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Abstract: Ring closure via microwave-assisted intramolecular
OMs displacement by a g-OBn group (O-nucleophilic attack) in
protected polyhydroxylated N-Boc-thiazolylalkyl amines afforded
C-furanosides (37–81%) featuring a chiral thiazolylmethylamino
side chain, which, upon thiazole to carboxylate (through aldehyde)
transformation, furnished enantiopure C-furanosyl glycines.

Key words: amino acids, cyclization, glycopeptides, glycosides,
ring closure

The importance of anomerically carbon-linked sugar ami-
no acids, i.e. authentic C-glycosyl amino acids, as key
building blocks for the post-translational modification of
natural glycopeptides is widely recognized.1 This struc-
tural change is known to enhance the stability of glyco-
peptides toward chemical and enzymatic degradation as
well as modulate the conformation and folding with ef-
fects on molecular recognition and interactions. Therefore
various synthetic routes have been developed in recent
years,2 especially those leading to methylene isosteres of
natural O-glycosyl a-amino acids, such as L-serine, and L-
threonine, and ethylene isosteres of N-glycosyl L-aspar-
agines which are the most common components of native
glycopeptides.3 Quite recently attention has been also ad-
dressed in our laboratory to the synthesis of C-glycosyl b-
amino acids2b,4 since these compounds may serve to intro-
duce a new and quite substantial element of diversity in
non-natural C-glycosyl amino acid libraries. C-Glycosyl
glycines featuring the a-amino acid group (glycinyl moi-
ety) directly linked to the sugar fragment have been pre-
pared as well.2 Search for the synthesis of this special
class of sugar amino acids was initially driven by their
potential use as building blocks for C-nucleoside anti-
biotics,5 especially polyoxin and nikkomycin analogues.
They are also of great value as components of inhibitors
of bacterial synthetases.6 In recent work C-ribosyl glycine
derivatives have been employed as platforms for the
preparation of various pyrazine C-nucleosides serving in
a study of hydrogen bonding interactions in DNA and
RNA strands.7 Most of the reported synthetic methods to
C-glycosyl glycines involve the introduction of a glycinyl
group equivalent at the anomeric carbon of a sugar sub-
strate or the construction of the glycinyl moiety by ex-
ploiting a carbon-linked functionality already in place in a

stereochemically well-defined manner. All methods
suffer from various drawbacks such as the scarce stereo-
chemical efficiency, the numerous steps involved, and the
lack of generality. Hence the introduction of new syn-
thetic routes to C-glycosyl glycines appears to be of great
utility. Thus, we would like to report here on a new
method that we have discovered in the course of our
research on the synthesis of homoazasugars by the
thiazole-based aminohomologation of pentafuranoses8

and hexopyranoses9 through their open-chain nitrones as
intermediates. In the latter investigation9 we observed that
amino alcohol 1, derived from D-mannose,10 upon activa-
tion as O-mesylate and heating in MeCN afforded both
the target piperidine 2 as major product (52%) via intra-
molecular N-nucleophilic displacement of the OMs group
and furanose 3 (30%) via O-nucleophilic attack
(Scheme 1).

Scheme 1 Reagents and conditions: a) MsCl, Et3N, TMEDA, 
anhyd toluene, 0–5 °C, 2 h; then heating in refluxing MeCN.

The stereospecific formation of C-furanosides via in-
tramolecular nucleophilic displacement of an activated
OH group by a g-benzyloxy group, was earlier reported by
Martin and Yang and their co-workers.11 However, exam-
ples of C-furanosides bearing chiral side chains whose
substituents were prone to undergo synthetic transforma-
tions, were not described. On the other hand, in the light
of the amply documented one-pot thiazole-to-formyl
transformation and oxidation of the aldehyde to carboxy-
lic acid,12 compound 3 can be regarded as a potential pre-
cursor to an optically pure C-furanosyl glycine. This
synthetic route was attractive because it overcame the
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main problem afflicting other approaches to these sugar
amino acids, namely the control of the configuration of
the anomeric carbon of the sugar moiety as well as the
configuration of the asymmetric carbon bearing the amino
group in the glycinyl residue.13 However, in order to
optimize the method to a synthetically relevant level, the
formation of piperidine 2 via the N-nucleophilic displace-
ment needed to be inhibited. We envisaged achieving this
crucial objective by decreasing the nucleophilic power of
the nitrogen atom of the amino alcohol. To this aim the
transformation of the NHBn group into NHBoc was con-
sidered. Hence the N-Boc-protected amino alcohol 5a
(Scheme 2) was prepared by reductive dehydroxylation
and debenzylation of the N(OH)Bn group14 of the known
thiazolylalkylhydroxylamine 4a and treatment of the
crude amine thus formed with Boc2O.15 The mesylation of
alcohol 5a followed by heating the crude material in re-
fluxing MeCN for 12 hours afforded the C-furanoside 8a,
still in modest yield (35%), while no piperidine formation
was detected as evidenced by NMR analysis. An unsatis-
factory result (40% of 8a) was also obtained under harsher
thermal condition (DMF, 150 °C, 12 h). Therefore, given
the well established beneficial effects of microwave irra-
diation on rates and yields of organic reactions,16 we de-
cided to apply this technique to our system. To our delight
microwave heating of the crude mesylate at 150 °C for 20
minutes in DMF (sealed tube) increased the yield of 8a to
the acceptable value of 73%.17

Scheme 2 Reagents and conditions: a) TiCl3, MeOH, r.t., 15 min;
then Boc2O, NaHCO3, dioxane, r.t., 24 h; b) MsCl, pyridine, 0 °C to
r.t., 2 h; then DIPEA, DMF, microwave; c) MeOTf, MeCN, r.t., 15
min; then NaBH4, MeOH, 0 °C to r.t., 15 min; then CuO/CuCl2·2H2O,
10:1 MeCN–H2O, r.t., 15 min; then NaClO2, H2O2, NaH2PO4, MeCN,
r.t., 2 h; then CH2N2, Et2O, 0 °C.

The substitution of the NHBn for the NHBoc group not
only favored the O-nucleophilic pathway, but made also
the final step readily feasible since the latter group is well
known to be tolerated by the thiazole-to-formyl transfor-
mation protocol (N-methylation, reduction, hydrolysis)
while the former is not.18 This allowed for the effective
elaboration of 8a into aldehyde which upon oxidation
with NaClO2 and treatment with CH2N2 afforded C-fura-
nosyl glycinate 10a in very good yield.19 The structure of
both 8a and 10a was supported by mono- and bidimen-

sional NMR analysis and ROESY experiments. Given this
successful result, the above reaction sequence was extend-
ed to alcohol 6a derived from D-mannose as well and to
the pairs of stereoisomers 4b/6b and 4c/6c (Table 1)
whose hexopyranose progenitors were D-glucose and D-
galactose, respectively.9 With one exception, i.e. deriva-
tive 4c, these compounds were transformed into the corre-
sponding optically pure C-furanosyl glycinates 10b and
11a–c in variable yet fair yields.20 The missing product 8c
from D-galactose was due to the unsuccessful cyclization
of N-Boc-amino alcohol 5c to C-furanoside 8c under the
standard conditions adopted for the other stereoisomers.
This observation together with the exceptionally scarce
efficiency registered in the conversion of 7c to 9c indi-
cates the high sensitivity of the intramolecular O-nucleo-
philic substitution process to the structure of the
substrate.21 It is worth noting that the C-glycosyl glycines
10 and 11 prepared belong to the L-series of carbo-
hydrates. However, a similar approach starting from L-
hexopyranose would lead to the diastereoisomers of the D-
series. Nevertheless, we envisaged the approach to this
class of compounds by exploiting the C2-epimers of  the
alcohols employed above. While attempts to epimerize
the D-glucose derived amino alcohol 7b via Mitsunobu re-
action [p-nitrobenzoic acid, DEAD (diethyl azodicarbox-
ylate), PPh3, THF, 0 °C] met with failure, the oxidation–
reduction sequence earlier applied to similar compounds
in our laboratory22 gave satisfactory results (Scheme 3).

Scheme 3 Reagents and conditions: a) Ac2O, DMSO, r.t., over-
night; b) NaBH4, MeOH, 0 °C to r.t., 15 min; c) and d) see Scheme 2.

Hence, 7b was transformed into ketone 12 via Moffat
oxidation and this was reduced by NaBH4 at room tem-
perature to give a mixture of 7b and the desired epimer 13
in an almost 1:1 ratio.23 Fortunately these diastereoiso-
mers were easily separable by column chromatography,
thus allowing the recycling of 7b for further epimeriza-
tion. Finally, derivative 13 underwent the expected O-nu-
cleophilic substitution leading to the C-furanoside 14 in
fair yield. Thereafter this intermediate was transformed
into the target C-glycosyl glycinate 15 featuring the D-
arabinosyl ring. This result may serve to broaden the

4a R1 = OH, R2 = Bn (see ref. 9)
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potential of the method as it allows introducing a new
element of diversity in libraries of this class of sugar
amino acids.

In conclusion, the unexpected O-nucleophilic substitution
reaction occurring in heavily functionalized chiral amino
alcohols generated from hexopyranoses has been convert-
ed into a stereospecific synthesis of a class of amino acids
of a rather difficult access such as enantiopure C-furano-
syl glycines. It is worth noting that all the amino acids pre-
pared are orthogonally protected building blocks, which
are therefore well suited for peptide and nucleoside syn-
thesis.

However, while this synthetic method may suffer for the
number of steps, its stereospecificity, the simple yet effi-
cient chemistry involved, and the broad scope, are all fa-
vorable features that concur positively to some synthetic

utility. For instance a service can be foreseen in the
preparation of libraries of special and stereodiversified
glycoconjugates for biological testing.
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for an additional 15 min then the solvent was removed under 
reduced pressure. The residue was taken up in MeOH (4.0 
mL), cooled to 0 °C and treated with NaBH4 (22 mg, 0.56 
mmol). The mixture was stirred at r.t. for 15 min, diluted 
with acetone, filtered through a pad of Celite®, and 
concentrated in vacuo. The residue was taken up in 10:1 
MeCN–H2O (4.0 mL) and then treated with CuO (60 mg, 
0.78 mmol), and CuCl2·2H2O (48 mg, 0.28 mmol). The 
resulting suspension was stirred at r.t. for 10 min, then 
filtered through a pad of Celite® and concentrated in vacuo 
at a temperature below 30 °C. The residue was partitioned 
between brine (30 mL) and Et2O (30 mL). The organic layer 
was separated and the aqueous layer was extracted with Et2O 
(2 × 30 mL). The combined organic extracts were washed 
with sat. aq EDTA (disodium salt), brine, dried over Na2SO4, 
filtered, and concentraed to give the essentially pure a-
amino aldehyde which was taken up in MeCN (2 mL). The 
resulting solution was treated with 35% aq H2O2 (40 mL), 
1.2 M aq KH2PO4 (0.2 mL) and 0.17 M aq NaClO2 (1.4 mL). 
After 2 h the reaction was acidified with 1 N aq HCl till 
pH = 2 and the resulting mixture was extracted with EtOAc 
(3 × 20 mL). The organic extracts were dried over Na2SO4, 
filtered, and concentrated. The crude carboxylic acid was 
taken up in Et2O, the solution was kept at 0 °C and treated 
with an ethereal solution of CH2N2 until a pale yellow colour 
persisted. The solution was stirred for an additional 15 min, 
then the residue was dried in vacuo. The residue was eluted 
from a column of silica gel with the suitable elution system 
to give the corresponding C-glycosylglycines 10a,b, 11a–c, 
15. Column chromatography with 3:1 cyclohexane–EtOAc 
afforded 10a (104 mg, 67%) as a syrup. [a]D 32.1 (c 1.0, 
CHCl3). 

1H NMR (C6D6): d = 7.20–7.00 (m, 15 H, 3 Ph), 
5.96 (d, 1 H, JNH,2 = 9.0 Hz, NH), 4.85 (dd, 1 H, J2,NH = 9.0 
Hz, J2,3 = 2.5 Hz, H-2), 4.65 (dd, 1 H, J3,2 = 2.5 Hz, J3,4 = 4.0 
Hz, H-3), 4.42 and 4.12 (2 d, 2 H, J = 12.0 Hz, CH2Ph), 4.26 
and 4.22 (2 d, 2 H, J = 11.0 Hz, CH2Ph), 4.21 (s, 2 H, 
CH2Ph), 4.14 (t, 1 H, J4,3 = J4,5 = 4.0 Hz, H-4), 4.12 (br s, 1 
H, H-6), 3.82 (dd, 1 H, J5,4 = 4.0 Hz, J5,6 = 1.5 Hz, H-5), 3.64 
(dd, 1 H, J7a,6 = 6.5 Hz, J7a,7b = 10.0 Hz, H-7a), 3.54 (dd, 1 H, 
J7b,6 = 5.0 Hz, J7b,7a = 10.0 Hz, H-7b), 3.25 (s, 3 H, CH3), 
1.37 (s, 9 H, t-Bu). 13C NMR (C6D6): d = 170.2, 156.0, 
138.4, 138.0, 137.9, 128.3, 128.2, 128.1, 127.9, 127.7, 
127.6, 127.4, 127.3, 83.7, 83.2, 82.5, 80.2, 79.1, 73.0, 71.9, 
71.3, 67.4, 55.7, 53.0, 51.6, 28.0. MALDI-TOF MS (591.7): 
m/z = 614.6 [M + Na], 630.3 [M + K]. Anal. Calcd for 
C34H41NO8: C, 69.02; H, 6.98; N, 2.37. Found: C, 69.04; H, 
6.97; N, 2.37.

(20) Compound 11a: [a]D 27.9 (c 0.3, CHCl3). 
1H NMR (C6D6): 

d = 7.25–7.00 (m, 15 H, 3 Ph), 5.94 (d, 1 H, JNH,2 = 6.5 Hz, 
NH), 4.92 (dd, 1 H, J2,NH = 6.5 Hz, J2,3 = 5.0 Hz, H-2), 4.45 
and 4.15 (2 d, 2 H, J = 12.0 Hz, CH2Ph), 4.35–4.20 (m, 7 H, 
2 CH2Ph, H-3, H-4 and H-6), 3.83 (br s, 1 H, H-5), 3.79 (dd, 
1 H, J7a,6 = 6.5 Hz, J7a,7b = 10.0 Hz, H-7a), 3.68 (dd, 1 H, 
J7b,6 = 5.5 Hz, J7b,7a = 10.0 Hz, H-7b), 3.22 (s, 3 H, CH3), 
1.35 (s, 9 H, t-Bu).

Compound 10b: [a]D 10.9 (c 1.0, CHCl3). 
1H NMR (C6D6): 

d = 7.25–7.00 (m, 15 H, 3 Ph), 5.42 (d, 1 H, JNH,2 = 8.5 Hz, 
NH), 4.92 (dd, 1 H, J2,NH = 8.5 Hz, J2,3 = 4.5 Hz, H-2), 4.75 
(t, 1 H, J3,2 = J3,4 = 4.5 Hz, H-3), 4.32 (ddd, 1 H, J6,5 = 4.0 
Hz, J6,7a = 6.5 Hz, J6,7b = 5.0 Hz, H-6), 4.28 and 4.19 (2 d, 2 
H, J = 11.5 Hz, CH2Ph), 4.26 and 4.21 (2 d, 2 H, J = 11.0 Hz, 
CH2Ph), 4.21 and 4.12 (2 d, 2 H, J = 12.0 Hz, CH2Ph), 4.01 
(dd, 1 H, J4,3 = 4.5 Hz, J4,5 = 2.0 Hz, H-4), 3.87 (dd, 1 H, 
J5,4 = 2.0 Hz, J5,6 = 4.0 Hz, H-5), 3.71 (dd, 1 H, J7a,6 = 6.5 
Hz,  J7a,7b = 9.5 Hz, H-7a), 3.58 (dd, 1 H, J7b,6 = 5.0 Hz, 
J7b,7a = 9.5 Hz, H-7b), 3.20 (s, 3 H, CH3), 1.40 (s, 9 H, t-Bu).
Compound 11b: [a]D 2.3 (c 1.0, CHCl3). 

1H NMR (C6D6): 
d = 7.22–7.00 (m, 15 H, 3 Ph), 5.77 (d, 1 H, JNH,2 = 10.0 Hz, 
NH), 5.33 (dd, 1 H, J2,NH = 10.0 Hz, J2,3 = 5.0 Hz, H-2), 4.76 
(t, 1 H, J3,2 = J3,4 = 5.0 Hz, H-3), 4.49 (ddd, 1 H, J6,5 = 4.0 
Hz, J6,7a = 7.0 Hz, J6,7b = 5.5 Hz, H-6), 4.32 and 4.25 (2 d, 2 
H, J = 12.0 Hz, CH2Ph), 4.20 and 4.15 (2 d, 2 H, J = 11.5 Hz, 
CH2Ph), 4.09 (s, 2 H, CH2Ph), 4.00 (dd, 1 H, J4,3 = 5.0 Hz, 
J4,5 = 1.5 Hz, H-4), 3.84 (dd, 1 H, J5,4 = 1.5 Hz, J5,6 = 4.0 Hz, 
H-5), 3.81 (dd, 1 H, J7a,6 = 7.0 Hz, J7a,7b = 9.5 Hz, H-7a), 
3.68 (dd, 1 H, J7b,6 = 5.5 Hz, J7b,7a = 9.5 Hz, H-7b), 3.15 (s, 3 
H, CH3), 1.40 (s, 9 H, t-Bu).
Compound 11c: [a]D –28.5 (c 0.6, CHCl3). 

1H NMR 
(CDCl3): d = 7.40–7.20 (m, 15 H, 3 Ph), 6.07 (d, 1 H, 
JNH,2 = 9.0 Hz, NH), 4.83 (t, 1 H, J3,2 = J3,4 = 5.0 Hz, H-3), 
4.74 (dd, 1 H, J2,NH = 9.0 Hz, J2,3 = 5.0 Hz, H-2), 4.64 and 
4.59 (2 d, 2 H, J = 10.5 Hz, CH2Ph), 4.56 and 4.39 (2 d, 2 H, 
J = 12.0 Hz, CH2Ph), 4.54 and 4.47 (2 d, 2 H, J = 11.0 Hz, 
CH2Ph), 4.28 (br s, 2 H, H-4 and H-6), 4.03 (t, 1 H, 
J5,4 = J5,6 = 5.0 Hz, H-5), 3.54 (s, 3 H, CH3), 3.53 (dd, 1 H, 
J7a,6 = 4.0 Hz, J7a,7b = 10.5 Hz, H-7a), 3.46 (dd, 1 H, 
J7b,6 = 3.0 Hz, J7b,7a = 10.5 Hz, H-7b), 1.40 (s, 9 H, t-Bu).
Compound 15: [a]D –6.9 (c 0.7, CHCl3). 

1H NMR (C6D6): 
d = 7.20–7.00 (m, 15 H, 3 Ph), 5.79 (d, 1 H, JNH,2 = 9.0 Hz, 
NH), 5.30 (dd, 1 H, J2,NH = 9.0 Hz, J2,3 = 6.0 Hz, H-2), 4.47 
(dd, 1 H, J3,2 = 6.0 Hz, J3,4 = 4.0 Hz, H-3), 4.31 and 4.24 (2 
d, 2 H, J = 12.0 Hz, CH2Ph), 4.30 and 4.29 (2 d, 2 H, J = 12.0 
Hz, CH2Ph), 4.21 (br s, 1 H, H-6), 4.14 (s, 2 H, CH2Ph), 4.01 
(br s, 1 H, H-5), 3.95 (br s, 1 H, H-4), 3.59 (dd, 1 H, 
J7a,6 = 5.0 Hz, J7a,7b = 10.0 Hz, H-7a), 3.51 (dd, 1 H, 
J7b,6 = 7.5 Hz, J7b,7a = 10.0 Hz, H-7b), 1.39 (s, 9 H, t-Bu).

(21) Cyclization of the N-Boc amino alcohol 7c required two 
cycles of microwave irradiation to get an acceptable yield of 
the C-furanoside 9c. On the other hand, microwave 
irradiation of 5c for prolonged time periods (single or 
repeated cycles) did not afford the corresponding furanoside 
8c.

(22) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; 
Pedrini, P. J. Org. Chem. 1989, 54, 702. (b) Dondoni, A.; 
Orduna, J.; Merino, P. Synthesis 1992, 201.

(23) Reduction of 12 by NaBH4 at lower temperatures and by L-
Selectride (THF, –78 °C) afforded the undesired alcohol 7b 
as major product.
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