyst, and the formation of a carbocation intermediate. 
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Background and Originality Content 

Alkene isomerization is a very useful and atom-economic trans-
formation, which constitutes a powerful strategy for the synthesis 
of internal alkenes in a stereoselective manner.[1] The past few dec-
ades have witnessed tremendous progress in this area, and a vari-
ety of efficient catalytic systems based on either noble-metal (eg. 
Ru,[2] Rh,[3] Pd,[4] Ir,[5] and Pt[6]) or base-metal (eg. Co,[7] Ni,[8] Fe,[9] 
and Mo[10]) complexes have been developed for the positional 
isomerization of aliphatic mono-substituted or 1,2-dialkyl alkenes. 
Despite these achievements, the stereoselective positional isomer-
ization of α-alkyl-α-aryl alkenes remains underexplored and is still a 
challenge. Therefore, the development of efficient catalytic strate-
gies for realizing such isomerization is highly sought after, which 
would provide a facile route for accessing value-added acyclic tri- or 
tetrasubstituted alkenes that are a kind of structural units widely 
distributed in natural products, pharmaceuticals and materials,[11] 
and serve as a versatile precursor in modern organic synthesis.[12] 

In this context, much effort has been paid to developing this 
transformation in the past few years. Consequently, a variety of cat-
alytic systems based on three main mechanisms: (a) metal-hydride 
mechanism;[13] (b) hydrogen (H) radical mechanism;[14] (c) π-al-
lylmetal intermediate based 1,3-hydrogen shift mechanism,[15] have 
been established by transition-metal catalysis (Scheme 1a). For ex-
ample, in 2009, RajanBabu reported a Pd(II)-catalyzed isomerization 
of α-alkyl styrenes via a Pd-H insertion and β-H elimination path-
way.[13a] Recently, the groups of Lu,[13b] Findlater,[13c] and Xia[13d] in-
dependently reported the cobalt(II)-catalyzed highly stereoselec-
tive positional isomerization of α-alkyl styrenes through Co-H 
mechanism, which delivered the desired acyclic trisubstituted al-
kenes with excellent stereoselectivity by employing their developed 
thiazoline iminopyridine, phosphamide iminopyridine, or phos-
phine-amidooxazoline ligand. Most recently, Huang and Liu re-
ported an iron-catalyzed isomerization of α-alkyl styrenes to trisub-
stituted alkenes with chiral phosphine-pyridine-oxazoline ligand via 
Fe-H mechanism.[13f] Through H radical initiated mechanism, Nor-
ton et al. developed an isomerization of α-functionalized alkyl sty-
renes by cobalt catalysis under H2 pressure.[14] 

Scheme 1 Strategies for isomerization of α-alkyl styrenes 
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Besides, noble-metal ruthenium (Ru) or rhodium (Rh) based 

complexes were found to be capable of catalyzing the similar isom-
erization through a concerted 1,3-H shift mechanism. Grotjahn de-
veloped a stereoselective alkene isomerization catalyzed by their bi-
functional Ru complex.[15a] Zhao, Liu and coworkers accomplished a 

Rh catalyzed positional isomerization of functionalized α-alkyl sty-
renes via π-allylmetal intermediate.[15b] Although these protocols 
were proven to be suited for the synthesis of certain classes of acy-
clic trisubstituted alkenes, further progress is required to expand 
the substrate scope, to improve the stereoselectivity, and to avoid 
the use of transition-metal catalysts, a complex ligand that is usually 
not easy to obtain, and/or additives (Scheme 1a). In addition, 
Brønsted acid mediated alkene isomerization via a carbocation 
mechanism[16] has also emerged as an alternative strategy.[17] How-
ever, although the positional isomerization of several cyclic alkenes 
has been reported,[17] the acyclic alkene isomerization remains un-
derdeveloped,[17c,e] possibly due to the challenging E/Z selectivity 
control and reaction efficiency issues.  

Recently, we have developed an unprecedently Markovnikov re-
gioselective hydrodifluoroalkylation of alkenes with difluo-
roenoxysilanes via carbocation intermediate.[18] During the mecha-
nistic studies, we found that the generated in situ carbocation in-
termediate from tertiary alcohol would eliminate a β-proton to de-
liver an E-alkene with high stereoselectivity under the catalysis of 
hidden Brønsted acid Mg(ClO4)2⸱6H2O, and the observation of al-
kene isomerization phenomenon in the deuterated experiment.[18] 
Motivated by these interesting findings, we wondered whether it 
was possible to develop a transition-metal-free highly stereoselec-
tive positional isomerization of acyclic alkenes via a carbocation 
mechanism using hidden Brønsted acid catalysis[19] (Scheme 1b). 
Herein, we report our successful implementation of this transfor-
mation under mild and operationally simple conditions, which con-
stitutes a facile tactic for alkene positional isomerization 

Results and Discussion 

At the outset, α-ethylstyrene 1a was chosen as a model sub-
strate for the optimization of reaction conditions, as shown in Table 
1. Mg(ClO4)2⸱6H2O, which was previously an effective catalyst for 
the alkene hydrodifluoroalkylation,[18] was first examined for the 
isomerization of 1a in ClCH2CH2Cl at room temperature, unfortu-
nately, no any desired product 2a was detected after 12 h (entry 1). 

Table 1 Optimization of conditionsa 

Cat. (5 mol%)

solvent, rt,12 h
1a 

(0.2 mmol)

(E)

2a
 

Entry Cat. Solvent Yield(%)b E/Zc 

1 Mg(ClO4)2‧6H2O ClCH2CH2Cl 0 - 

2 Al(ClO4)3‧9H2O ClCH2CH2Cl 14 18/1 

3 In(ClO4)3‧8H2O ClCH2CH2Cl 44 21/1 

4 Cd(ClO4)2‧6H2O ClCH2CH2Cl 58 6.4/1 

5 Ga(OTf)3 ClCH2CH2Cl 60 6.8/1 

6 In(OTf)3 ClCH2CH2Cl 72 6.9/1 

7 Fe(OTf)3 ClCH2CH2Cl 90 8.5/1 

8 Bi(OTf)3 ClCH2CH2Cl 50 5.3/1 

9 Sc(OTf)3 ClCH2CH2Cl 16 27/1 

10 Al(OTf)3 ClCH2CH2Cl 87 (82)d 24/1 

11 Cu(OTf)2 ClCH2CH2Cl 0 - 

12 Mg(OTf)2 ClCH2CH2Cl 0 - 

13 Al(OTf)3 CH2Cl2 81 25/1 

14 Al(OTf)3 EtOAc 0 - 

15 Al(OTf)3 Toluene 0 - 
a The reaction was conducted using alkene 1a (0.2 mmol) and Cat. (5 mol%) 
in solvent (2 mL) at room temperature for 12 h in air. b Determined by 1H 
NMR analysis of the crude product using 1,3,5-trimethoxybenzene as inter-
nal standard. c The E/Z ratio was determined by the 1H NMR of crude prod-
uct. d The value in parentheses indicates an isolated yield of 2a. 
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Further investigation of other metal perchlorate hydrates such 
as Al(ClO4)3⸱9H2O, In(ClO4)3⸱8H2O, and Cd(ClO4)2⸱6H2O revealed 
that the isomerization indeed proceeded smoothly, and the desired 
trisubstituted alkene 2a could be generated in moderate to high E/Z 
stereoselectivity, albeit with low to moderate yields (entries 2-4). 
Meanwhile, a series of metal triflates, including Ga(OTf)3, In(OTf)3, 
Fe(OTf)3, Bi(OTf)3, Sc(OTf)3, Al(OTf)3, Cu(OTf)2, and Mg(OTf)2 were 
also investigated (entries 5-12). Although no product 2a was ob-
served in the presence of Cu(OTf)2 and Mg(OTf)2 (entries 11-12), all 
other tested catalysts furnished product 2a, and the use of 5 mol% 
of Al(OTf)3 turned to be the best choice in terms of reactivity and 
selectivity,[20] affording 82% yield of 2a with 24:1 E/Z selectivity (en-
try 10). Next, the solvent effects were examined using Al(OTf)3 as 
the catalyst. It was found that CH2Cl2 was also a suitable solvent, 
and gave rise to 2a with 25:1 E/Z selectivity but slightly lower yield 
(81% NMR yield) (entries 13 vs 10). And the use of ethyl acetate 
(EtOAc) and toluene could not afford the product at all (entries 14-
15). For more details of optimization of conditions, see section 2 of 
the supporting information (SI). 
  With the optimized condition in hand, the scope of alkenes was 
then explored (Table 2). A wide range of α-ethyl styrenes bearing 

different substituents on the phenyl ring were all tolerated, and af-
forded the corresponding trisubstituted alkenes 2a-2i in good to 
high yields and E/Z ratio, regardless of the position and nature of 
the substituents. 2-(But-1-en-2-yl)naphthalene could also deliver 
the desired product 2j in 53% yield with 17:1 E/Z ratio. α-Benzyl 
styrenes with electron-withdrawing or electron-donating group 
proceeded smoothly as well to produce the conjugated trisubsti-
tuted alkenes 2k-2o with good results (up to 93% yield, 14:1 E/Z 
selectivity). α-Propyl, α-isobutyl, and α-phenylethyl substituted sty-
renes were viable substrates, providing the desired alkenes 2p-2r 
in good to excellent yields and E/Z selectivity. However, α-ethylsty-
renes bearing a strong electron-withdrawing CF3 or CN group led to 
almost no reaction, possibly because the corresponding carbo-
cation intermediates are not easy to form. And no target was ob-
served in the case of alkenes bearing a 2-thienyl or 2-benzofuryl 
functionality; only olefin dimerization and/or trimerization byprod-
ucts detected by GC-MS analysis. Five-, six-, and seven-membered 
exocyclic 1,1-disubstituted olefins were found to be amenable sub-
strates, delivering the corresponding endocyclic trisubstituted al-
kenes 2s-2v with 63-88% yields. 

Table 2 Scope of alkene isomerizationa 

Al(OTf)3
 
(5 mol%)

ClCH2CH2Cl, rt, 12 h

1 
(0.5 mmol)

Br

2c, 84%, E/Z
  = 21/1b

MeO

2h, 81%, 
 
E/Z

 = 26/1

F

2b, 70%, E/Z
 = 22/1

OMe

2i, 73%, E/Z
 = 11/1c

2a, 83%, E/Z = 25/1

Cl

2e, 78%, E/Z
 = 25/1d

Cl

2d, 83%, E/Z
 = 24/1c

Me

2g, 85%, E/Z
 = 25/1e

2 or 3

R R

R1 2p: R1 = Et, 74%, E/Z = 5.5/1

2q: R1 = 
iPr, 81%, E/Z = 23/1

3f, 74%f

Ph

2k, 83%, E/Z
 = 14/1d

Ph

2o, 80%, E/Z
 = 6.4/1d

MeO

Ph

F

Ph

Cl

Ph

Br

2n, 93%, 
 
E/Z

 = 14/1d2m, 91%, E/Z
 = 14/1d2l, 84%, E/Z

 = 14/1d

3g, 89%f 3h, 87%f 3i, 87%, E/Z
 = 1/1.2d

O

2u, 63%d 2v, 88%2t, 70%

3j, 63%e

F

Me Cl
Ph

OMe

F

2f, 79%, E/Z
 = 100/1d

Ph
2r: R1 = Bn, 94%, E/Z = 20/1

2j, 53%, E/Z
 = 17/1e

Ph
CO2Me

3c, 87%, 
 
E/Z

 = 4.4/1d

Ph
CN

3e, 78%, E/Z
 = 17/1d

Ph
Cl

3a, 83%, E/Z
 = 7.9/1d

Ph
OMe

3d, 57%, E/Z = 4.8/1d

Ph
I

3b, 74%, E/Z
 = 10/1d

2p-2r 2s, 74%

 
a The reaction was conducted using alkenes (0.5 mmol), Al(OTf)3 (5 mol%) and ClCH2CH2Cl (5 mL), in air at room temperature for 12 h. The E/Z ratio was 
determined by the 1H NMR analysis of crude product. b Using 10 mol% Al(OTf)3. c Using 15 mol% Al(OTf)3. d Using 15 mol% Al(OTf)3, at 50 oC. e Using 3 mol% 
Al(OTf)3. f At 50 oC.
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Moreover, functionalized trisubstituted alkenes 3a-3e featuring 
halogen atom, ester, ether, or cyano group at the alkyl chain were 
effectively achieved in good to high yields with moderate to excel-
lent E/Z ratio. A salient feature is that halogen atoms on both aro-
matic ring and aliphatic chain were tolerable under the current cat-
alytic system, allowing further transformation. Remarkably, 
tetrasubstituted alkenes 3f-3i could be formed in up to 89% yields, 
by employing bulky 1,1-disubstituted alkenes that were a kind of 
problematic substrates in previous conditions.[13] 2-Fluoro-1-meth-
ylene-2,3-dihydro-1H-indene could be isomerized into tetrasubsti-
tuted monofluoroalkene 3j, which is not easy to synthesize by other 
methods,[21] with a yield of 63%. 

To demonstrate the synthetic utility of this methodology further, 
a gram-scale isomerization of 1a (15 mmol) was conducted. Under 
the catalysis of 5 mol% Al(OTf)3 at room temperature, 1.64 g of 2a 
was obtained in 83% yield with a slightly lower E/Z ratio (Scheme 
2a). Besides, the alkenyl functionality in the products was capable 
of undergoing a variety of diversifying reactions.[13b] 

To gain insights into the isomerization mechanism, several con-
trol experiments were performed. First, the possibility of Al(OTf)3 
function as a hidden Brønsted acid in the reaction was investi-
gated,[22] and found that the addition of 10 or 15 mol% noncoordi-
nating bulky base 2,6-di-tert-butylpyridine (DTBP) terminated the 
reaction completely (Scheme 2b). Meanwhile, the use of 0.5 mol% 
HOTf was also able to catalyze the isomerization, although no de-
sired product was detected in the presence of 5 mol% HOTf (be-
cause severe olefin dimerization occurred by GC-MS analysis in this 
case).[23] These results supported the idea that Al(OTf)3 functioned 
as a hidden Brønsted acid catalyst, and the in situ generated trace 
amount of HOTf was the real catalytic species. The gradually releas-
ing HOTf from Al(OTf)3 and trace amount of moisture in the reaction 
system inhibited the dimerization or other undesired pathway, 

thereby ensuring a higher yield and selectivity. 
Second, a deuterium labeling experiment using a deuterated al-

kene 1a-D (95% D) was carried out under standard conditions in a 
glove box, giving the deuterated 2a-D with 17% D on the methyl 
group and 95% D on the vinyl group (Scheme 2c). The low deuter-
ium abundance at the methyl group illustrated that the step for the 
protonation of terminal alkenes 1 was likely reversible. Meanwhile, 
the addition of D2O led to the incorporation of 8% D on the vinyl 
group of 2a-D suggested that the last step for the removal of β-pro-
ton might be also reversible, and Al(OTf)3, as a hidden Brønsted acid, 
would be partially hydrolyzed to HOTf as the real catalytic species. 
Third, an intramolecular trapping experiment using an alkenol 4 was 
carried out under the standard conditions, and found that 52% yield 
of tetrahydrofuran 5 was formed as the product via acid catalyzed 
alkene hydroalkoxylation pathway, which further supported that 
the reaction proceeds via a carbocation intermediate (Scheme 
2d).[24] Additionally, a mixed isomer of product 2a (Z/E = 3.6:1) was 
subjected to the standard conditions to explore the origin of stere-
oselectivity, and the E/Z ratio of 2a just increased slightly to 1:2.2 
after 12 h (Scheme 2e), which was far less than 24:1 E/Z selectivity 
produced from the isomerization of 1a. These reaction outcomes 
suggested the stereoselectivity might mainly originate from the po-
sitional isomerization of terminal alkenes 1 to internal alkenes 2,[25] 
not from the geometrical isomerization of trisubstituted alkenes 
2.[13c] Based on the above mechanistic studies, together with our 
previous work,[18] a plausible reaction pathway involved a carbo-
cation intermediate was proposed in Scheme 2f. The active catalytic 
species HOTf was gradually generated in the reaction system, which 
would react with the alkenes 1 to form a key carbocation interme-
diate I. After undergoing a deprotonation, the desired tri- or 
tetrasubstituted alkenes would be produced, accompanied by the 
regeneration of HOTf. 

Scheme 2 Gram-scale synthesis and mechanistic studies 
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Conclusions 

In summary, we have disclosed the first transition-metal-free 
highly stereoselective positional isomerization of α-alkyl styrenes 
through a carbocation mechanism, allowing facile synthesis of var-
ious acyclic tri- and tetra-substituted alkenes with high stereoselec-
tivity by using Al(OTf)3 as a hidden Brønsted acid catalyst. The sali-
ent features, including mild conditions, inexpensive & commercially 
available acid catalyst, good functional group tolerance, simple op-

eration, and easy to the scale-up application, make our method po-
tentially very useful. Mechanistic studies reveal that a carbocation 
intermediate initiated reaction pathway should be involved in this 
reaction. 

Experimental 

General procedure for the alkene isomerization is as follows: To 
a 25.0 mL tube were added Al(OTf)3 (11.9 mg, 0.025 mmol, 5.0 
mol%, unless otherwise noted) and anhydrous ClCH2CH2Cl (5.0 mL), 
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followed by the sequential addition of alkenes (0.5 mmol). After be-
ing stirred at room temperature under air for 12 h, the reaction 
mixture was filtrated through a short pad of silica gel, and washed 
with dichloromethane. The combined organic phases were concen-
trated under vacuo to give the crude products. To determine the 
E/Z selectivity of products, the crude residue was first dissolved in 
CDCl3, and took some samples for 1H NMR analysis. Then the sam-
ple for analysis and the rest of crude residue were recombined and 
purified by silica gel column chromatography using the indicated 
eluent to afford the corresponding products 2 or 3. 

Supporting Information 

The supporting information for this article is available on the 
WWW under https://doi.org/10.1002/cjoc.2021xxxxx. 
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uniqueness and superiority of Al(OTf)3 as a hidden Brønsted acid cata-
lyst in this reaction. This is possibly due to the gradually release of 
Brønsted acid catalyst HOTf via hydrolysis of Al(OTf)3 played a crucial 
role, thus maintaining a low concentration of HOTf to suppress side 
reactions, while the direct use of Brønsted acids would give a false im-
pression of catalytic inefficiency of the Brønsted acid owing to com-
petitive side reactions, such as dimerization or polymerization of the 
substrate or product at high concentrations of acid.  
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up to 94% yield, 100/1 E/Z

Al(OTf)3
 
(3~15 mol%)

ClCH2CH2Cl, rt, 12 h
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High stereoselectivity♣ 

 
Carbocation mechanism

= alkyl, aryl, F( )

 

The first transition-metal-free highly stereoselective positional isomerization of various α-alkyl styrenes through a carbocation mechanism is developed 

by using Al(OTf)3 as a hidden Brønsted acid catalyst. 
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