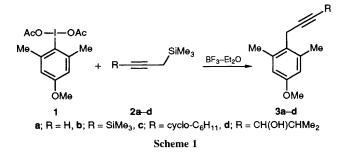
Ipso Selectivity in the Reductive Iodonio-Claisen Rearrangement of Allenyl(*p*-methoxyaryl)iodinanes

Masahito Ochiai,* Takao Ito and Yukio Masaki

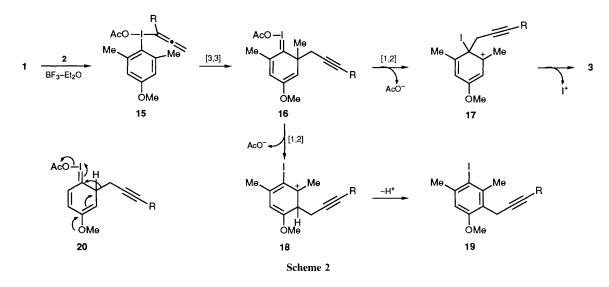

Gifu Pharmaceutical University, 5-6-1 Mitahora Higashi, Gifu 502, Japan

Allenyl(aryl)iodinanes, generated from *p*-methoxy(diacetoxyiodo)arenes by the reaction with propyn-2-yl(trimethyl)silanes in the presence of BF_3 -Et₂O in dichloromethane, undergo reductive *ipso* iodonio-Claisen rearrangement selectively at -20°C yielding *ipso*-substituted propynylarenes.

Claisen rearrangements involving oxygen, nitrogen, sulfur and phosphorus atoms of groups 15 and 16 have been well precedented.¹ Recently, we reported Claisen rearrangement involving an iodine atom of group 17 in which allenyl(aryl)iodinanes, generated by S_E2' reaction of aryliodinanes with propynylsilanes in the presence of BF₃–Et₂O, undergo reductive iodonio-Claisen rearrangement at -20 °C yielding *ortho*propynyliodoarenes in good yield.² The lack of the crossover products in the reaction argues for intramolecularity of the rearrangement.

When both *ortho* positions of aryliodinanes were occupied with alkyl substituents, the reductive iodonio-Claisen rearrangement of the allenyl(aryl)iodinanes affords *meta* substitution products although a free *para* position is available, which is in marked contrast to the results of Claisen rearrangement of *ortho*-disubstituted phenyl allyl ethers.³ We report herein *ipso* iodonio-Claisen rearrangement of allenyl-(aryl)iodinanes generated from *p*-methoxy(diacetoxyiodo)arenes yielding *ipso*-propynylarenes.

Reaction of 2,6-dimethyl-4-methoxy(diacetoxyiodo)benzene 1⁺ with 1.2 equiv. of 1,3-bis(trimethylsilyl)propyne **2b** in



[†] The iodinane **1** was prepared by sodium perborate oxidation of 2,6-dimethyl-4-methoxyiodobenzene according to the method developed by McKillop and Kemp.⁴ *Selected spectroscopic data* for **1**: m.p. 153–154°C (decomp.); IR v_{max}/cm^{-1} (CHCl₃) 3015, 1640, 1585, 1465, 1360, 1320, 1280, 1160, 1070, 1005, 920 and 860; ¹H NMR (270 MHz; CDCl₃) δ 1.97 (6H, s), 2.73 (6H, s), 3.83 (3H, s), and 6.79 (2H, s).

the presence of BF_3 - Et_2O afforded the *ipso*-substituted alkyne **3b** selectively in 25% yield, along with the formation of 2,6-dimethyl-4-methoxyiodobenzene (34%). With the use of 2 equiv. of **2b**, the yield of **3b** was much improved: thus, treatment of **1** with 2 equiv. of **2b** in the presence of BF_3 - Et_2O (1 equiv.) and MgSO₄ in dichloromethane at -20 °C for 1 h gave a 67% yield of **3b**. In these reactions, formation of the *meta*-rearranged product, 3-(2,4-dimethyl-3-iodo-6-methoxy-phenyl)-1-(trimethylsilyl)prop-1-yne **19** (R = SiMe₃), was detected but in only less than 0.5% yield.

The results of the *ipso* propynylation are summarized in Table 1. Again, the use of two- or five-fold excess of 2c gave a good yield of the *ipso* product 3c (compare runs 4–6). The reactions of Table 1 showed the exclusive formation of the

14; $R^1 = R^2 = Bu^t$, $R^3 = SiMe_3$

ipso-substituted alkyne **3** and, in all cases, **3** was obtained in more than 98% selectively.

Competition between the *ipso* substitution and the normal *ortho* rearrangement of allenyliodinanes was observed in the reaction of 2-methoxy- **4** or 4-methoxy(diacetoxyiodo)benzene **5**. Reaction of 2-methoxyiodinane **4** with **2a** (2 equiv.) gave a 30:70 mixture of the *ipso* alkyne **7** and the *ortho* alkyne **11** (63%). In the reaction of 4-methoxyiodinane **5**, however, the *ipso* substitution became the major reaction course and a 55:45 mixture of **8** and **12** was obtained by the reaction with **2a** in 75% yield. Similarly, the reaction of **5** with **2b** afforded a 55:45 mixture of **9** and **13** (62%). Furthermore, the reaction of 2,4,6-tri-*tert*-butyl(diacetoxyiodo)benzene **6**⁵ with **2b** gave a 1:1 mixture of **10** and **14** (67%).

The exclusive *ipso* substitution of 1 involves an intermediate formation of the allenyl(aryl)iodinane $15\ddagger$ and will be rationalized in terms of a facile 1,2-rearrangement of the propynyl group of 16, generated by [3,3]-sigmatropic rearrangement of 15 (Scheme 2). Since the 1,2-rearrangement of 16 involves an energetically preferable reduction of trivalent iodine to univalent iodine, it should be a low energy process. Of the two possible 1,2-rearrangement pathways of the propynyl group of 16 to *ipso* and *meta* sites, the transition state of the former process leading to the cation 17 will be more efficiently stabilized than that of the latter process leading to the cation 18 by the π -donor *p*-methoxy group.⁶ Subsequent deiodination of 17 will afford the *ipso*-substituted product 3.⁷

Thus, the presence of a *p*-methoxy group of aryliodinanes will be essential to the success for the regioselective *ipso* propynylation. This was further supported by the observation that the reaction of **5** affords large amounts of the *ipso* products **8** and **9**, in which the rate of the 1,2-migration of propynyl groups to the *ipso* site, assisted by the *p*-methoxy group as shown in **20**, is larger than that of the deprotonation of **20** leading to the normal *ortho* products **12** and **13**, whereas the reaction of (diacetoxyiodo)benzene gives *o*-propyn-2yliodoarenes exclusively.²

 Table 1 Reductive ipso propynylation of 1 by the reaction with propynylsilanes 2

Run	2 (Equiv.)	3 [Yield (%)] ^a	
1	2a (2)	3a (57)	
2	2b (1.2)	3b (25)	
3	2b (2)	3b (67)	
4	2c (1.2)	3c (15)	
5	2c(2)	3c (51)	
6	2c(5)	3c(61)	
7	2d(3)	3d (34)	

^a Isolated yield.

This work was supported in part by the Grant-in-Aid for Scientific Research on Priority Area of Organic Unusual Valency No. 02247101 from the Ministry of Education, Science and Culture, Japan.

Received, 16th September 1991; Com. 1/04785J

References

- S. J. Rhoads, in *Molecular Rearrangements*, ed. P. de Mayo, Interscience, New York, 1963, vol. 1, p. 655; S. J. Rhoads and N. R. Raulins, *Org. React.* (*NY*), 1975, **22**, 1; D. S. Tarbell, *Org. React.* (*NY*), 1944, **2**, 2; R. P. Lutz, *Chem. Rev.*, 1984, **84**, 205; F. E. Ziegler, *Chem. Rev.*, 1988, **88**, 1423; D. I. Loewus, *J. Am. Chem. Soc.*, 1981, **103**, 2292.
- 2 M. Ochiai, T. Ito, Y. Takaoka and Y. Masaki, J. Am. Chem. Soc., 1991, 113, 1319.
- D. S. Tarbell and J. F. Kincaid, J. Am. Chem. Soc., 1940, 62, 728;
 I. A. Pearl, J. Am. Chem. Soc., 1948, 70, 1746; D. Y. Curtin and
 H. W. Johnson, J. Am. Chem. Soc., 1956, 78, 2611; M. Schmid,
 H.-J. Hansen and H. Schmid, Helv. Chim. Acta, 1973, 56, 105; H.
 Katayama, M. Ohkoshi and K. Kaneko, Chem. Pharm. Bull., 1984, 32, 1770.
- 4 A. McKillop and D. Kemp, Tetrahedron, 1989, 45, 3299.
- 5 M. Ochiai, K. Oshima, T. Ito, Y. Masaki and M. Shiro, Tetrahedron Lett., 1991, 32, 1327.
- 6 K. Kaneko, H. Katayama, Y. Saito, N. Fujita and A. Kato, J. Chem. Soc., Chem. Commun., 1986, 1308; L. I. Kruse and J. K. Cha, J. Chem. Soc., Chem. Commun., 1982, 1333.
- 7 C. D. Hurd and C. N. Webb, J. Am. Chem. Soc., 1936, 58, 2190; D. S. Tarbell and J. W. Wilson, J. Am. Chem. Soc., 1942, 64, 1066.

[‡] J. R. Norton (Colorado State University) has established the intermediacy of the allenyl(aryl)iodinanes in the reductive *ortho* propynylation of aryliodinanes by variable temperature ¹³C NMR spectroscopy experiments (personal communication).