# Heterogeneous Reactions of ClONO<sub>2</sub>, HCl, and HOCl on Liquid Sulfuric Acid Surfaces

Renyi Zhang,\* Ming-Taun Leu,\* and Leon F. Keyser

Earth and Space Sciences Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

Received: August 24, 1994; In Final Form: October 12, 1994<sup>®</sup>

The heterogeneous reactions of  $CIONO_2 + H_2O \rightarrow HNO_3 + HOCl (1)$ ,  $CIONO_2 + HCl \rightarrow Cl_2 + HNO_3 (2)$ , and HOCl + HCl  $\rightarrow$  Cl<sub>2</sub> + H<sub>2</sub>O (3) on liquid sulfuric acid surfaces have been studied using a fast flow reactor coupled to a quadrupole mass spectrometer. The main objectives of the study are to investigate (a) the temperature dependence of these reactions at a fixed  $H_2O$  partial pressure typical of the lower stratosphere (that is, by changing temperature at a constant water partial pressure, the H<sub>2</sub>SO<sub>4</sub> content of the surfaces is also changed), (b) the relative importance or competition between reactions 1 and 2, and (c) the effect of  $HNO_3$  on the reaction probabilities due to the formation of a  $H_2SO_4/HNO_3/H_2O$  ternary system. The measurements show that all the reactions depend markedly on temperature at a fixed H<sub>2</sub>O partial pressure: they proceed efficiently at temperatures near 200 K and much slower at temperatures near 220 K. The reaction probability  $(\gamma_1)$  for ClONO<sub>2</sub> hydrolysis approaches 0.01 at temperatures below 200 K, whereas the values for  $\gamma_2$  and  $\gamma_3$  are on the order of a few tenths at 200 K. Although detailed mechanisms for these reactions are still unknown, the present data indicate that the competition between ClONO<sub>2</sub> hydrolysis and ClONO<sub>2</sub> reaction with HCl may depend on temperature (or  $H_2SO_4$  wt %): in the presence of gaseous HCl at stratospheric concentrations, reaction 2 is dominant at lower temperatures (<200 K), but reaction 1 becomes important at temperatures above 210 K. Furthermore, reaction probability measurements performed on the H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub>/  $H_2O$  ternary solutions do not exhibit noticeable deviation from those performed on the  $H_2SO_4/H_2O$  binary system, suggesting little effect of HNO3 in sulfate aerosols on the ClONO2 and HOCl reactions with HCl. The results reveal that significant reductions in the chlorine-containing reservoir species (such as  $ClONO_2$ ) and HCl) can take place on stratospheric sulfate aerosols at high latitudes in winter and early spring, even at temperatures too warm for polar stratospheric clouds (PSCs) to form or in regions where nucleation of PSCs is sparse. This is particularly true under elevated sulfuric acid loading, such as that after the eruption of Mt. Pinatubo. Comparisons between our results and those presently available have also been made.

## Introduction

It is now well established that heterogeneous reactions occurring on the surfaces of polar stratospheric cloud particles play a central role in the ozone depletion.<sup>1</sup> The surfacecatalyzed reactions convert chlorine-containing reservoir species into photochemically reactive forms, leading to high rates of ozone destruction by active chlorine species, Cl and ClO. Of equal importance to the polar stratospheric ozone depletion is the concomitant removal of nitrogen oxides from the gas phase, which inhibits the formation of chlorine nitrate and subsequently leads to large concentrations of ClO. Such heterogeneous processing of reservoir chlorine species on PSC particles has been clearly seen in recent field observations, showing chemical changes such as the increase in ClO and concurrent decreases in HCl, ClONO<sub>2</sub>, and ozone, as measured from inside to outside of the chemically perturbed regions in Antarctica and the Arctic.<sup>2-5</sup> Furthermore, laboratory studies have documented that these heterogeneous reactions proceed efficiently on the PSC materials,<sup>6</sup> which are believed to consist of either nitric acid hydrates (type I) or ice (type II).<sup>7,8</sup>

Similar reactions occurring on stratospheric sulfate aerosols have also been proposed to have a significant effect on the chemistry of the global stratosphere.<sup>9–11</sup> The sulfate aerosol layer, which exists at altitudes between 10 and 30 km, is composed of aqueous sulfuric acid particles with a mean

diameter of about 0.1  $\mu$ m and concentrations from 1 to 10 cm<sup>-3</sup> under unperturbated stratospheric conditions. Major volcanic eruptions, such as the eruption of Mt. Pinatubo, may significantly increase the particle size and concentration. Steele et al.<sup>12</sup> first compiled the sulfate aerosol compositions as a function of temperature, predicting an aerosol concentration of 70–80 wt % at mid latitudes and of less than 50 wt % at high latitudes. Recent studies<sup>13–16</sup> have suggested that, at lower temperatures such as those prevailing in the early polar winter, the sulfate aerosols absorb a significant amount of HNO<sub>3</sub>, leading to the formation of a H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub>/H<sub>2</sub>O ternary system prior to the onset of PSCs. Additionally, on the basis of laboratory observations, crystalline sulfuric acid hydrates such as tetrahydrate and hemihexahydrate<sup>17,18</sup> or monohydrate<sup>19</sup> have been proposed to form and persist in certain stratospheric regions.

The heterogeneous reactions, which could promote chlorine activation and affect the stratospheric  $NO_x$  budget, are as follows:

$$ClONO_2 + H_2O \rightarrow HNO_3 + HOCl$$
 (1)

$$\text{ClONO}_2 + \text{HCl} \rightarrow \text{HNO}_3 + \text{Cl}_2$$
 (2)

$$HOCl + HCl \rightarrow Cl_2 + H_2O$$
(3)

On crystalline sulfuric acid tetrahydrate, reactions 1-3 have been shown to proceed efficiently at low temperatures (<200 K).<sup>24,25</sup> Earlier solubility studies<sup>26</sup> reported a negligible amount

<sup>\*</sup> To whom correspondence should be addressed.

<sup>&</sup>lt;sup>®</sup> Abstract published in Advance ACS Abstracts, November 15, 1994.

of HCl in liquid sulfate aerosols, too small for reactions 2 and 3 to occur at significant rates on the global stratosphere. In addition, other laboratory studies yielded very small uptake coefficients for these reactions on liquid sulfuric acid solutions.<sup>22,27</sup> It is now clear that the rates of these two reactions are critically determined by the amount of HCl dissolved in the liquid solutions, which, in turn, depends on both temperature and aerosol acid content. Thus, changes in stratospheric temperatures (which will also change the sulfate aerosol concentration) would likely result in highly nonlinear behavior for these two reactions. Recent laboratory results predict an equilibrium HCl concentration as high as 0.1% by weight in the stratospheric sulfate aerosols at temperatures below 192 K and at an HCl mixing ratio of a few ppbv,<sup>15</sup> an amount which would be consistent with reaction probabilities on the order of a few tenths for reactions 2 and 3.13 More recently, efforts have been made to calculate reaction probabilities based on laboratory measured quantities:<sup>28,29</sup> a theoretical framework has been proposed to apply the laboratory data to the stratosphere. Chemical processing of air by stratospheric sulfate aerosols via reactions 2 and 3 at high latitudes is supported by recent AASE II observations,<sup>14</sup> which reveal a significant depletion in both ClONO<sub>2</sub> and HCl column abundances in the Pinatubo plume, even when there is no PSC signature.

Another important heterogeneous reaction on liquid sulfate aerosols is

$$N_2O_5 + H_2O \rightarrow 2HNO_3 \tag{4}$$

This reaction is believed to reduce the stratospheric  $NO_x$  concentration and consequently result in increases in the abundances of CIO and OH. Several laboratory results have concluded that the reaction probability for reaction 4 is independent of temperature, sulfuric acid concentration, and even particle size, with a value of about  $0.1.^{20-23}$  There is now accumulating evidence that the observed abundance of nitrogen and chlorine species in mid latitudes cannot be simulated accurately in numerical models by gas phase processes alone, but that inclusion of  $N_2O_5$  hydrolysis produces better agreement between observations and calculations. Conversely, the proposed formation of solid sulfuric acid particles in the stratosphere could potentially suppress the  $N_2O_5$  hydrolysis and thus terminate this reaction channel.<sup>19,24</sup>

The aim of this work is to perform direct laboratory experiments on liquid sulfuric acid surfaces under stratospheric conditions. The reaction probabilities for ClONO<sub>2</sub> hydrolysis and HCl reactions with ClONO<sub>2</sub> and HOCl at the reactant concentrations characteristic of the lower stratosphere have been measured. The temperature dependence of these reactions was investigated at a fixed H<sub>2</sub>O partial pressure corresponding to a mixing ratio of about 5 ppmv at 100 mb (~16 km) and at temperatures from 195 to 220 K. The relative importance or competition between the hydrolysis of ClONO<sub>2</sub> and the ClONO<sub>2</sub> reaction with HCl was also examined so that accurate chlorine activation processes on the stratospheric sulfate aerosols can be applied and simulated in atmospheric models. Finally, we investigated the effect of HNO<sub>3</sub> on the reaction probabilities due to the formation of the ternary H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub>/H<sub>2</sub>O system, which has been proposed to occur prior to the onset of type I PSCs.

## **Experimental Approach**

Reaction probability measurements were performed in a fast flow reactor attached to a differentially pumped quadrupole mass spectrometer. The reactor section is shown schematically in



Flow Tube

Figure 1. Schematic diagram of the flow reactor.

Figure 1. An overview of the experimental procedure is given here, and details of the apparatus have been discussed elsewhere.<sup>30</sup>

The flow reactor, of inner diameter 2.8 cm and length 34.0 cm, was horizontally mounted and had three movable injectors located at the upstream end. A jacketed injector (1.0-cm o.d.) kept warm by circulating a room temperature solution of ethylene glycol in water was used to add H<sub>2</sub>O and HNO<sub>3</sub> to the system. Normally, this injector was positioned near the upstream end to prevent possible warming of the substrate. The reactants (such as ClONO<sub>2</sub> or HOCl) were introduced through a centrally located unjacketed injector (0.3-cm o.d.), and a third unjacketed injector of similar o.d. was used to introduce HCl. All the gaseous species were delivered to the flow tube along with small He flow (0.1–5.0 cm<sup>3</sup> min<sup>-1</sup> at STP) and further diluted in the main He flow (280 cm<sup>3</sup> min<sup>-1</sup> at STP) before contacting the liquid surface. Typically, the flow reactor was operated at 0.5 Torr total pressure and 890 cm/s flow velocity.

Liquid  $H_2SO_4$  films were prepared by totally covering the inside walls of the flow tube with sulfuric acid solutions. To ensure a uniform wetting, the flow tube was first cleaned with a dilute HF solution and then rinsed with distilled water. At low temperatures (<220 K) the solutions were sufficiently viscous to produce an essentially static film which lasted over the time scale of the experiments. The thickness of the liquid was estimated to be ~0.1 mm.

The sulfuric acid content initially used was less than 70 wt % to avoid possible freezing of the film at temperatures above 220 K. During the course of the experiments, the acid content can be varied by addition of H<sub>2</sub>O through the jacketed injector; once exposed to H<sub>2</sub>O, the sulfuric acid film took up H<sub>2</sub>O and became more dilute until equilibrium was reached. Alternatively, compositional changes of the film can be made through evaporation of H<sub>2</sub>O, by raising the flow tube temperature and by flowing dry helium over the sample. Critical parameters for the measurements were temperature and H<sub>2</sub>O partial pressure, which determined the H<sub>2</sub>SO<sub>4</sub> content (the temperature and H<sub>2</sub>O partial pressure in the flow tube were used to estimate the acid content from the vapor pressure data of Zeleznik<sup>31</sup> and Zhang et al.<sup>18</sup>). The error limit in estimating the  $H_2SO_4$  content of the films was about 1-2 wt %, considering uncertainties associated with temperature  $(\pm 1 \text{ K})$  and water partial pressure  $(\pm 10\%)$ . For most experiments reported here, the H<sub>2</sub>O partial pressure was closely maintained at  $3.8 \times 10^{-4}$  Torr (corresponding to 5 ppmv H<sub>2</sub>O mixing ratio at 100 mb in the stratosphere) while the temperature was regulated from 195 to 220 K. This was equivalent to changing H<sub>2</sub>SO<sub>4</sub> content from 45 to 70 wt %. Thus, by using H<sub>2</sub>O partial pressures similar to those found in the stratosphere, the liquid film had compositions representative of stratospheric sulfate aerosols. Frequently, the film crystallized upon further cooling below 195 K.

For measurements of reactive uptakes of  $ClONO_2$  and HOCl on sulfuric acid due to the reactions with HCl, the acid film

was first exposed to HCl vapor before introducing the reactant. In these measurements, it was important to ensure the equilibrium of HCl between the gas and liquid. This can be verified by pulling the HCl injector upstream while monitoring the HCl signal recovery in the mass spectrometer. Also, the gaseous HCl concentration had to be effectively maintained to offset changes in temperature or in  $H_2SO_4$  content induced by addition or evaporation of  $H_2O$ . Similarly, HNO<sub>3</sub> was also introduced from the gas phase and allowed to equilibrate with the liquid.

Reaction probabilities ( $\gamma$ 's) were calculated from first-order rate constants obtained from the reactant loss or product growth. The surface area of sulfuric acid films was assumed to be the geometric area of the flow tube. Standard cylindrical flow tube analysis techniques were used.<sup>32</sup> Corrections for gas phase diffusion were made by using the method developed by Brown.<sup>33</sup> The diffusion coefficients of ClONO<sub>2</sub>, HOC1, and HC1 were estimated using the method described by Marrero and Mason: <sup>34</sup> the values were 176, 215, and 296 Torr cm<sup>2</sup> s<sup>-1</sup> for ClONO<sub>2</sub>, HOC1, and HC1 at 200 K, respectively. A temperature dependence of  $T^{1.75}$  was employed. The Brown correction was approximately 10% for small  $\gamma$  values ( $\gamma < 0.01$ ) and as large as a factor of 4 for large values ( $\gamma > 0.2$ ).

ClONO<sub>2</sub> was synthesized by the reaction of Cl<sub>2</sub>O with N<sub>2</sub>O<sub>5</sub><sup>35</sup> and was eluted from a trap at 192 K through a metering valve with a He flow of  $0.1-5.0 \text{ cm}^3 \text{ min}^{-1}$  at STP. In calibrating ClONO<sub>2</sub>, He was flowed through the ClONO<sub>2</sub> sample kept at 144 K, and the ClONO<sub>2</sub> concentration in the flow tube was estimated by assuming full saturation of the He flow when it exited the ClONO<sub>2</sub> trap. HOCl was produced by passing ClONO<sub>2</sub> through a 40 wt % H<sub>2</sub>SO<sub>4</sub> solution at 273 K. This source was stable during the experiment and contained few impurities. The HOCl concentration was estimated by its production from reaction 1 on a liquid H<sub>2</sub>SO<sub>4</sub> film. For this case, a stoichiometric ratio of unity was assumed for HOCl formed due to ClONO<sub>2</sub> lost (justification is given below). HCl was added to the flow tube from a dilute mixture in He (0.1 -5.0%), and its concentration was determined either by observing the pressure rise in the flow tube upon its addition or by using a 10 cm<sup>3</sup> min<sup>-1</sup> (at STP) mass flow meter. HNO<sub>3</sub> was collected from a 3:1 solution of H<sub>2</sub>SO<sub>4</sub> (96 wt %) and HNO<sub>3</sub> (70 wt %) and was calibrated similarly to HCl. Water signals were calibrated by depositing an ice film and using its vapor pressure over the temperature range of 190-230 K.<sup>36</sup>

HCl, HOCl, and Cl<sub>2</sub> were monitored at their parent peaks of 36, 52, and 70, respectively. ClONO<sub>2</sub> and HNO<sub>3</sub> were both detected at m/e = 46, which corresponds to the NO<sub>2</sub><sup>+</sup> ion fragment. Detection limits were about  $5 \times 10^{-8}$  Torr for ClONO<sub>2</sub>, Cl<sub>2</sub>, HOCl, and HNO<sub>3</sub> and  $1 \times 10^{-7}$  Torr for HCl. These detection sensitivities were limited mainly by background partial pressures. During the experiments, all the relevant mass spectrometer signals were simultaneously recorded by using a computer data acquisition system.

#### Results

Observations of Physical Uptake of HCl, HOCl, and HNO<sub>3</sub> on Liquid Sulfuric Acid. Because HCl and HNO<sub>3</sub> were added to the liquid sulfuric acid films by allowing the acid surface to equilibrate with the vapors introduced with the carrier gas, it was essential to understand their adsorption behavior on H<sub>2</sub>SO<sub>4</sub> over the temperature and acid content range investigated. Also, HOCl formed by the reaction of ClONO<sub>2</sub> with H<sub>2</sub>O may be retained in the H<sub>2</sub>SO<sub>4</sub> solution, possibly affecting the  $\gamma$  values determined. Furthermore, for the HOCl reaction with HCl, the physical uptake of HOCl in H<sub>2</sub>SO<sub>4</sub> solution needs to be excluded when deducing  $\gamma$ 's based on the HOCl loss. As a result, some



**Figure 2.** Physical uptake of HCl, HOCl, and HNO<sub>3</sub> when exposed to a 10-cm length of sulfuric acid film at  $P_{H_2O} = 3.8 \times 10^{-4}$  Torr: (a) for HCl at 202 K and  $P_{HCl} = 5 \times 10^{-7}$  Torr, (b) for HOCl at 204 K and  $P_{HOCl} = 1 \times 10^{-7}$  Torr, and (c) for HNO<sub>3</sub> at 202 K and  $P_{HNO_3} = 5 \times 10^{-7}$  Torr. The injector was moved upstream at 2 min and, for a and b, returned to its original position at 4 min. The average flow velocity of the carrier gas was 890 cm s<sup>-1</sup>.

direct measurements of HCl, HOCl, and  $HNO_3$  uptakes from the gas phase were carried out. These measurements also provide information on the time scale for reaching gas and liquid phase equilibrium.

To perform the uptake experiment, a steady-state flow of the adsorbed gas was first established through one of the injectors pushed in just downstream of the liquid sulfuric acid film (the jacketed injector was only used for HNO<sub>3</sub>). The injector was then quickly pulled upstream, exposing a section of the film to the vapor while monitoring its mass spectrometer signal. Examples of these results are shown in Figure 2 at a H<sub>2</sub>O partial pressure of  $3.8 \times 10^{-4}$  Torr. In Figure 2a, a 10-cm length of sulfuric acid film was exposed to HCl at 2 min: the HCl concentration in the gas phase fell instantly upon pulling the injector and then returned to its original value as the film was saturated with HCl. At this point, no further uptake was

observed, suggesting that an equilibrium had been reached between the gas and liquid. At 4 min, the injector was pushed back, resulting in a similar, yet opposite, peak due to HCl desorption. Both the adsorption and desorption occurred on a time scale of less than 1 min. An HCl partial pressure of  $5 \times 10^{-7}$  Torr was used in this experiment. In sulfuric acid, HCl undergoes dissociation, dependent on the acidic content;<sup>37</sup> its reactive form is likely to be Cl<sup>-</sup>.

Plotted in Figure 2b is the HOCl signal as it evolved with time due to exposure of a 10-cm length of sulfuric acid film at the HOCl partial pressure of  $1 \times 10^{-7}$  Torr. This uptake is qualitatively similar to that for HCl. Though a weak acid, HOCl also dissociates in highly acidic H<sub>2</sub>SO<sub>4</sub> solutions.<sup>16</sup> As can be concluded from Figure 2b, as long as sufficient time is allowed to saturate the acid film, reaction probabilities for the ClONO<sub>2</sub> hydrolysis (or HOCl reaction with HCl) can be accurately derived on the basis of the HOCl growth (or decay).

In contrast, HNO<sub>3</sub> uptake by the 10-cm  $H_2SO_4$  film was substantial (Figure 2c); it took about 45 min to reach saturation for the HNO<sub>3</sub> partial pressure of  $5 \times 10^{-7}$  Torr. As shown in Figure 2c, the slow recovery in HNO<sub>3</sub> after the initial drop is most likely controlled by interfacial mass transport or by liquid phase diffusion. The significant uptake of HNO<sub>3</sub> by sulfuric acid is consistent with the formation of a  $H_2SO_4/HNO_3/H_2O$ ternary system at this temperature, as noted in the Introduction section. The extent of HNO<sub>3</sub> dissociation in sulfuric acid is also dependent on acidity.<sup>37</sup>

Both the absorption and desorption curves, as displayed in Figure 2, can be applied to extract information such as the product of the Henry's law solubility constant (*H*) and square root of the liquid diffusion coefficients ( $D_1^{1/2}$ ). For example, the values in Figure 2 correspond to 25 and 41 (in the units of M atm<sup>-1</sup> cm s<sup>-1/2</sup>) for HCl and HOCl. Over the few measurements taken in this work, the results are generally in good agreement with those reported by Hanson and Ravishankara.<sup>38</sup>

As expected, at a given  $H_2O$  partial pressure, we have observed drastic increases in the uptake with decreasing temperature, indicating very strong negative temperature dependencies. For conditions similar to those in Figure 2a, the time scale for HCl saturation (i.e., the time for the signal to return to its initial level) was as long as about 15 min at 195 K, whereas the HCl uptake was undetectable at 220 K. In general, solubilities of these species in  $H_2SO_4$  increase with decreasing temperature at a given acid content and increase with decreasing  $H_2SO_4$  content at a given temperature. Since the  $H_2O$  partial pressure was held constant in our experiments, temperature dependencies of these uptakes were actually 2-fold: at low temperatures the solubilities increased due to both decreasing temperature and decreasing  $H_2SO_4$  content.

It should be pointed out that here we examine only the qualitative behavior of these uptake phenomena in terms of relevance to the present work. Detailed studies have been reported by Hanson and Ravishankara.<sup>38</sup>

**Reaction of ClONO<sub>2</sub> with H<sub>2</sub>O.** We have performed direct measurements of uptake coefficients for ClONO<sub>2</sub> on liquid sulfuric acid films at temperatures between 195 and 220 K and at a H<sub>2</sub>O partial pressure of  $3.8 \times 10^{-4}$  Torr. Reaction probabilities ( $\gamma_1$ ) were obtained by observing the decay of ClONO<sub>2</sub> or the growth of HOCl as a function of injector position as it was pulled successively upstream over the acid film.

A typical result of reactive uptake of ClONO<sub>2</sub> by sulfuric acid solution is shown in Figure 3 as time evolution of ClONO<sub>2</sub> and HOCl signals. The experiment was performed at 199 K and at a ClONO<sub>2</sub> partial pressure of  $1 \times 10^{-7}$  Torr. At ~2 min, a 10-cm length of H<sub>2</sub>SO<sub>4</sub> film was exposed to ClONO<sub>2</sub>



**Figure 3.** Temporal profiles of ClONO<sub>2</sub> and HOCl as ClONO<sub>2</sub> was exposed and not exposed to a 10-cm length of liquid sulfuric acid film. The HOCl signal exhibited a noticeable delay when the injector was positioned both upstream and downstream, as a result of HOCl being physically dissolved in sulfuric acid. Experimental conditions:  $P_{\text{ClONO}_2} = 1 \times 10^{-7}$  Torr,  $P_{\text{H}_2\text{O}} = 3.8 \times 10^{-4}$  Torr,  $P_{\text{He}} = 0.5$  Torr, flow velocity = 897 cm s<sup>-1</sup>, and T = 199 K.

by pulling the injector upstream, and the signal of ClONO<sub>2</sub> dropped sharply to a very small value while the HOCl signal rose; at  $\sim$ 9.2 min, the injector was moved back downstream to stop the exposure and both the ClONO<sub>2</sub> and HOCl signals returned to their initial levels. The HOCl signal is found to exhibit a noticeable delay of about 1.5 min when the injector was positioned both upstream and downstream, consistent with the above-mentioned uptake behavior. As displayed in the figure, the product that leaves the surface is identified as HOCl; the other product, HNO<sub>3</sub>, is left behind on the film since it is very soluble in the cold sulfuric acid solutions.<sup>15</sup> In all of our experiments of this type, the maximum signal due to HOCl was always comparable to the initial ClONO<sub>2</sub> signal. Because the relative detection sensitivity of the mass spectrometer for the two molecules was approximately the same, the measurements suggest that ClONO<sub>2</sub> reacting with H<sub>2</sub>O on liquid sulfuric acid yields one HOCl.

In addition to the ClONO<sub>2</sub> reaction with H<sub>2</sub>O, some loss of ClONO<sub>2</sub> may be related to its physical uptake by sulfuric acid. In our experiments, however, it is virtually impractical to separate the two processes. Nevertheless, this should have a negligible effect on the  $\gamma$  measurements, because we obtained essentially the same  $\gamma$ 's based on both ClONO<sub>2</sub> decay and HOCl growth, as discussed below. Hanson and Ravishankara<sup>29</sup> reported a solubility constant of about 10<sup>3</sup> M atm<sup>-1</sup> for ClONO<sub>2</sub> in a 60% H<sub>2</sub>SO<sub>4</sub> solution at 202 K.

Figure 4 is a semilog plot of measured ClONO<sub>2</sub> and HOCl signals versus injector position for an experiment performed at 199 K and at an initial ClONO<sub>2</sub> partial pressure of  $1.2 \times 10^{-7}$  Torr. The slope of the ClONO<sub>2</sub> decay line yields the first-order rate coefficient. The nearly constant concentration for HOCl at larger injector distance can be viewed as an asymptotic value. Hence, a plot of log( $S_{\text{HOCl}}(\infty) - S_{\text{HOCl}}(z)$ ) versus injector distance (where z is the injector position and  $S_{\text{HOCl}}(\infty)$  is the asymptotic HOCl signal at large injector distance, estimated visually from the figure) should be linear (Figure 4b). The slope of such a



**Figure 4.** ClONO<sub>2</sub> and HOCl as a function of injector position, z: (a)  $\bigcirc$  for ClONO<sub>2</sub> decay; (b)  $\triangle$  for HOCl growth;  $\textcircled{\bullet}$  for plot of  $S_{\text{HOCl}}(\infty)$   $- S_{\text{HOCl}}(z)$  where  $S_{\text{HOCl}}(\infty)$  is the HOCl signal at larger distance (see text for details). Both ClONO<sub>2</sub> decay and HOCl growth are found to follow first-order kinetics, yielding reaction probabilities of 0.012 and 0.010, respectively. Experimental conditions:  $P_{\text{ClONO}_2} = 1.2 \times 10^{-7}$ Torr,  $P_{\text{H}_2\text{O}} = 3.8 \times 10^{-4}$  Torr,  $P_{\text{He}} = 0.5$  Torr, flow velocity = 921 cm s<sup>-1</sup>, and T = 199 K.

plot also yields a first-order rate coefficient. Both the ClONO<sub>2</sub> decay and HOCl growth validate the first order kinetics. These coefficients lead to reaction probabilities of 0.012 and 0.010, corresponding to the ClONO<sub>2</sub> decay and HOCl growth, respectively. Note that the reaction probability obtained from the HOCl growth is very sensitive to the determination of the asymptotic value of  $S_{\text{HOCl}}(\infty)$ . For smaller reactive uptake of ClONO<sub>2</sub> (i.e., at high temperatures), a longer injector distance is needed to derive its value.

In Figure 5, values of  $\gamma_1$  calculated from experiments such as those displayed in Figure 4 are presented as a function of temperature using  $P_{\text{CIONO}_2} = 8 \times 10^{-8}$  to  $2 \times 10^{-7}$  Torr. The open circles denote  $\gamma_1$ 's obtained from the ClONO<sub>2</sub> decay, and the solid circles are based on the HOCl growth. The solid line is a polynomial fit through the data; the coefficients are summarized in Table 1 along with the experimental conditions. The estimated error limit of the  $\gamma_1$  values is approximately  $\pm 30\%$ , which includes the uncertainties in measuring the firstorder rate constant and in correcting for gas phase diffusion.

It is shown in the figure that, as the temperature varies from 220 to 196 K,  $\gamma_1$  changes from about  $3 \times 10^{-4}$  to 0.03, increasing by 2 orders of magnitude. At the same time, the H<sub>2</sub>SO<sub>4</sub> film is diluted from about 70 wt % to less than 50 wt %. Thus, the ClONO<sub>2</sub> hydrolysis shows a strong dependence on sulfuric acid content, in contrast to N<sub>2</sub>O<sub>5</sub>.<sup>20-23</sup> Also, these measurements do not discriminate the effects of surface versus bulk reactions and represent only the overall process. For stratospheric applications, however, the measured  $\gamma$ 's need to be corrected for the finite dimension of the sulfate aerosols; this will be discussed in a later section.



**Figure 5.** Reaction probability ( $\gamma_1$ ) for ClONO<sub>2</sub> hydrolysis on liquid sulfuric acid films as a function of temperature at  $P_{\rm H_2O} = 3.8 \times 10^{-4}$  Torr. Open circles are  $\gamma_1$ 's determined from ClONO<sub>2</sub> decay, and solid ones from HOCl growth. The solid curve is a polynomial fit to the experimental data, and the coefficients are summarized in Table 1. The top axis corresponds to H<sub>2</sub>SO<sub>4</sub> wt % estimated from the temperature and  $P_{\rm H_2O}$  based on vapor pressure data of sulfuric acid solutions.<sup>18,31</sup> Experimental conditions:  $P_{\rm ClONO_2} = 8 \times 10^{-8}$  to  $2 \times 10^{-7}$  Torr,  $P_{\rm He} = 0.5$  Torr, and flow velocity = 890–925 cm s<sup>-1</sup>.

**Reaction of ClONO<sub>2</sub> with HCl.** We investigated the reactive uptake of ClONO<sub>2</sub> by liquid  $H_2SO_4$  in the presence of HCl vapor ( $\gamma_2$ ): the measurements were performed by first allowing the substrate to equilibrate with HCl vapor introduced into the flow tube with He through one of the unjacketed injectors.

Figure 6 illustrates ClONO<sub>2</sub>, HCl, HOCl, and Cl<sub>2</sub> signals as a function of the injector position with (a)  $P_{HCl} > P_{ClONO_2}$  and (b)  $P_{\text{ClONO}_2} > P_{\text{HCl}}$ , conducted at 203 K. An important difference between parts a and b of Figure 6 is that with higher ClONO<sub>2</sub> partial pressures both Cl<sub>2</sub> and HOCl were liberated into the gas phase, whereas with HCl in excess no release of HOCl into the gas phase was observed. In Figure 6a,  $\gamma_2$  can be calculated from the decay of the ClONO<sub>2</sub> signal or the growth of Cl<sub>2</sub> as a function of the ClONO<sub>2</sub> injector position, both yielding a reaction probability of about 0.02 (the difference is less than 10%). Correcting the measured ClONO<sub>2</sub> and Cl<sub>2</sub> signals for their relative sensitivities gave a yield of near unity for Cl<sub>2</sub>. With  $P_{\text{ClONO}_2} > P_{\text{HCl}}$  (Figure 6b), the HCl decay was initially very fast as Cl2 rose rapidly. During the process, little HOCl was released. At larger injector distances, the HCl and Cl<sub>2</sub> signals approached zero and an asymptotic value, respectively. The HOCl signal, on the other hand, rose in accord with the ClONO<sub>2</sub> loss. Clearly, at smaller injector distances, the reaction of ClONO<sub>2</sub> with HCl was dominant. A reaction probability of 0.013 was derived from the initial HCl decay or Cl<sub>2</sub> growth, similar to that in Figure 6a. When the gaseous HCl concentration diminished at larger distances, the ClONO<sub>2</sub> hydrolysis became apparent, with a reaction probability of 0.0035 (obtained from ClONO<sub>2</sub> decay). This later value is nearly identical to that of ClONO<sub>2</sub> hydrolysis determined above. Hence, with  $ClONO_2$  in excess, both reactions 2 and 3 were observed, with reaction probabilities equal to those measured

TABLE 1: Summary and Parametrization<sup>a</sup> of the Reaction Probability  $(\gamma)$  Measurements

| reaction         | coefficients |                       |                       |                                                                                                                                                                                                                            |
|------------------|--------------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | $a_1$        | <i>a</i> <sub>2</sub> | <i>a</i> <sub>3</sub> | experimental conditions                                                                                                                                                                                                    |
| $CIONO_2 + H_2O$ | 114.3935     | -1.0396               | 0.002 29              | $P_{H_{2O}} = 3.8 \times 10^{-4} \text{ Torr}$<br>$P_{CIONO2} = 8 \times 10^{-8} \text{ to } 2 \times 10^{-7} \text{ Torr}$<br>T = 195 - 220  K                                                                            |
| $ClONO_2 + HCl$  | 75.0581      | -0.6158               | 0.001 17              | $P_{H_{2O}} = 3.8 \times 10^{-4} \text{ Torr}$ $P_{CIONO_2} = 8 \times 10^{-8} \text{ to } 2 \times 10^{-7} \text{ Torr}$ $P_{HCI} = 3 \times 10^{-7} \text{ to } 4 \times 10^{-7} \text{ Torr}$ $T = 195 - 212 \text{ K}$ |
| HOCI + HCI       | -42.5380     | 0.5238                | -0.001 57             | $P_{H_{2O}} = 3.8 \times 10^{-4}$ Torr<br>$P_{H_{2O}} = 9 \times 10^{-8}$ to $1 \times 10^{-7}$ Torr                                                                                                                       |

 $^{a}\log \gamma = a_1 + a_2T + a_3T^2.$ 



#### Distance (cm)

**Figure 6.** ClONO<sub>2</sub> (open triangles), HCl (solid triangles), Cl<sub>2</sub> (open circles), and HOCl (solid squares) as a function of injector position with (a)  $P_{\text{HCl}} > P_{\text{ClONO}_2}$  (i.e.,  $P_{\text{ClONO}_2} = 1.4 \times 10^{-7}$  Torr and  $P_{\text{HCl}} = 5.3 \times 10^{-7}$  Torr) and (b)  $P_{\text{ClONO}_2} > P_{\text{HCl}}$  (i.e.,  $P_{\text{ClONO}_2} = 7.2 \times 10^{-7}$  Torr and  $P_{\text{HCl}} = 3.3 \times 10^{-7}$  Torr). In a the reaction probabilities corresponding to ClONO<sub>2</sub> decay and Cl<sub>2</sub> growth are 0.022 and 0.020, respectively. In b the initial HCl decay at smaller injector distances leads to a reaction probability of 0.013, while the ClONO<sub>2</sub> decay at larger injector distances corresponds to a value of 0.0035. Experimental conditions:  $P_{\text{H}_2\text{O}} = 3.8 \times 10^{-4}$  Torr,  $P_{\text{He}} = 0.5$  Torr, flow velocity = 901 cm s<sup>-1</sup>, and T = 203 K.

separately for the  $CIONO_2$  hydrolysis and for the  $CIONO_2$  reaction with HCl.

Some experiments were performed by varying the gaseous HCl concentration at a constant temperature. Figure 7 depicts the measured  $\gamma_2$ 's as a function of HCl partial pressure at 200 K and  $P_{\text{ClONO}_2} \approx 8 \times 10^{-8}$  Torr (corresponding to a solution of about 54 wt %). It is evident that  $\gamma_2$  varies with the HCl partial pressure: a change of  $P_{\text{HCl}}$  from  $2 \times 10^{-7}$  to  $2 \times 10^{-6}$  Torr results in  $\gamma_2$  values from 0.02 to 0.19. This is primarily due to the increase in HCl dissolved in the film at higher HCl partial pressures, as governed by Henry's law (which linearly relates the concentration of gaseous HCl to that in the liquid).

Results of  $\gamma_2$  measurements are shown in Figure 8 as a function of temperature. The open and filled symbols correspond to those determined from ClONO<sub>2</sub> decay and Cl<sub>2</sub> growth, respectively. The top axis labels H<sub>2</sub>SO<sub>4</sub> wt % estimated from the H<sub>2</sub>O vapor pressures in sulfuric acid solutions.<sup>18,31</sup> In these experiments, the HCl partial pressures fluctuated only slightly in the range (3–4) × 10<sup>-7</sup> Torr, and the initial partial pressures of HCl were always higher than those of ClONO<sub>2</sub> so that the pseudo first-order assumption applied ( $P_{ClONO_2} = 8 \times$ 

## CIONO<sub>2</sub> + HCl

T = 195 - 212 K

 $P_{\rm HCl} = 3 \times 10^{-7} \text{ to } 4 \times 10^{-7} \text{ Torr}$ 



**Figure 7.** Reaction probabilities ( $\gamma_2$ ) of ClONO<sub>2</sub> with HCl on liquid sulfuric acid films as a function of  $P_{\text{HCl}}$ . The solid curve is a polynomial fit to the experimental data. Experimental conditions:  $P_{\text{ClONO}_2} \approx 8 \times 10^{-8}$  Torr,  $P_{\text{H}_2\text{O}} = 3.8 \times 10^{-4}$  Torr,  $P_{\text{H}_2} = 0.5$  Torr, flow velocity = 900–920 cm s<sup>-1</sup>, and T = 200 K (corresponding to a solution of 54 wt %).

 $10^{-8}$  to 2 ×  $10^{-7}$  Torr). The parametrized temperature dependence of the  $\gamma_2$  data is also listed in Table 1 with the experimental conditions. The uncertainty in the  $\gamma_2$  values is approximately  $\pm 30\%$  for  $\gamma_2 < 0.1$ . For larger  $\gamma_2$  values (which are more sensitive to the gas phase diffusion), the uncertainty is as large as a factor of 4. Some scatter in  $\gamma_2$  is also related to variation in HCl partial pressures during the various experiments; a  $P_{\rm HCl}$  variation of  $(3-4) \times 10^{-7}$  renders about a 20% difference in  $\gamma_2$ , according to Figure 7.

In Figure 8,  $\gamma_2$  approaches 0.3 at 195 K, whereas the value at 212 K is more than 2 orders of magnitude smaller. This profound temperature dependence appears to be correlated with the amount of dissolved HCl in the film: at a fixed  $P_{\rm H_{20}}$  of 3.8  $\times 10^{-4}$  Torr, HCl solubility in H<sub>2</sub>SO<sub>4</sub> increases by about 3 orders of magnitude over the temperature range from 210 to 195 K.<sup>37,38</sup> As explained above, this solubility behavior is caused jointly by the changing temperature and changing H<sub>2</sub>-SO<sub>4</sub> content, when  $P_{\rm H_{20}}$  is held constant.

At present the nature of this reaction mechanism is still unknown. On the ice surface it has been proposed that reaction 2 may occur in two steps, i.e., reaction 1 followed by reaction  $3;^{39,40}$  it is also feasible that reaction 3 may enhance reaction 1



**Figure 8.** Reaction probability ( $\gamma_2$ ) of ClONO<sub>2</sub> with HCl on liquid sulfuric acid films as a function of temperature at  $P_{H_2O} = 3.8 \times 10^{-4}$  Torr. The open and filled symbols are  $\gamma_2$ 's determined from ClONO<sub>2</sub> decay and Cl<sub>2</sub> growth, respectively. The solid curve is a polynomial fit to the experimental data, and the coefficients are summarized in Table 1. Experimental conditions:  $P_{\text{CIONO}_2} = 8 \times 10^{-8}$  to  $2 \times 10^{-7}$  Torr,  $P_{\text{HCI}} = 3 \times 10^{-7}$  to  $4 \times 10^{-7}$  Torr,  $P_{\text{He}} = 0.5$  Torr, and flow velocity = 890–925 cm s<sup>-1</sup>.

by refreshing the liquid surface with  $H_2O$ . Alternatively, this reaction mechanism could simply be  $CIONO_2$  reacting directly with HCl. As mentioned above, no appearance of HOCl was observed in the reaction of  $CIONO_2$  with HCl, and almost all the  $CIONO_2$  loss was accountable due to its reaction with HCl (which can be inferred from the  $Cl_2$  rise). These observations do not enable us to separate the overall reaction into steps even if it were taking place in multiple steps. It is also likely that the measured  $CIONO_2$  uptake in the presence of HCl is due to reactions with both HCl and  $H_2O$ . The relative importance of reactions 1 and 2 is discussed below.

Also, separation of the measured  $\gamma_2$  as being due to reaction on the surface or in the bulk is not facile. Diffusion of ClONO<sub>2</sub> into the bulk and its subsequent reaction with dissolved HCl would enhance the uptake taking place at the surface. We did not observe any further changes in the ClONO<sub>2</sub> signal (nor Cl<sub>2</sub>) after the initial decline (or rise) upon exposure of ClONO<sub>2</sub> to sulfuric acid, suggesting that either the bulk reaction was too small to compete with that on the surface or ClONO<sub>2</sub> diffusion was very rapid so that only the combined reaction was measured. Realization of these processes, however, could be important in calculating the reaction probabilities based on laboratorymeasured first-order rate coefficients and solubility constants, as pointed out by Hanson and Ravishankara.<sup>29</sup>

**Reaction of HOCl with HCl.** Reaction probability measurements between HOCl and HCl ( $\gamma_3$ ) were conducted in the same manner as those for the ClONO<sub>2</sub> reaction with HCl. As stated previously, HOCl also physically dissolves in H<sub>2</sub>SO<sub>4</sub> solutions. To better quantify the potential effect of HOCl dissolving in the film on the reaction probability, we determined  $\gamma_3$  both from the HOCl decay and from the Cl<sub>2</sub> rise. Figure 9 shows signals due to HOCl, HCl, and Cl<sub>2</sub> versus injector position. Two different HOCl partial pressures were employed while the HCl partial pressure was held constant at  $5 \times 10^{-7}$  Torr. In Figure 9a, the observed first-order loss coefficient for HOCl gave a



**Figure 9.** HOCl (open squares), Cl<sub>2</sub> (open circles), and HCl (solid triangles) as a function of injector position with (a)  $P_{\text{HCl}} > P_{\text{HOCl}} (P_{\text{HOCl}} = 9 \times 10^{-8} \text{ Torr})$  and (b)  $P_{\text{HOCl}} > P_{\text{HCl}} (P_{\text{HOCl}} = 7 \times 10^{-7} \text{ Torr})$ . In a the reaction probabilities are 0.14 and 0.12, corresponding to HOCl decay and Cl<sub>2</sub> growth, while in b these values are 0.091 and 0.10. Experimental conditions:  $P_{\text{HCl}} = 5 \times 10^{-7} \text{ Torr}$ ,  $P_{\text{H_2O}} = 3.8 \times 10^{-4} \text{ Torr}$ ,  $P_{\text{He}} = 0.5 \text{ Torr}$ , flow velocity = 901 cm s<sup>-1</sup>, and T = 198 K.

reaction probability of 0.14 using  $P_{\text{HOCI}} = 9 \times 10^{-8}$  Torr. The Cl<sub>2</sub> signal increased with injector distance in accord with the HOCl loss, with a corresponding value of 0.12. Over the length of the substrate,  $P_{\text{HCI}}$  decreased by about 30%. In Figure 9b, the HOCl partial pressure (7 × 10<sup>-7</sup> Torr) slightly exceeded that of HCl. Again, both HOCl and HCl were lost as the Cl<sub>2</sub> signal increased. In this case, the decay of HCl followed the first-order rate law, with a  $\gamma_3$  value of 0.091; the computed reaction probability based on the Cl<sub>2</sub> growth differed by about 15%. Also, since the amount of Cl<sub>2</sub> produced was comparable to the HOCl lost, we conclude that the decline in the HOCl signal is mainly due to the reaction with HCl. These observations also confirm the near unit stoichiometry for this reaction.

Results of  $\gamma_3$ 's measured at various HCl partial pressures are plotted in Figure 10. These experiments were performed at 202 K and  $P_{\text{HOCl}} \approx 1 \times 10^{-7}$  Torr. The data in this figure display the expected behavior:  $\gamma_3$  increases with increasing  $P_{\text{HCl}}$ . An increase in the reaction probability by a factor of 4 is observed as  $P_{\text{HCl}}$  is varied from  $3 \times 10^{-7}$  to  $2 \times 10^{-6}$  Torr. This is qualitatively the same as that for the ClONO<sub>2</sub> reaction with HCl described above.

The temperature dependence of the HOCl reaction with HCl is illustrated in Figure 11 using HOCl partial pressures of  $9 \times 10^{-8}$  to  $1 \times 10^{-7}$  Torr. The HCl partial pressure was maintained in the range  $(3-4) \times 10^{-7}$  Torr. The symbols are the same as in Figure 8; coefficients of a polynomial fit of the data are summarized in Table 1. The estimated uncertainty for these measurements is similar to that discussed in the preceding section for the ClONO<sub>2</sub> reaction with HCl.

Reaction probabilities of HOCl with HCl are in general larger than those measured for ClONO<sub>2</sub> reacting with HCl (Figures 8 and 11) by a factor of 3–7. For example,  $\gamma_3$  is greater than 0.3 at 197 K and decreases to about 0.004 at 215 K. This apparently reflects the higher solubility of HOCl in sulfuric acid: the Henry's law solubility coefficient for HOCl is about 1 order of magnitude greater than that for HCl under the same conditions.<sup>38</sup> The mechanism for the reaction of HOCl with HCl is likely to be acid-based catalysis, occurring after the uptake and subsequent solvation of both species,



Figure 10. Reaction probabilities ( $\gamma_3$ ) of HOCl with HCl on liquid sulfuric acid films as a function of  $P_{\rm HCl}$ . The solid curve is a polynomial fit to the experimental data. Experimental conditions:  $P_{\rm HCCl} \approx 1 \times 10^{-7}$  Torr,  $P_{\rm H_2O} = 3.8 \times 10^{-4}$  Torr,  $P_{\rm He} = 0.5$  Torr, flow velocity = 890–925 cm s<sup>-1</sup>, and T = 202 K.



**Figure 11.** Reaction probability ( $\gamma_3$ ) of HOCl with HCl on liquid sulfuric acid films as a function of temperature at  $P_{\rm H_2O} = 3.8 \times 10^{-4}$  Torr. The open and filled symbols are  $\gamma_3$ 's determined from the HOCl decay and Cl<sub>2</sub> growth, respectively. The solid curve is a polynomial fit to the experimental data, and the coefficients are summarized in Table 1. Experimental conditions:  $P_{\rm HOCl} = 9 \times 10^{-8}$  to  $1 \times 10^{-7}$  Torr,  $P_{\rm HCl} = 3 \times 10^{-7}$  to  $4 \times 10^{-7}$  Torr,  $P_{\rm He} = 0.5$  Torr, and flow velocity = 890–925 cm s<sup>-1</sup>.

$$H^{+}Cl^{-}(aq) + H^{+}ClO^{-}(aq) \rightarrow Cl_{2}(g) + H_{2}O(aq)$$
 (5)

Reaction 5 has been investigated by Eigen and Kustin<sup>41</sup> at room temperature. It was found to be limited by liquid phase diffusion.

The Effect of  $HNO_3$  on Reactions 2 and 3. The effect of  $HNO_3$  on reaction probabilities of HCl with  $ClONO_2$  and HOCl



**Figure 12.** HOCl (open squares), Cl<sub>2</sub> (open circles), and HCl (solid triangles) as a function of injector position without (a) and with (b) HNO<sub>3</sub>. Both HOCl decay and Cl<sub>2</sub> growth with injector distance did not change appreciably with addition of HNO<sub>3</sub>. Figure 12a is the same as Figure 9a. In (b) the reaction probabilities are 0.135 and 0.140, corresponding to HOCl decay and Cl<sub>2</sub> growth. Experimental conditions:  $P_{\text{HOCl}} = 1 \times 10^{-7}$  Torr,  $P_{\text{HCl}} = 5 \times 10^{-7}$  Torr,  $P_{\text{HNO_3}} = 5 \times 10^{-7}$  Torr,  $P_{\text{H_2O}} = 3.8 \times 10^{-4}$  Torr,  $P_{\text{He}} = 0.5$  Torr, flow velocity = 901 cm s<sup>-1</sup>, and T = 198 K.

has been examined by first exposing the acid film to HCl and HNO<sub>3</sub> vapors and allowing them to equilibrate with the liquid. Because these experiments dealt virtually with the HNO<sub>3</sub>/HCl/ $H_2SO_4/H_2O$  quaternary system, it would be important to verify the reaction products or to look for possible new reactions, if any. Mass scans before and after exposure of ClONO<sub>2</sub> or HOCl to the quaternary solutions did not exhibit any new mass peaks over the entire mass range, indicating the reaction of ClONO<sub>2</sub> or HOCl with HCl to form Cl<sub>2</sub> in this multicomponent system. Also, there was no evidence for the occurrence of Cl<sub>2</sub>O (*m/e* = 86), which has been suggested to form by the self-reaction of HOCl in sulfuric acid.<sup>27</sup>

Figure 12 represents HOCl, HCl, and Cl<sub>2</sub> signals as a function of injector distance: both experiments were performed under the same conditions except that HNO<sub>3</sub> was present at a partial pressure of  $\sim 5 \times 10^{-7}$  Torr in Figure 12b. As apparent in this figure, the HOCl decay (or Cl<sub>2</sub> growth) with injector distance did not change noticeably with the addition of HNO<sub>3</sub>; the resulting reaction probabilities were within 10%. Note that, although temperature and H<sub>2</sub>O partial pressure in parts a and b of Figure 12 were the same, the concentrations of H<sub>2</sub>SO<sub>4</sub> in the films were different. This is a result of changing H<sub>2</sub>SO<sub>4</sub> content in the H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub>/H<sub>2</sub>O ternary system; at a given temperature, addition of HNO<sub>3</sub> to sulfuric acid solutions lowered the H<sub>2</sub>O partial pressure so that extra H<sub>2</sub>O was needed to hold the H<sub>2</sub>O partial pressure constant. A similar phenomenon affects the sulfate aerosol composition in the stratosphere.<sup>15,16</sup>

Results of reaction probabilities for reaction 3 performed on the H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub>/HCl/H<sub>2</sub>O quaternary system are displayed in Figure 13 in the temperature range 198–209 K, along with the measured  $\gamma_3$ 's excluding HNO<sub>3</sub> (the same as the solid line in Figure 11). At 198 K, the liquid film could contain as much as 5 wt % HNO<sub>3</sub>, inferred from the ternary vapor pressure data of Zhang et al.<sup>15</sup> Clearly, the difference in the reaction probabilities was negligible, considering experimental uncertainties and scatter in the present data.

Figure 14 shows  $ClONO_2$ , HCl, and  $Cl_2$  signals versus injector position for experiments (a) without and (b) with  $HNO_3$ . A



Figure 13. Reaction probability ( $\gamma_3$ ) of HOC1 with HCl on liquid sulfuric acid films doped with HNO<sub>3</sub>, as a function of temperature at  $P_{\rm H_2O} = 3.8 \times 10^{-4}$  Torr. The solid curve is  $\gamma_3$  determined earlier without HNO<sub>3</sub>. Experimental conditions:  $P_{\rm HOC1} = 9 \times 10^{-8}$  to  $1 \times 10^{-7}$  Torr,  $P_{\rm HC1} = 3 \times 10^{-7}$  to  $4 \times 10^{-7}$  Torr,  $P_{\rm He} = 0.5$  Torr,  $P_{\rm HNO_3} = 5 \times 10^{-7}$  Torr, and flow velocity = 890–925 cm s<sup>-1</sup>.



**Figure 14.** ClONO<sub>2</sub> (open squares), Cl<sub>2</sub> (open circles), and HCl (solid triangles) as a function of injector position without (a) and with (b) HNO<sub>3</sub>. The Cl<sub>2</sub> growth with injector distance did not change appreciably with addition of HNO<sub>3</sub>. In a the reaction probabilities are 0.042 and 0.045, corresponding to ClONO<sub>2</sub> decay and Cl<sub>2</sub> growth, while in b the value is 0.046 for Cl<sub>2</sub> growth. Experimental conditions:  $P_{\text{ClONO}_2} = 1 \times 10^{-7}$  Torr,  $P_{\text{HCl}} = 4 \times 10^{-7}$  Torr,  $P_{\text{HNO}_3} = 5 \times 10^{-7}$  Torr,  $P_{\text{H2O}} = 3.8 \times 10^{-4}$  Torr,  $P_{\text{He}} = 0.5$  Torr, flow velocity = 911 cm s<sup>-1</sup>, and T = 200 K.

complication in Figure 14b is that  $ClONO_2$  decay can no longer be employed to derive the first-order coefficient because of the interference from HNO<sub>3</sub>. This problem, however, can be remedied by using the  $Cl_2$  growth in both cases. Again, addition of HNO<sub>3</sub> did not appear to influence the  $Cl_2$  growth as a function of the injector distance. Reaction probabilities derived from Figure 14a,b agreed within 10%.

The fact that reaction probabilities for reactions 2 and 3 are not significantly affected due to the incorporation of  $HNO_3$  into



**Figure 15.** Comparison of reaction probabilities for ClONO<sub>2</sub> hydrolysis among various studies: Hanson and Ravishankara<sup>29</sup> ( $\blacksquare$ ), Williams et al.<sup>41</sup> ( $\triangle$ ), and Tolbert et al.<sup>27</sup> ( $\square$ ). The solid line represents a fit of the present data.

 $H_2SO_4$  solutions is intriguing. A possible explanation is that both reactions produce Cl<sub>2</sub>, which does not dissolve in sulfuric acid. Furthermore, at a given  $H_2O$  partial pressure, the dissolution of HNO<sub>3</sub> in sulfuric acid does not significantly alter the HCl solubility at temperatures near 200 K; instead, it may make HCl slightly more soluble, by reducing the  $H_2SO_4$ content.<sup>37</sup>

### Discussion

**Comparison with Previous Results.** The ClONO<sub>2</sub> hydrolysis on liquid sulfuric acid has been previously investigated by several groups.<sup>22,27,29,42</sup> In Figure 15, comparison is made between the present results and previous measurements. The open square is data measured at 210 K by Tolbert et al.;<sup>27</sup> the open triangles are data at 223 K from Williams et al.<sup>42</sup> Both studies used a Knudson cell technique. The solid squares are the most recent measurements from Hanson and Ravishankara<sup>29</sup> at 202 K. Shown as the solid line is the fit of the present data, converted to H<sub>2</sub>SO<sub>4</sub> wt % on the basis of the temperature and H<sub>2</sub>O partial pressure. The reaction probabilities we obtained are in good agreement with those reported by Hanson and Ravishankara, whereas our values are slightly higher (or lower) than those from the SRI group in less (or more) concentrated H<sub>2</sub>SO<sub>4</sub> solutions.

Figure 16 compares our results of reaction 2 with the measurements of Hanson and Ravishankara.<sup>29</sup> They investigated  $\gamma_2$  dependence on the HCl partial pressure at 202 K. The data from their measurements, plotted as the solid squares, are taken at  $P_{\rm HCl} \approx 4 \times 10^{-7}$  Torr. Note that the HCl solubility in sulfuric acid depends on both temperature and acid content, as discussed before. Therefore, the temperature difference at which the two measurements were carried out could result in a difference in the amounts of HCl in the solutions, even if the acid content was the same. Nevertheless, the agreement between the two studies is excellent. Theoretical predictions of uptake coefficients for reaction 2 by Hanson et al.,<sup>28</sup> however, yield results almost 1 order of magnitude smaller than those shown in Figure 16.



Figure 16. Comparison of reaction probabilities for  $ClONO_2$  with HCl between this work (solid line) and those reported by Hanson and Ravishankara<sup>29</sup> (solid squares).

Available laboratory data of reaction probabilities for reaction 3 on sulfuric acid are rather limited. Hanson and Ravishankara<sup>22,38</sup> studied this reaction for a 60 wt % H<sub>2</sub>SO<sub>4</sub> solution: a value of  $1.6 \times 10^5$  M<sup>-1</sup> s<sup>-1</sup> for the second-order rate coefficient,  $k^{II}$ , was inferred. On the basis of our measured  $\gamma_3$ 's, we estimate this rate coefficient directly using<sup>43</sup>

$$1/\gamma_3(\text{obs}) = 1/\alpha + \omega/[4H^*RT(D_1k^1)^{1/2}]$$
 (6)

where  $\alpha$  is the mass accommodation (assumed unity here), *R* is the gas constant, *T* is the temperature,  $\omega$  is the mean molecular speed, and  $k^{I} = k^{II}$ [HCI] is the pseudo-first-order rate coefficient for the reaction of HOCl with HCl in the liquid. Values of liquid phase diffusion coefficients (*D*<sub>1</sub>) and effective Henry's law coefficients (*H*\*), needed to extract  $k^{II}$ , are taken from the results of Hanson and Ravishankara.<sup>38</sup> The calculated  $k^{II}$  ranges from  $1.35 \times 10^5$  to about  $1.0 \times 10^4$  M<sup>-1</sup> s<sup>-1</sup> for acid contents from 60 to 50 wt %: for the 60 wt % H<sub>2</sub>SO<sub>4</sub>, the value for  $k^{II}$ is consistent with that reported by Hanson and Ravishankara.<sup>22,38</sup> The  $\gamma_3$ 's computed by Hanson et al.,<sup>28</sup> assuming a constant  $k^{II}$ , exhibit some systematic departure from the present results.

Relative Importance between ClONO<sub>2</sub> Hydrolysis and ClONO<sub>2</sub> Reaction with HCl. As discussed above, in the experiments when HCl is absent, HOCl is the only product of the reaction of ClONO<sub>2</sub> with H<sub>2</sub>O. With addition of gaseous HCl at a partial pressure of  $(3-4) \times 10^{-7}$  Torr (which is equivalent to the HCl mixing ratio of a few ppbv in the stratosphere), no HOCl is liberated into the gas phase when HCl is in excess over ClONO<sub>2</sub>. These results may lead to the conclusion that ClONO<sub>2</sub> hydrolysis will be less important because no gaseous HOCl can be produced. This, however, may not be necessarily true for submicron-sized sulfate aerosols in the stratosphere. Consider a spherical droplet of radius *a*. The characteristic time for liquid diffusion within the particle is given by<sup>44</sup>

$$t = a^2 / (\pi^2 D_1) \tag{7}$$

This diffusion time needs to be compared with the reaction time of HOCl with dissolved HCl (given by the inverse of the first



Figure 17. Partitioning of the overall uptake coefficients of  $ClONO_2$  with dissolved HCl (solid curve) into those due to  $ClONO_2$  hydrolysis (short-dashed curve) and due to  $ClONO_2$  reaction with HCl (long-dashed curve), using eqs 8–10. See text for details.

order loss rate coefficient,  $1/k^{1}$  to determine the overall reaction product on the droplet. For a stratospheric aerosol of about 0.1  $\mu$ m, the ratio of diffusion to reaction time constants is on the order of  $10^{-3}-10^{-2}$ . Therefore, HOCl generated by the ClONO<sub>2</sub> hydrolysis will likely diffuse out of the droplet before having a chance to react with HCl.

In the case of two reactions (i.e. 1 and 2) competing in the liquid, as is the case in our measurements, the overall uptake coefficient shown in Figure 10 may be expressed as<sup>28</sup>

$$\frac{1}{\gamma_2(\text{obs})} = \frac{1}{\alpha} + \frac{\omega}{[4H^*RTD_1^{1/2}(k_{\text{H}_2\text{O}}^{\text{I}} + k_{\text{HCl}}^{\text{I}})^{1/2}]}{1} = \frac{1}{[\gamma_1(\text{obs})(1+r)^{1/2}]}$$
(8)

where r is the ratio of the first-order loss rate coefficients for ClONO<sub>2</sub> reaction with H<sub>2</sub>O ( $k^{I}_{H_2O}$ ) and dissolved HCl ( $k^{I}_{HCl}$ ). From 195 to 210 K, this ratio varies from 52 to 2.4, derived directly from our measured reaction probabilities of  $\gamma_1$ (obs) (Figure 5) and  $\gamma_2$ (obs) (Figure 8). These values of r are then used to calculate the fraction of ClONO<sub>2</sub> uptake due to reaction with HCl,

$$\gamma_2^{\text{HCl}} = r\gamma_2(\text{obs})/(1+r) \tag{9}$$

and due to reaction with  $H_2O$ 

$$\gamma_2^{\rm H_2O} = \gamma_2(\rm obs)/(1+r)$$
 (10)

The results are portrayed in Figure 17: the calculated contribution of ClONO<sub>2</sub> hydrolysis to the overall uptake coefficient at temperatures of 200 and 210 K is about 6 and 30%, respectively. Clearly, at lower temperatures and at  $P_{\rm HCl} = (3-4) \times 10^{-7}$ Torr the reaction of ClONO<sub>2</sub> with dissolved HCl is dominant.

**Correction for Finite Aerosol Sizes.** Since reaction probabilities were measured on bulk liquid H<sub>2</sub>SO<sub>4</sub> surfaces in this work, application of the present data to the stratosphere requires correction for the finite dimension of the sulfate aerosols. In general, the reaction probability on small aerosols ( $\gamma_c$ ) is related to the laboratory measured ( $\gamma_m$ ) value by<sup>28,44</sup>

$$1/\gamma_{\rm c} \approx 1/\alpha + 1/[\gamma_{\rm m}(\coth q - 1/q)] \tag{11}$$

where q is the diffuso-reactive parameter, defined by  $q = a(k^{1/2})^{1/2}$  or q = a/l (l is the diffuso-reactive length). We have used the diffuso-reactive length for ClONO<sub>2</sub> in sulfuric acid suggested by Hanson and Ravishankara,<sup>29</sup> which is inversely proportional to the square root of water activity. To estimate l for HOCl in sulfuric acid, we calculate the first-order loss coefficient based on the measured reaction probabilities of HOCl with HCl, using eq 6 and  $H^*(D_1)^{1/2}$  measured by Hanson and Ravishankara.<sup>38</sup>

Shown in Figure 18 are the reaction probabilities relevant to a nominal 0.1- $\mu$ m aerosol particle. Figure 18 indicates that  $\gamma_c$ is much smaller than  $\gamma_m$  for reaction 3, while  $\gamma_c$  is very close to  $\gamma_m$  for reactions 1 and 2. Note that the correction for the aerosol size is dependent on a knowledge of ClONO<sub>2</sub> solubility in sulfuric acid, which is not directly measurable. Also, available information on liquid phase diffusion coefficients in sulfuric acid is very limited. Hence, the treatment using eq 11 may introduce considerable uncertainty.

Reaction Probabilities on the H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub>/H<sub>2</sub>O Ternary System. We have shown in this work that uptake coefficients for reactions 2 and 3 do not change appreciably on the  $H_2SO_4/$ HNO<sub>3</sub>/H<sub>2</sub>O ternary solution compared to those on the H<sub>2</sub>SO<sub>4</sub>/ H<sub>2</sub>O binary solution at temperatures near or slightly less than 200 K. These measurements, however, are restricted to temperatures above 195 K, because of the freezing of the liquid film. In the stratosphere the composition of sulfate aerosols changes rapidly with decreasing temperature, by absorbing H<sub>2</sub>O and HNO<sub>3</sub>: at very low temperatures (<192 K) the aerosols could transform essentially into HNO3 and H2O binary solutions,<sup>13,15,16</sup> if crystallization is inhibited. In light of previous laboratory observations that incorporation of HNO<sub>3</sub> in sulfuric acid may increase HCl solubility by reducing the H<sub>2</sub>SO<sub>4</sub> content,<sup>37</sup> reactions 2 and 3 could be enhanced due to dissolution of HNO<sub>3</sub>. The present results reveal that at temperatures near 195 K these reaction probabilities are already quite high, approaching a few tenths. As a result, it is likely that in very cold stratospheric regions the rate-limiting step is gas phase diffusion.

#### Conclusions

In this work we have investigated heterogeneous reactions 1-3 on liquid sulfuric acid surfaces. Reaction probabilities for these reactions have been measured in the temperature range 195-220 K: by maintaining a constant H<sub>2</sub>O partial pressure typical of the lower stratosphere, we are able to simulate the composition representative of stratospheric sulfate aerosols. The data reveal that these reactions depend on temperatures or H<sub>2</sub>-SO<sub>4</sub> wt %. The reaction probability for ClONO<sub>2</sub> hydrolysis approaches 0.01 at temperatures below 200 K, whereas the values for ClONO<sub>2</sub> and HOCl reacting with HCl are on the order of a few tenths at 200 K. The results corroborate earlier findings that heterogeneous reactions involving ClONO<sub>2</sub>, HCl, and HOCl could provide important pathways for chlorine activation at high latitudes in winter and early spring.<sup>13,28</sup>

The relative importance or competition between  $CIONO_2$  hydrolysis (reaction 1) and  $CIONO_2$  reaction with HCl (reaction 2) has also been examined. The data imply that in the presence of gaseous HCl molecules at stratospheric concentrations the reaction of  $CIONO_2$  with HCl is dominant at low temperatures (<200 K), but the  $CIONO_2$  hydrolysis becomes important at temperatures above 210 K.

Lastly, at temperatures near 200 K or slightly less than 200 K, reaction probability measurements performed on the H<sub>2</sub>SO<sub>4</sub>/



Figure 18. Corrected reaction probabilities (dashed curves) relevant to a nominal 0.1- $\mu$ m aerosol particle based on eq 11, along with those pertinent to the bulk solutions (solid curves). See text for details.

HNO<sub>3</sub>/H<sub>2</sub>O ternary solutions do not exhibit noticeable deviation from those performed on the  $H_2SO_4/H_2O$  binary system, showing little effect of HNO<sub>3</sub> in sulfate aerosols on the ClONO<sub>2</sub> and HOCl reactions with HCl. Our results suggest that at low temperatures (<195 K) these reaction probabilities are so large that gas phase diffusion is likely the rate-limiting step in the stratosphere.

Acknowledgment. We thank D. R. Hanson, M. J. Molina, A. Tabazadeh, and D. R. Worsnop for helpful discussions. The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

#### **References and Notes**

(1) Solomon, S. Rev. Geophys. 1988, 26, 131.

(2) Anderson, J. G.; Brune, W. H.; Lloyd, S. A.; Starr, W. L.; Loewenstein, M.; Podolske, J. R. J. Geophys. Res. 1989, 94, 11480.

(3) Anderson, J. G.; Toohey, D. W.; Brune, W. H. Science 1991, 251, 39.

(4) Brune, W. H.; Anderson, J. G.; Toohey, W. D.; Fahey, D. W.; Kawa, S. R.; Jones, R. L.; McKenna, D. S.; Poole, L. R. Science **1991**, 252, 1260.

(5) Webster, C. R.; May, R. D.; Toohey, D. W.; Avallone, L. M.; Anderson, J. G.; Newman, P.; Lait, L.; Schoeberl, M. R.; Elkins, J. W.; Chan, K. R. Science **1993**, 261, 1130.

(6) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Molina, M. J.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R. Chemical kinetics and photochemical data for use in stratospheric modeling; JPL Publ. 92-20, NASA, 1992.

(7) Toon, O. B.; Hamill, P.; Turco, R. P.; Pinto, J. Geophys. Res. Lett. 1986, 13, 1284.

(8) Crutzen, P. J.; Arnold, F. Nature 1986, 324, 651.

(9) Hofmann, D. J.; Solomon, S. J. Geophys. Res. 1989, 94, 5029.

(10) Brasseur, G. P.; Granier, C.; Walters, S. Nature 1990, 348, 626.
 (11) Rodriguez, J. M.; Ko, M. K. W.; Sze, N. D. Nature 1991, 352, 134.

(12) Steele, H. M.; Hamill, P.; McCormick, M. P.; Swissler, T. J. J. Atmos. Sci. 1983, 40, 2055.

(13) Molina, M. J.; Zhang, R.; Wooldridge, P. J.; McMahon, J. R.; Kim, J. E.; Chang, H. Y.; Beyer, K. D. Science **1993**, 261, 1418.

(14) Toon, O.; Browell, E.; Gary, B.; Bait, L.; Newman, P.; Pueschel, R.; Russell, P.; Schoberl, M.; Toon, G.; Traub, W.; Valero, F.; Selkirk, H.; Jordan, J. Science **1993**, 261, 1136.

(15) Zhang, R.; Wooldridge, P. J.; Molina, M. J. J. Phys. Chem. 1993, 97, 8541.

(16) Tabazadeh, A.; Turco, R. P.; Jacobson, M. Z. J. Geophys. Res. 1994, 99, 12897.

- (17) Middlebrook, A. M.; Iraci, L. T.; McNeill, L. S.; Koehler, B. G.; Wilson, M. A.; Saastad, O. W.; Tolbert, M. A.; Hanson, D. R. J. Geophys. Res. 1993, 98, 20,473.
- (18) Zhang, R.; Wooldridge, P. J.; Abbatt, J. P. D.; Molina, M. J. J. Phys. Chem. 1993, 97, 7351.
- (19) Zhang, R.; Leu, M. T.; Keyser, L. F. Unpublished results.
- (20) Mozurkewich, M.; Calvert, J. G. J. Geophys. Res. 1988, 93, 15889. (21) Van Doren, J. M.; Watson, L. R.; Davidovits, P.; Worsnop, D. R.;
- Zahniser, M. S.; Kolb, C. E. J. Phys. Chem. 1991, 95, 1684.
   (22) Hanson, D. R.; Ravishankara, A. R. J. Geophys. Res. 1991, 96,
- 5081.
  (23) Fried, A.; Calvert, J. G.; Mozurkewich, M. J. Geophys. Res. 1994, 99, 3517.
- (24) Hanson, D. R.; Ravishankara, A. R. J. Geophys. Res. 1993, 98, 22931.
- (25) Zhang, R; Jayne, J. T.; Molina, M. J. J. Phys. Chem. 1994, 98, 867.
- (26) Watson, L. R.; Van Doren, J. M.; Davidovits, P.; Worsnop, D. R.; Zahniser, M. S.; Kolb, C. E. J. Geophys. Res. **1990**, 95, 5631.
- (27) Tolbert, M. A.; Rossi, M. J.; Golden, D. M. Geophys. Res. Lett. 1988, 15, 847.
- (28) Hanson, D. R.; Ravishankara, A. R.; Solomon, S. J. Geophys. Res. 1994, 99, 3615.

(29) Hanson, D. R.; Ravishankara, A. R. J. Phys. Chem. 1994, 98, 5728.
(30) Chu, L. T.; Leu, M. T.; Keyser, L. F. J. Phys. Chem. 1993, 97, 7779. Ibid. 1993, 97, 12798.

- (31) Zeleznik, F. J. J. Phys. Chem. Ref. Data 1991, 20, 1157.
- (32) Howard, C. J. J. Phys. Chem. 1979, 83, 3.
- (33) Brown, R. L. J. Res. Natl. Bur. Stand. (U. S.) 1978, 83, 1.
- (34) Marrero, T. R.; Mason, E. A. J. Phys. Chem. Ref. Data 1972, 1, 3.
- (35) Leu, M. T. Geophys. Res. Lett. 1988, 15, 17.
- (36) Jansco, G.; Pupezin, J.; Van Hook, W. A. J. Phys. Chem. 1970, 74, 2984.
- (37) Zhang, R. Ph.D. Dissertation, MIT, 1993.
- (38) Hanson, D. R.; Ravishankara, A. R. J. Phys. Chem. 1993, 97, 12309.
- (39) Abbatt, J. P. D.; Beyer, K. D.; Fucaloro, A. F.; McMahon, J. R.; Wooldridge, P. J.; Zhang, R.; Molina, M. J. J. Geophys. Res. **1992**, 97, 15819.
  - (40) Abbatt, J. P. D.; Molina, M. J. J. Phys. Chem. 1992, 96, 7674.
  - (41) Eigen, M.; Kustin, K. J. Am. Chem. Soc. 1962, 84, 1355.
  - (41) Eigen, M., Rushi, K. S. Am. Chem. Soc. 1962, 64, 1955. (42) Williams, L. R.; Manion, J. A.; Golden, D. M. J. Appl. Meteor.
- **1994**, *33*, 785. (43) Worsnop, D. R.; Zahniser, M. S.; Kolb, C. E.; Gardner, J. A.;
- Watson, L. R.; Van Doren, J. M.; Davidovits, P. J. Phys. Chem. 1989, 93, 1159.
- (44) Schwartz, S. E. In Chemistry of Multiphase Atmospheric Systems; Jaeschke, W., Ed.; NATO ASI Series; NATO: Brussels, 1986; Vol. G6. JP942262R