Tetrahedron Letters 53 (2012) 3577-3580

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis and biological evaluation of cremastrine and an unnatural analogue

Kristopher N. Hahn^a, Olugbeminiyi O. Fadeyi^a, Hyekyung P. Cho^b, Craig W. Lindsley^{a,b,*}

^a Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA

^b Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, Nashville, TN 37232, USA

ARTICLE INFO

Article history: Received 14 March 2012 Revised 30 April 2012 Accepted 2 May 2012 Available online 10 May 2012

Keywords: Pyrrolizidine Cremastrine Anticholinergic Sulfinimine Mitsunobu

ABSTRACT

In this Letter, we describe the first total synthesis of cremastrine, a pyrrolizidine alkaloid from *Cremastra appendiculata*, with anticholinergic activity as well as an unnatural analogue. The streamlined synthesis proceeds in nine steps, seven steps longest linear sequence, in 25.2% overall yield, and features novel methodology to construct the pyrrolizidine core. Biological evaluation of cremastrine and the unnatural analogue indicated that both are *pan*-mAChR functional antagonists.

© 2012 Elsevier Ltd. All rights reserved.

Recently, Ikeda et al. reported on the isolation and characterization of cremastrine (1), a pyrrolizidine alkaloid from the Japanese tuber Cremastra appendiculata, a species widely used in traditional medicine in Asia for a number of therapeutic indications.¹ Preliminary biological investigation, employing a [³H]-NMS binding assay, indicates that 1 is a moderately selective muscarinic acetylcholine receptor subtype 3 (M₃) ligand (M₁ K_i = 505 nM, M₂ K_i > 5000 nM $M_3 K_i = 126 \text{ nM}, M_4 K_i = 498 \text{ nM}, M_5 K_i = 1220 \text{ nM})$ an interesting pharmacological profile if the binding profile translated into functional antagonism.^{1,2} As such, **1** would have the potential to treat irritable bowel syndrome, chronic obstructive pulmonary disease and asthma.² Based on our lab's interest in muscarinic drug discovery³ and our recently developed methodology to rapidly construct enantiopure idolizines, pyrrolo[1,2-a]azepines, and pyrrolo[1,2a]azocines,⁴ application of this methodology to the synthesis of the related pyrrolizidine core seemed warranted. In this Letter, we report the first total synthesis of cremastrine (1) employing a new synthetic strategy, distinct from previous pyrrolizidine syntheses,^{5–8} (Scheme 1), that afforded **1** in seven total synthetic steps and an overall yield of 25.2% that enabled biological evaluation.

Efforts first focused on the synthesis of the α -hydroxy carboxylic acid **3**. Conversion of p-isoleucine **6** to α -hydroxy carboxylic acid **3** was accomplished following the Shin procedure wherein the α -amino acid is converted into the α -hydroxy acid with retention of stereochemistry.^{9,10} Treatment of **6** with aqueous nitrous acid leads to diazotization of the α -amine stereocenter followed by hydrolysis to furnish the enantiopure α -hydroxy acid **3**.^{9,10} Treatment of acid **3** with excess *tert*-butyldimethylsilyl chloride, followed by basic hydrolysis, provides coupling partner **7** in 65% yield over three steps, without epimerization and in agreement with literature precedent (Scheme 2).⁹

With **7** in hand, we then targeted the synthesis of the pyrrolizidine core of **1** employing our new methodology for enantiopure

Scheme 1. Retrosynthetic analysis of cremastrine (1).

^{*} Corresponding author. Tel.: +1 615 322 8700; fax: +1 615 345 6532. *E-mail address:* craig.lindsley@vanderbilt.edu (C.W. Lindsley).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.05.009

Scheme 2. Synthesis of α-hydroxy acid 3 and protected congener 7.

Scheme 3. Two approaches for the synthesis of sulfinamide 4.

azacine construction employing Ellman sulfinimine technology via **4**.^{4,11} Requisite aldehyde **10** is commercially available, but we also developed two complimentary routes to access the key aldehyde precursor **10** to sulfinamide **4** (Scheme 3). 4-Pentenal **8** was protected as the 1,3-dioxane, followed by oxonolysis to provide **10** in 78% yield. Alternatively, bromide **9** was converted into the nitrile congener, and reduced with DIBALH to deliver **10** in 84% yield. Condensation of commercially available (*R*)-*tert*-butanesulfinamide and aldehyde **10** gives chiral aldimine **4** in 93% yield.

From aldimine **4**, we next sought to install two stereocenters through an indium mediated allylation using an appropriately functionalized allyl bromides (Table 1).¹² Interestingly, esters and free hydroxyl moieties afforded poor conversion (30–55%), but good dr (3:1 to >6:1). Ultimately, good yield and moderate diastereoselectivity were observed when TBS–ether **5** was used providing **11** (85% conversion, >4:1 *dr*), and the stereochemistry assigned based on the established literature precedent of a sixmembered ring chelation control model.^{13,14} For large scale preparations, we found that stirring and sonication of the indium metal and bromide before adding the aldimine were crucial to deliver

homoallylic sulfinamide **11c** with yields comparable to small-scale reactions.

Hydroboration-oxidation of the terminal olefin of 11c furnished primary alcohol 12 in excellent yield. Initial attempts to form the substituted pyrrolidine ring system involved mesylation of the alcohol and displacement in a 5-exo-tet cyclization fashion. This was unfortunately unsuccessful, but under Mitsunobu conditions, we successfully obtained substituted pyrrolidine 13. NOESY-NMR data confirm the syn-stereochemical relationship of the two chiral centers on the pyrrolidine ring. From here, TBAF deprotection of the tert-butyldimethylsilyl ether gave primary alcohol 14. Deprotection of the acetal and the sulfinyl exposed the aldehyde and amine, respectively. This was theorized to undergo an intramolecular condensation to form the imine, upon which an addition of a reducing agent would produce 2^{11-13} the pyrrolizidine core structure. Both classical conditions,^{11–13} and a variety of acids (TFA, HCl, HOAc) and reducing agents (Et₃SiH, NaBH(OAc)₃, NaBH₃CN) failed to provide the desired product 2 (Scheme 4).

Due to the failure of this key transformation, we presumed that the presence of the free hydroxyl in the protic environment led to undesired side reactions leading to very polar, complex mixtures. Therefore, we modified our approach to cyclize after formation of the ester bond. As shown in Scheme 5, an EDCI/DMAP mediated coupling between acid 7 and alcohol 14 delivered ester 15 in excellent yield. Application of the classical deprotection/reductive amination conditions (TFA-H₂O (95:5) followed by triethyl silane as the reducing agent afforded both global deprotection of 15 as well as intramolecular condensation/reductive amination to furnish the natural product cremastrine (1) in 80% yield from ester 15. Our synthetic 1 was in agreement with the data reported for natural 1;¹⁵ however, only tabular NMR data are available and authentic samples could not be acquired. Thus, the first total synthesis of **1** has been completed in seven steps (five steps longest linear sequence) with an overall yield of 25.2% from commercial starting materials. This expedited route also allowed for the preparation of quantities of **1** to support biological studies.

Following the route in Scheme 2, we also prepared a benzyl protected congener **16** of **7**, to explore structure–activity relationships

Table 1

Scheme 4. Attempted synthesis of pyrrolidine core 2.

Scheme 5. Completion of the synthesis of cremastrine (1).

Scheme 6. Synthesis of unnatural analogue 17.

(SAR) with a non-hydrolyzable protecting group in place of the free hydroxyl of **1**. As shown in Scheme 6, unnatural analogue **17** was readily prepared and once again in high overall yield (26.1%).¹⁶ Unnatural analogue **17** also provided confidence for the synthesis of **1** (since we were unable to acquire NMRs or an authentic sample), as spectral data for **17** agreed well with synthetic and natural **1**.

As cremastrine (**1**) was reported to display modest selectivity for binding to the M₃ mAChR (2- to 20-fold),¹ we evaluated both our synthetic **1** and unnatural analogue **17** against all five human mAChRs (M₁–M₅) in a functional assay to determine if the modestly selective M₃ binding would translate into selective M₃ functional antagonist activity.¹⁷ Interestingly, we found that **1** was a *pan*-mAChR functional antagonist (Fig. 1), moderately inhibiting M₁–M₅ (M₁ IC₅₀ = 2.8 μ M, M₂ IC₅₀ >10 μ M, M₃ IC₅₀ >10 μ M, M₄ IC₅₀ >10 μM, M₅ IC₅₀ = 4.0 μM), with a preference for M₁ and M₅, and very weak activity at M₃. Thus, **1** is not a selective M₃ antagonist. Unnatural analogue **17** was more potent and selective than **1** (M₁ IC₅₀ = 1.9 μM, M₂ IC₅₀ >10 μM, M₃ IC₅₀ = 5.0 μM, M₄ IC₅₀ = 5.2 μM, M₅ IC₅₀ = 2.0 μM), but still categorized as a *pan*mAChR antagonist. These data suggest that the azabicyclo[3.3.0]octane ester chemotype is comparable to the *pan*-mAChR antagonist tropane ester chemotypes, such as atropine.¹⁸ However, these data are still intriguing and the synthesis and evaluation of additional unnatural analogues would be of scientific value.

In summary, we have successfully extended our methodology to rapidly construct enantiopure idolizidines, pyrrolo[1,2-*a*]azepines and pyrrolo[1,2-*a*]azocines,⁴ to the synthesis of pyrrolizidine alkaloids. Here, we completed the first total synthesis of the pyrrolizidine alkaloid cremastrine (1) in seven steps from commercial materials and in 25.2% overall yield. The methodology also allowed for the synthesis of unnatural analogue such as **17**. Moreover, we demonstrated in mAChR functional assays, that both **1** and unnatural **17** are not selective M₃ antagonists, as previous binding data suggested, but rather *pan*-mAChR antagonists. This concise synthesis will allow for the synthesis of additional unnatural analogues of **1** for biological evaluation as well as for the synthesis of related pyrrolizidine-based alkaloid natural products. These efforts are in progress and will be reported in due course.

Acknowledgments

The authors gratefully acknowledge funding from the Department of Pharmacology, Vanderbilt University Medical Center and

Figure 1. Human mAChR (M1-M5) functional assay with cremastrine 1 and unnatural analogue 17, indicating that both are functional antagonists of all five mAChRs.

the NIH/Molecular Libraries Production Center Network (MLPCN) (U54MH084659).

References and notes

- Ikeda, Y.; Nonaka, H.; Furumai, T.; Igarashi, I. J. Nat. Prod. 2005, 68, 572-573. 1.
- Peretto, I.; Petrillo, P.; Imbimbo, B. P. Med. Res. Rev. 2009, 29, 867-902.
- Conn, P. J.; Jones, C.; Lindsley, C. W. Trends Pharm. Sci. 2009, 30, 148-156 3
- (a) Fadeyi, O. O.; Senter, T. J.; Hahn, K. N.; Lindsley, C. W. Chem. Eur. J. 2012, 18, 4. 5826-5831; (b) Senter, T. J.; Fadeyi, O. O.; Lindsley, C. W. Org. Lett. 2012, 14, 1869-1871.
- 5
- Vanecko, J. A.; West, F. G. *Org. Lett.* **2005**, *7*, 2949–2952. El-Naggar, M.; Piggott, A. M.; Capon, R. J. *Org. Lett.* **2008**, *10*, 4247–4250. 6.
- Fürstner, A.; Kortte, A. Chem. Asian J. 2008, 3, 310-318. 7
- Ishibashi, H.; Sasaki, M.; Taniguchi, T. Tetrahedron 2008, 64, 7771-7773. 8.
- Shin, M. R.; Lee, J.; Lee, M.; Jung, W.; Lee, J.; Yoon J. Org. Chem. 2000, 65, 7667-9. 7675
- Sugiura, M.; Mori, C.; Kobayashi, S. J. Am. Chem. Soc. 2006, 128, 11038-11039. 10.
- Brinner, K. M.; Ellman, J. A. Org. Biomol. Chem. **2005**, 3, 2109–2113. Sun, X.-W.; Liu, M.; Xu, M.-H.; Lin, G.-Q. Org. Lett. **2008**, 10, 1259–1262. 11
- 12.
- 13 Schulte, M. L.; Lindsley, C. W. Org. Lett. 2011, 13, 5684-5687.
- 14
- Robak, M. T.; Herbage, M. A.; Ellman, J. A. *Chem. Rev.* **2010**, *110*, 3600–3740. A solution of ester **15** (50 mg, 0.0914 mmol) in 2 mL of 95:5 trifluoroacetic 15. acid-H₂O was stirred for 1 h at room temperature then 0.19 mL of triethyl silane was added. This solution was stirred overnight and concentrated in vacuo to give a crude, yellow oil. This was dissolved in 1 mL DMSO and purified by reverse phase chromatography (2% to 45% H₂O (0.1% TFA)-AcCN) to give

(19 mg, 80% yield) as a colorless oil. $[\alpha]_{D}^{20}$ –15.2 (c 0.97 CHCl₃; $[\alpha]_{D}^{20}$ –27.2 (c 1.0, EtOH); ¹H NMR (400.1 MHz, CDCl₃) δ (ppm) = 6.87 (m, 1H), 4.49 (d, *J* = 5.2, 1H), 4.33 (m, 1H), 4.20 (m, 1H), 4.18 (m, 1H), 3.55 (m, 1H), 3.49 (t, J = 7 Hz 1H), 2.88 (m, 1H), 2.8 (m, 1H), 2.65 (dt, *J* = 8.1, 1H), 1.99 (m, 1H), 1.90 (r, *J* = 7 Hz, 1H), 2.80 (r, *J* = 7 Hz, 1H), 1.72 (m, 2H), 1.59 (m, 1H), 1.42 (m, 1H), 1.10 (dt, *J* = 4 Hz, 3H), 0.99 (tt, *J* = 7 Hz, 1.55 (tt, *J* = 31. ¹³C TMR (100.6 MHz, pyr- d_5) δ (pm): 174.6, 72.6, 68.1, 63.1, 55.38, 53.27, 39.9, 39.46, 26.64, 26.2, 25.93, 24.78, 15.81, 11.75; HRMS (TOF, ES+) $C_{14}H_{26}NO_3$ [M+H]⁺ calcd 256.1913, found 256. 1911.

- 16. A solution of ester (50 mg, 0.0914 mmol) in 2 mL of 95:5 trifluoroacetic acid-H₂O was stirred for 1 h at room temperature then 0.19 mL of triethyl silane was added. This solution was stirred overnight and concentrated in vacuo to give a crude, yellow oil. This was dissolved in 1 mL DMSO and purified by reverse phase chromatography (2% to 45% H₂O (0.1% TFA)-AcCN) to give (19 mg, 80% yield) as a colorless oil. $[\alpha]_D^{20}$ (c 1.12, CHCl₃); ¹H NMR (400.1 MHz, CDCl₃) δ (ppm) = 7.33 (m, 5H), 4.66 (d, J = 11.49, 1H), 4.38 (d, J = 11.50, 1H) 4.15 (dt, (1) = 11.26, 4.89 Hz, 2H), 3.74 (d, J = 5.65 Hz, 1H), 3.67 (m, 1H), 3.46 (m, 1H), 3.11–2.92 (m, 3H), 2.41 (sextet, J = 6.77 Hz, 1H), 2.01 (m, 1H), 1.88–1.78 (m, 3H), 1.58 (m, 2H), 1.25 (m, 3H), 0.91 (d, *J* = 6.77 Hz, 3H), 0.87 (t, *J* = 7.91, 3H); 13 C NMR (100.6 CDCl₃) δ (ppm): 172.44, 137.48, 128.37, 127.86, 82.65, 72.53, 64.69, 62.72, 61.18, 44.29, 41.49, 38.00, 31.30, 29.68, 28.75, 28.05, 24.71, 15.17, 11.28: HRMS (TOF, ES+) 346.2382, found 346.2381.
- For full details of the mAChR functional assay see: Lebois, E. P.; Bridges, T. M.; 17. Dawson, E. S.; Kennedy, J. P.; Xiang, Z.; Jadhav, S. B.; Yin, H.; Meiler, J.; Jones, C. K.; Conn, P. J.; Weaver, C. D.; Lindsley, C. W. ACS Chem. Neurosci. 2010, 1, 104-121.
- Schulte, M. L.; Lindsley, C. W. Bioactive Heterocyclic Compound Classes 18 Pharmaceuticals and Agrochemicals In Lamberth, N., Dinges, J., Eds.; Wiley-VCH Verlag GmbH & Co., 2012; pp 23-36.