TWO LIGNANS FROM SCHISANDRA SPHENANTHERA*

YUKINOBU IKEYA, KO SUGAMA, MINORU OKADA and HIROSHI MITSUHASHI

Research Institute for Biology & Chemistry, Tsumura & Co., 3586 Yoshiwara Ami-machi, Inashiki-gun, Ibaraki 300-11, Japan

(Received 2 July 1990)

Key Word Index—Schisandra sphenanthera; Schisandraceae; dibenzocyclooctadiene; lignan; benzoylgomisin U; tigloylgomisin O; isoschizandrin.

Abstract—Two new dibenzocyclooctadiene lignans, benzoylgomisin U and tigloylgomisin O were isolated from the fruits of *Schisandra sphenanthera* together with known lignans, gomisin U and epigomisin O. Their structures were determined by chemical and spectral studies. The structure of isoschizandrin was also revised by advanced chemical and spectral studies.

INTRODUCTION

The fruits of Schisandra sphenanthera Rehd. et Wils. are used as an antitussive, tonic, and sedative agent under the name of Wuweizi in Chinese traditional medicine together with the fruits of S. chinensis Baill. Eleven dibenzocyclooctadiene lignans [1, 2] have been isolated from this plant. In this paper we report the isolation of two new lignans, benzoylgomisin U(1a) and tigloylgomisin O(2a) together with two known lignans, gomisin U(1b) and epigomisin O(2b) from S. sphenanthera collected in the province of Shangxi in China, and the revised stereostructure of isoschizandrin (3a) [3] from S. chinensis.

RESULTS AND DISCUSSION

Compound 1b, named gomisin U was identified as 6β -hydroxy compound [4] of (-)-gomisin K₁ (1c) by direct comparison with an authentic sample. Compound 2b was identified as epigomisin O [5] by direction comparison with an authentic sample obtained from S. chinensis.

Benzoylgomisin U (1a) was obtained as needles, $C_{30}H_{34}O_8$, $[\alpha]_D - 61.6^\circ$ (CHCl₃) and possessed the characteristic UV spectrum (λ_{max} 215.2, 255 sh, and 289 sh nm) of dibenzocyclooctadiene lignans [6]. Its CD spectrum ($[\theta]_{213.1}$ + 86 200, $[\theta]_{235.0}$ - 98 500, and $[\theta]_{248.6}$ - 55 100 sh) indicated that 1a has a S-biphenyl configuration [7]. The ¹H NMR spectral analyses (Table 1) showed that 1a has one phenolic hydroxyl and five methoxyl groups on the aromatic rings, and a benzoyloxyl and two secondary methyl groups. The mass spectrum with peaks at m/z 522 [M]⁺, 400 [M $-C_6H_5CO_2H$]⁺ and 105 [C₆H₅CO]⁺ [8], and ¹³C NMR spectrum (Table 2) also supported the presence of a benzoyloyl group in 1a.

On hydrolysis with 3% ethanolic potassium hydroxide, 1a afforded a benzoic acid and 1b. The doublet at $\delta 4.42$ in the ¹H NMR spectrum of 1b, which appeared at $\delta 6.01$ in **1a**, was assigned to the C-6 benzylic methine. This showed that the benzoyl group in **1a** is linked to the C-6 hydroxyl group in **1b**.

The structure of 1a was confirmed by the two-dimensional nuclear Overhauser effects spectroscopy (NOESY) spectrum of 1a in chloroform-d (Fig. 1). The NOESY spectrum showed appreciable NOE between the C-3 methoxyl signal at δ 3.89 and the lower-field aromatic proton (H-4) signal at $\delta 6.80$, and between the H-4 and the C-6 benzylic methine signal, but no NOE between the higher-field aromatic proton (H-11) signal at $\delta 6.67$ and any methoxyl signal. These findings indicated that the phenolic hydroxyl group is located adjacent to H-11, and that the C-6 benzylic methine proton is α -oriented. The NOESY spectrum also showed appreciable NOE between the C-7 methyl signal at $\delta 0.84$ and the H-4 signal, and between the H-8 signal and the H-11 signal, indicating that both C-7 and C-8 methyl groups are α -oriented. On the basis of the above results, the structure of benzoylgomisin U was determined as (6R,7S,8S,S-biar)-6-benzoyloxy-6,7,8,9-tetrahydro-1,2,3,13,14-heptamethoxy-7,8-dimethyl-12-dibenzo [a, c]-cyclooctenol (1a) (Fig. 1).

Tigloylgomisin O(2a) was obtained as an amorphous powder, $C_{28}H_{34}O_8$, $[\alpha]_D - 22^\circ$ (CHCl₃) and possessed the characteristic UV spectrum (λ_{max} 215.2, 258 sh, and 293 sh nm) of dibenzocyclooctadiene lignan. Its CD spectrum ($[\theta]_{229.4} + 5700$, $[\theta]_{241.1} - 57200$, $[\theta]_{249.1} - 47200$ sh) indicated that 2a has an S-biphenyl configuration [7]. The ¹H NMR spectrum (Table 1) showed that 2a has a methylenedioxyl and four methoxyl groups on the aromatic rings, and a tigloyloxyl and two secondary methyl groups. The ¹³C NMR spectrum (Table 2) also supported the presence of tigloyl group [δ 11.2 (α -Me), 14.2 (β -Me), 128.4, 137.1 (C=C), and 166.9 (C=O)].

On hydrolysis with 3% ethanolic potassium hydroxide, 2a afforded a tiglic acid and 2c, which was identified as gomisin O [5] by direct comparison with an authentic sample. The doublet at $\delta 4.34$ in the ¹H NMR spectrum of 2c, which appeared at $\delta 5.76$ in 2a, was assigned to the C-6 benzylic methine. This showed that the tigloyl group in 2a is linked to the C-6 hydroxyl group in 2c.

The structure of 2a was confirmed by the NOESY spectrum in chloroform-d (Fig. 2). The NOESY spectrum

^{*} Part 17 in the series 'The Constituents of Schisandra Species'. For Part 16 see ref. [2].

Fig. 1. NOE (\leftrightarrow) in the NOESY spectrum of compound **1a** (in CDCl₃).

Fig. 2. NOE (\leftrightarrow) in the NOESY spectrum of compound **2a** (in CDCl₃).

showed appreciable NOE between the C-3 methoxyl signal at δ 3.88 and the lower-field aromatic proton (H-4) signal at δ 6.70, and between the H-4 and the C-6 benzylic methine signal, indicating that the C-6 benzylic methine proton is α -oriented. The NOESY spectrum also showed

appreciable NOE between the C-7 methyl signal at $\delta 0.80$ and the H-4 signal, and between the H-8 signal and the H-11 signal, indicating that both C-7 and C-8 methyl groups are α -oriented. On the basis of above results, the structure of tigloylgomisin O was determined as (6*R*,7*S*,8*S*,S-biar)-

1a* 6.80 6.01 d $222 brt$ $230 brd$ $209 m$ $0.04 d$ 101 $335, 33$ 1b 6.57 (7.7) $223 brt$ $230 brd$ $209 m$ $0.84 d$ 101 $335, 33$ 2b (7.7) (5.9) (7.1) $0.86 d$ 2.23 $1.76 m$ $1.88 m$ $0.88 d$ 0.94 $3.33, 33$ 2b 5.9 (7.7) 2.13 2.22 $1.96 m$ $1.94 m$ $0.88 d$ 0.94 $3.35, 33$ 2b 5.0 $5.76 d$ 2.15 $1.34, 9.4$ $(134, 3.3)$ $1.94 m$ $0.80 d$ 0.96 $3.53, 33$ 2b 701 $1.09 brs$ $4.57 d$ 2.12 $1.95 d$ $1.85 - 205 m$ $1.85 - 205 m$ (6.9) (7.1) $3.96, 35$ $3.52 33, 33$ 2c 6.57 $4.34 d$ $(134, 3.2)$ $(134, 3.2)$ $(135, 3.2)$ $(115 m)$ (17.1) $3.96, 35, 33, 33$ 2c 6.33 (211) $(133, 2.5)$	Compound	H-4, <i>s</i> H-11, <i>s</i>	$H-6\alpha$ (J = Hz)	$H-6\beta$ (J = Hz)	$H-9\alpha, dd$ (J = Hz)	H-9 <i>β</i> , <i>dd</i> (<i>J</i> = Hz)	J = Hz	(J = Hz)	C^{-1} -Me $(J = Hz)$	C-8-Me a (J = Hz)	S
1b 655 $442 d$ 206 227 $1.76 m$ $1.88 m$ $0.88 d$ 0.94 35.3 ; 2a* 6.70 $5.76 d$ 215 222 $1.96 m$ $1.94 m$ $0.80 d$ 0.96 32.3 ; $3.45, 5.3$; 2a* 6.70 $5.76 d$ 2.15 2.22 $1.96 m$ $1.94 m$ $0.80 d$ 0.96 $3.32, 3;$ 2b 7.01 $1.09 brs$ $4.57 d$ 2.12 $1.95 d$ $1.85-205 m$ $1.85-205 m$ $0.70 d$ 1.00 $3.52 am$ 2b 7.01 $1.09 brs$ $4.57 d$ 2.12 $1.95 d$ $1.85-205 m$ $1.85-205 m$ $0.70 d$ 0.96 $3.52, 33, 34$ 2b 7.01 $1.09 brs$ $4.57 d$ 2.12 $1.95 d$ $1.30, 429$ $1.30, 55$ 2c 6.57 $4.34 d$ $(13.0, 43)$ $(13.0, 55)$ $(13.0, 55)$ $(13.0, 55)$ $(13.0, 55)$ $(13.0, 55)$ 2c 6.57 $4.33 d$ $1.85 m$ $0.$	1a *	6.80 6.67	6.01 d (7.7)		2.22 br t†	2.30 br d †	2.09 m	2.09 m	0.84 <i>d</i> (6.8)	1.01 (6.9)	3.38, 3.53, 3.75, 3.89 3.92, 5.80 1H, s (OH)
24 6.70 $5.76 d$ 215 222 $1.96 m$ $1.94 m$ $0.80 d$ 0.96 $353 3.3$ 2b 7.01 $109 brs$ $4.57 d$ 212 $1.95 d$ $1.85-2.05 m$ $1.85-2.05 m$ $0.90 d$ $353 3.3$ 2b 7.01 $1.09 brs$ $4.57 d$ 2.12 $1.95 d$ $1.85-2.05 m$ $1.85-2.05 m$ $0.70 d$ 1.00 $3.55 3.3$ 2b 7.01 $1.09 brs$ $4.57 d$ 2.12 $1.95 d$ $1.85-2.05 m$ $0.70 d$ 1.00 $3.55 3.3$ 2c 6.57 $4.34 d$ 2.02 2.32 $1.67 m$ $1.85 m$ $0.92 d$ $0.90 d$ $3.53 3.3$ 2c 6.57 $4.34 d$ 2.02 $2.32 d$ $1.30, 3.55$ $0.92 d$ $0.90 d$ $3.55 3.33$ 3a 6.61 $2.82 d$ $2.32 d$ $2.32 d$ $2.32 d$ $3.56 3.33$ 3a 6.64 (13.1) $(13.0, 5.5)$ $(13.0 m)$ $(13.0 m)$ $(13.0 $	16	6.55 6.59	4.42 d (7.7)		2.06 (12.7, 10.0)	2.27 (12.7, 4.0)	1.76 m	1.88 m	0.88 d (6.9)	0.94 (7.1)	3.53, 3.71, 3.89, 3.90 3.94, 5.78 1H, s (OH)
2b 701 109 brs 4.57 d 2.12 1.95 d 1.85-2.05 m 1.85-2.05 m 0.70 d 1.00 3.55, 31 2c 6.57 4.34 d (12) (134, 49) (13.4) (13.0, 53) (6.8) (6.8) (6.8) 5.94 2H 2c 6.57 4.34 d 2.02 2.32 1.67 m 1.85 m 0.92 d 0.90 3.53, 31 2c 6.57 4.34 d 2.02 2.32 1.67 m 1.85 m 0.92 d 0.90 3.53, 31 3a 6.61 2.82 d 2.32 dd 2.52 2.55 1.90 m 1.19 s 0.88 3.55, 31 3a 6.61 2.82 d 2.32 dd 2.52 2.55 1.90 m 1.19 s 0.88 3.55, 31 4c 6.65 (13.1) (14.1, 6.5) (14.1, 3.2) 2.70 ddd 4.72 1H, d(2.0) (7.1) 3.89 (x 5.55 (13.3) (13.3, 5.3) (13.5, 2.7) (14.1, 3.2) (7.1) 3.91 (x 6.55 <th>2a*</th> <th>6.70 6.44</th> <th>5.76 d (7.8)</th> <th></th> <th>2.15 (13.4, 9.4)</th> <th>2.22 (13.4, 3.8)</th> <th>1.96 m</th> <th>1.94 m</th> <th>0.80 d (6.9)</th> <th>0.96 (7.1)</th> <th>3.52, 3.77, 3.89 (×2) 5.92 and 5.96 cach 1H, d (1.5 Hz, OCH₂O)</th>	2a*	6.70 6.44	5.76 d (7.8)		2.15 (13.4, 9.4)	2.22 (13.4, 3.8)	1.96 m	1.94 m	0.80 d (6.9)	0.96 (7.1)	3.52, 3.77, 3.89 (×2) 5.92 and 5.96 cach 1H, d (1.5 Hz, OCH ₂ O)
$2c$ 6.57 $4.34 d$ 2.02 2.32 $1.67 m$ $1.85 m$ $0.92 d$ 0.90 $3.53, 3.33$ 6.42 (8.3) $(13.0, 4.9)$ $(13.0, 5.5)$ $1.67 m$ $1.85 m$ $0.92 d$ 0.90 $3.53, 3.33$ $3a$ 6.61 $2.82 d$ 2.52 2.55 $1.90 m$ $1.19 s$ 0.88 $3.55, 3.33$ 6.54 (13.1) $(13.1, 1.1)$ $(14.1, 3.2)$ $1.90 m$ $1.19 s$ 0.88 $3.55, 3.33$ 6.54 (13.1) $(13.1, 1.1)$ $(14.1, 3.2)$ $1.90 m$ $1.19 s$ 0.88 $3.55, 3.33$ 6.55 (12.3) (12.3) $(13.4, 1.3.2)$ $(13.4, 1.3.2)$ $(14.1, 3.2)$ $(14.1, 3.2)$ 6.55 (12.3) (12.3) (12.3) $(13.5, 5.4)$ $(13.5, 2.7)$ $(3.60 m)$ $(7.2, 54, 2.7)$ $3.86 (1.2)$ 6.55 (12.3) (12.3) $(13.5, 5.4)$ $(13.5, 2.7)$ $(7.2, 54, 2.7)$ $3.86 (1.2)$ 6.58^{a} $(13.3, 1.5)$	2b	7.01 6.44	1.09 br s (OH)	4.57 d (1.2)	2.12 (13.4, 4.9)	1.95 d (13.4)	1.85–2.05 m	1.85–2.05 m	0.70 d (6.8)	1.00 (6.8)	3.55, 3.85, 3.91 (×2) 5.94 2H, s (OCH ₂ O)
3a 6.61 2.82 d 2.32 dd 2.52 2.55 1.90 m 1.19 s 0.88 3.55, 3. 4c 6.55 (13.1) (13.1, 1.1) (14.1, 6.5) (14.1, 3.2) 2.70 ddd 4.72 1H, d(2.0) 1.02 3.60, 3.6 4c 6.55 (12.3) (13.5, 5.4) (13.5, 2.7) (13.5, 2.7) 2.70 ddd 4.72 1H, d(2.0) 1.02 3.60, 3.6 4c 6.55 (12.3) (12.3) (13.5, 5.4) (13.5, 2.7) (7.2, 5.4, 2.7) 4.86 1H, d(2.0) (7.2) 3.88 (× 4e 6.58 ^a (133, 1.5) (13.3, 0.9) (13.7, 1.7) 2.99 11.52 m 2.54 1H, dd (4.5, 1.5) 1.00 3.59, 3.6 4e 6.58 ^a (133, 1.5) (133, 0.9) (13.7, 1.7) 2.98 1H, dd (4.5, 1.5) 1.00 3.59, 3.6	z	6.57 6.42	4.34 d (8.3)		2.02 (13.0, 4.9)	2.32 (13.0, 5.5)	1.67 m	1.85 m	0.92 <i>d</i> (5.1)	0.90 (5.6)	3.53, 3.89, 3.90, 3.91 5.95 and 5.97 each 1H, d (1.5 Hz, OCH ₂ O)
4c 6.65 2.93 d ^a 3.00 d ^a 2.52 2.56 2.70 ddd 4.72 1H, d (2.0) 1.02 3.60, 3.60 6.55 (12.3) (12.3) (13.5, 5.4) (13.5, 2.7) (7.2, 5.4, 2.7) 4.86 1H, d (2.0) (7.2) 3.88 (× 4e 6.48 ^a 3.02 dd 1.95 dd 2.59 2.69 1.52 m 2.54 1H, dd (4.5, 1.5) 1.00 3.59, 3.0 6.58 ^a (13.3, 1.5) (13.7, 6.9) (13.7, 1.7) 2.69 1.52 m 2.98 1H d(4.5, 1.5) 1.00 3.59, 3.0	3a	6.61 6.54	2.82 d (13.1)	2.32 dd (13.1, 1.1)	2.52 (14.1, 6.5)	2.55 (14.1, 3.2)		1.90 m	1.19 s	0.88 (7.1)	3.55, 3.56, 3.88 (×2) 3.89 (×2)
4e 6.48 ^a 3.02 <i>dd</i> 1.95 <i>dd</i> 2.59 2.69 1.52 m 2.54 1H, <i>dd</i> (4.5, 1.5) 1.00 3.59, 3.0 6.58 ^a (13.3, 1.5) (13.3, 0.9) (13.7, 6.9) (13.7, 1.7) 3.00 (×	46	6.65 6.55	2.93 d ^a (12.3)	3.00 d ^a (12.3)	2.52 (13.5, 5.4)	2.56 (13.5, 2.7)		2.70 ddd (7.2, 5.4, 2.7)	4.72 1H, <i>d</i> (2.0) 4.86 1H, <i>d</i> (2.0)	1.02 (7.2)	3.60, 3.62, 3.87, 3.88 (× 2), 3.90
	4	6.48 ^ª 6.58 ^ª	3.02 dd (13.3, 1.5)	1.95 dd (13.3, 0.9)	2.59 (13.7, 6.9)	2.69 (13.7, 1.7)		1.52 m	2.54 1H, <i>dd</i> (4.5, 1.5) 2.98 1H, <i>d</i> (4.5)	1.00 (7.1)	3.59, 3.60, 3.88 (× 2) 3.90 (× 2)

500 MHz)
cDCI3,
and 4
Ą,
c, 3a
10 10
2a, 2
1 b,
la,
compounds
of
data
spectral
¹ H NMR
1.
Table

Lignans from Schisandra sphenanthera

977

С	la*	16	2a*†	2c
1	152.0	152.0ª	152.0	151.9
2	142.0	141.6	141.8ª	141.7ª
3	151.8	151.9*	151.7	152.1
4	111.0	110.1	110.8	110.1
5	132.1	136.4 ^b	132.6	137.0
6	81.4	81.4	80.9	81.4
7	37.6	40.0	37.4	40.0
8	36.4	36.8	36.5	37.0
9	36.8	37.3	36.9	38.0
10	137.6	137.7 ^b	135.5	135.5
11	109.6	109.8	102.4	102.5
12	148.9	149.4	148.6	149.2
13	137.5	137.7	134.5	134.6
14	150.3	150.6	141.4ª	141.5ª
15	122.2ª	122.0°	121.9 ^b	122.2Ъ
16	123.2ª	120.8°	123.2 ^b	120.6 ^b
17	20.3	18.3	19.2	17.5°
18	14.2	15.7	14.2	16.5°
C-1, 14	60.5 ^b , 59.7	60.4, 60.2	60.5, 59.2	60.4, 59.5
OMe C-2, 13	60.9, 60.6 ^ь	60.9, 60.9	60.9, —	60.9, —
C-3, 12	56.0,	56.0, —	56.0, —	56.0, —
OCH ₂ O		_	100.6	100.8

Table 2. ¹³C NMR spectral data of compounds **1a**, **1b**, **2a**, and **2c** (CDCl₃, 50 MHz)

*Other signals: 1a, 128.1 (3', 5'), 129.7 (2', 6'), 130.3 (1'), 132.8 (4'), 165.5 (C=O) (C₆H₅CO-); 2a, 11.7 (α -Me), 14.2 (β -Me), 128.4 (α -olephin), 137.1 (β -olephin), 166.9 (C=O) (Tigloyl).

 $^{+}$ This compound was measured at 125 MHz and assignments were confirmed by 1 H $^{-13}$ COSY spectrum.

^{a, b, c} Assignments within any vertical column may be reversed.

6,7,8,9-tetrahydro -1,2,3,14-tetramethoxy -7,8-dimethyl-12,13-methylenedioxy-6-tigloyloxy-dibenzo [a, c] cyclooctene (2a) (Fig. 2).

Previously, the structure of isoschizandrin isolated from S. chinensis was proposed as 3b having a C-8 β secondary methyl group on the basis of spectral studies and chemical correlation with 4b derived from schizandrin (4a) [3]. However, this structural re-investigation showed that the structure of isoschizandrin is 3a having the C-8 α secondary methyl group as follows. The NOESY spectrum of 3a (Fig. 3) showed appreciable NOE between the H-11 signal at $\delta 6.54$ and the C-8 secondary methyl signal at $\delta 0.88$, indicating that the C-8 secondary methyl group is α -oriented. The configuration of the C-8 position in 3a was confirmed by the transformation of schizandrin (4a) to 3a.

Treatment of 4a with hydrochloric acid afforded 4c and 4d and some minor compounds. The physical and spectroscopic properties of 4c and 4d were identical with those of authentic samples, respectively [3]. Oxidation of 4c with *m*-chloroperbenzoic acid afforded an epoxide 4e. The presence of a methylene signal ($\delta 2.54$, 1H, dd, J = 4.5, 1.5 Hz; 2.98, 1H, d, J = 4.5 Hz) and no exo-methylene signal in the ¹H NMR spectrum of 4e indicated that an epoxide ring in 4e is formed by oxidation of exo-methylene group in 4c. Reduction of 4e with LiAlH₄ afforded 3a. These findings indicate that isoschizandrin is the C-7 epimer of 4a. From these spectral and chemical data, the structure of isoschizandrin was revised to (7R,8S,R-biar)-6,7,8,9-tetrahydro -1,2,3,12,13,14-hexamethoxy -7,8-dimethyl-7-dibenzo[*a*, *c*]cyclooctenol (**3a**).

EXPERIMENTAL

General. See ref. [2]. 10% AgNO₃-impregnated silica gel (Merck Kieselgel $60F_{254}$) was used for argentic prep. TLC.

2D-NOESY. 2D-NOE data were obtained from the phase sensitive NOESY using the standard DISNMR software package (Bruker): data were collected in 2K t_2 data with 4 scans and 1K t_1 increments. A mixing time of 2.5 sec was randomly modulated by $\pm 10\%$ in order to eliminate coherent magnetization transfer. The total experimental time was 10 hr. The data were filtered through a squared sinebell window filter (SSB2 = 2) and doubly transformed in a 2 × 1K data matrix (real + imaginary) with a digital resolution of 2.68 Hz per point in the ω_2 and ω_1 domain.

Plant material. Dried fruits of Schisandra sphenanthera Rehd. et Wils. collected in October 1987, were provided from the Institute of Medicine and Pharmacy Shanxi Province.

Extraction and isolation. The dried fruits (475 g) of S. sphenanthera were pulverized and extracted with *n*-hexane (1.5 l × 3, 3 hr each) under reflux. The *n*-hexane extracts were concd to give a brown mass (79.5 g). This afforded 12 frs (frs 1-12) on silica gel CC with *n*-hexane-EtOAc. Fr. 8 (2.87 g) was rechromatographed on silica gel (3 cm i.d. × 16 cm) with C_6H_6 -Et₂O (9:1). The first eluate (200 ml) was concd to give a residue. This residue was

Fig. 3. NOE (\leftrightarrow) in the NOESY spectrum of compound 3a (in CDCl₃).

purified by prep. TLC $[C_6H_6-Et_2O (4:1), R_f 0.48]$ to give 2a (24 mg, yield 0.0051%). Fr. 10 (0.81 g) was purified by repeated prep. TLC [1st: $C_6H_6-Et_2O (3:2), R_f 0.69$; 2nd: *n*-hexane-CHCl₃-EtOH (5:14:1), $R_f 0.65$] to give 1a (22 mg, yield 0.0046%). Fr. 11 (2.985 g) was rechromatographed on silica gel (3 cm i.d. × 19 cm) with $C_6H_6-Et_2O$. The $C_6H_6-Et_2O (85:15)$ eluate (1.74 g) was purified by repeated prep. TLC [1st: $C_6H_6-Et_2O (3:2), R_f 0.40$; 2nd: *n*-hexane-CHCl₃-EtOH (10:10:1), $R_f 0.47$] to give 2b (22 mg, yield 0.0046%). Fr. 12 (0.173 g) was purified by repeated prep. TLC [1st: $C_6H_6-Et_2O (3:2), R_f 0.47$] to give 2b (22 mg, yield 0.0046%). Fr. 12 (0.173 g) was purified by repeated prep. TLC [1st: $C_6H_6-Et_2O (3:2), R_f 0.19$; 2nd: *n*-hexane-Me₂CO (7:2), $R_f 0.25$] to give 1a (12.5 mg, yield 0.0026%).

Compounds 1b and 2b were identified by direct comparison with authentic samples [4, 5].

Benzoylgomisin U (1a). Needles from *n*-hexane-Et₂O, mp 166–167.5°, $[\alpha]_D^{24} - 61.6°$ (CHCl₃; *c* 0.730). IR $\nu _{max}^{\text{Kpr}}$ cm⁻¹: 3404 (OH), 1708 (C=O), 1582, 720, 712 (aromatic ring). UV $\lambda _{max}^{\text{EtOH}}$ nm (log ε): 215.2 (4.72), 255 (sh 4.09), 289 (sh 3.49). EIMS *m*/z (rel. int.): 522 [M]⁺ (37), 400 (100), 385 (13), 122 (23), 105 (75), 77 (37). High resolution MS *m*/z: 522.2248 (calc. for C₃₀H₃₄O₈: 522.2254). CD (*c* 0.0122, MeOH) [θ]²⁴ (nm): 0 (203.7), +86 200 (213.1), 0 (222.6), -98 500 (235.0), -55 100 sh (248.6).

Tigloylgomisin O (2a). Amorphous powder, $[\alpha]_{b}^{24} - 22.0^{\circ}$ (CHCl₃; c 0.830). IR v $_{max}^{\text{KBr}}$ cm⁻¹: 1702 (C=O), 1650 (C=C), 1620, 1598 (aromatic ring). UV $\lambda_{max}^{\text{EOH}}$ nm (log ε): 215.2 (4.74), 258 (sh 4.94), 293 (sh 3.42). EIMS *m*/*z* (rel. int.): 498 [M]⁺ (100), 399 (33), 398 (73), 342 (13), 83 (79), 55 (68). High resolution MS *m*/*z*: 498.2263 (calc. for 498.2254). CD (c 0.0117, MeOH) $[\theta]^{24}$ (nm): -4800 (217.1), +5700 (229.4), -57200 (241.1), -47200 sh (249.1), -11700 sh (273.8).

Hydrolysis of compound 1a. A soln of 1a (10 mg) in 3% KOH-EtOH (1 ml) was kept at 65° for 3 hr, then diluted with H_2O (15 ml), and extracted with E_2O . The Et_2O extract was washed with H_2O , dried over Na_2SO_4 , and concd. The residue was purified by prep. TLC [C_6H_6 -Et_2O (2:1)] to give 1c (6.5 mg) as an amorphous powder, $[\alpha]_{24}^{24}$ -43.9° (CHCl₃; c 0.210). High resolution MS m/z: 418.1994 (calc. for $C_{23}H_{30}O_7$: 418.1992). This compound was identified as gomisin U (1c) by

direct comparison with an authentic sample ($[\alpha]_D$, IR, EIMS, and ¹H NMR). The aq. soln was acidified with 1 M HCl and extracted with Et₂O. The Et₂O extract was washed with H₂O, dried over Na₂SO₄, and evapd. The residue was purified by prep. TLC [*n*-hexane-EtOAc (3:1)] to give benzoic acid as an amorphous powder, which was identical with an authentic sample by HPLC [HPLC conditions: column, YMC Pack A-312ODS (6 mm i.d. × 150 mm); mobile phase, 20 mM KH₂PO₄-MeCN (4:1); flow rate, 1 ml min⁻¹; detection, UV 215 nm; benzoic acid, *RR*_t (min), 11.8].

Hydrolysis of compound 2a. A soln of 2a (14 mg) in 3% KOH-EtOH (2 ml) was kept at 65° for 4 hr, then extracted with Et₂O. The Et₂O extract was washed with H₂O, dried over Na₂SO₄, and evapd. The residue was purified by prep. TLC [*n*-hexane-Me₂CO (7:3)] to give 2c (8 mg) as prisms from *n*-hexane-Et₂O, mp 144-145.5°, $[\alpha]_{2}^{24}$ -35.3° (CHCl₃; c0.340). High resolution MS *m/z*: 416.1842 (calc. for C₂₃H₂₈O₇: 416.1835). This compound was identified as gomisin O (2c) by direct comparison with an authentic sample ($[\alpha]_D$, IR, EIMS, and m mp). The aq. soln was treated as described for hydrolysis of 1a to give tiglic acid (1 mg) as an amorphous powder, which was identical with an authentic sample by GC [GC conditions: column, 20% FFAP on Chromosorb WAW 80-100 mesh (3 mm i.d. × 2 m); column temp., 60°; inj. temp., 180°; carrier gas, He, 50 ml min⁻¹; tiglic acid, *RR*, (min), 6.4].

Dehydration of schizandrin (4a) with HCl. Schizandrin (4a) (2.5 g) was dissolved in a mixture of 1 M HCl (50 ml) and dioxane (50 ml), and the soln was heated at 90° for 4 hr. After cooling, the reaction mixture was diluted with Et_2O and washed with H_2O . The Et_2O soln was dried over Na_2SO_4 and evapd. The residue was chromatographed on silica gel (4 cm i.d. × 18 cm) with *n*hexane-Me₂CO. The fraction eluted with *n*-hexane-Me₂CO (4:1) was evapd to give 4a (441 mg). The fraction eluted with *n*hexane-acetone (17:3) was evapd to give a residue, which was purified by argentic prep. TLC [*n*-hexane- Et_2O (1:1)] to give 4c (63 mg) and 4d (137 mg) [9]. Compound 4c: prisms from *n*-hexane- Et_2O , mp 115-117°, $[\alpha]_D^{24}$ +178° (CHCl₃; c1.06) (found: C, 69.33; H, 7.42. Calc. for $C_{24}H_{30}O_6$: C, 69.54; H, 7.30%). This compound was identical ($[\alpha]_D$, IR, ¹H NMR, and m mp) with an authentic sample [3]. Compound **4d**: needles from *n*-hexane-Et₂O, mp 122-122.5°, $[\alpha]_D^{24} - 104^\circ$ (CHCl₃; *c* 1.36) (found: C, 69.45; H, 7.31. Calc. for C₂₄H₃₀O₆: C, 69. 54; H, 7.30%). This compound was identical ($[\alpha]_D$, IR, ¹H NMR, and m mp) with an authentic sample [3].

Oxidation of 4c with m-chloroperbenzoic acid. Compound 4c (60 mg) and m-chloroperbenzoic acid (60 mg) were dissolved in CHCl₃ (2 ml) and the soln was stirred at room temp. for 3 hr. The reaction mixture was diluted with EtOAc, washed 5% NaHCO₃ and H₂O, and evapd. The residue was purified by prep. TLC [*n*-hexane-Et₂O (2:3)] to give 4e (22 mg) as an amorphous powder, $[\alpha]_D^{24} + 123^{\circ}$ (CHCl₃; c 0.72). IR v_{max}^{KBr} cm⁻¹: 1598 (aromatic ring). EIMS *m/z* (rel. int.): 430 [M]⁺ (100), 402 (27), 400 (14), 399 (17), 360 (11), 359 (14). High resolution MS *m/z*: 430.1984 (calc. for C₂₄H₃₀O₇: 430.1991).

Reduction of 4e with LiAlH₄. LiAlH₄ (15 mg) was added to a soln of 4e (16 mg) in dry THF (3 ml). The reaction mixture was stirred at room temp. for 3 hr, and then wet Et₂O added. The reaction mixture was purified by prep. TLC [*n*-hexane-EtOAc (3:2)] to give 3a (7 mg) as an amorphous powder, $[\alpha]_{2}^{24} + 85^{\circ}$ (CHCl₃; c 0.275). High resolution MS m/z: 432.2125 (calc. for C₂₄H₃₂O₇: 432.2147). This compound was identified as isoschizandrin by direct comparison with an authentic sample ($[\alpha]_{D}$, IR, EIMS, and ¹H NMR).

Acknowledgements—The authors wish to express their gratitude to Prof. A. I. Meyers (Colorado State University), for his kind advice on structure determination of isoschizandrin and also to Dr M. Tanaka (Research Institute for Biology & Chemistry, Tsumura & Co.) for valuable discussions. Thanks are also due to Mr Kano and Mrs N. Kobayashi (Research Institute for Biology & Chemistry, Tsumura & Co.), for elemental analysis, and for CD and mass spectra.

REFERENCES

- Liu, J.-S., Fang, S.-D., Huang, M.-D., Kao, Y.-L. and Hsu, J.-S. (1976) Acta Chim. Sinica 34, 229.
- Ikeya, Y., Miki, E., Okada, M., Mitsuhashi, H. and Chai, J.-G. (1990) Chem. Pharm. Bull. 38, 1408.
- 3. Ikeya, Y., Taguchi, H., Mitsuhashi, H., Takeda, S., Kase, Y. and Aburada, M. (1988) *Phytochemistry* 27, 569.
- Ikeya, Y., Kanatani, H., Hakozaki, M., Taguchi, H. and Mitsuhashi, H. (1988) Chem. Pharm. Bull. 36, 3974.
- Ikeya, Y., Taguchi, H., Yosioka, I. and Kobayashi, H. (1979) Chem. Pharm. Bull. 27, 2695.
- Kochetkov, N. K., Khorlin, A., Chizhov, O. S. and Sheichenko, V. I. (1961) *Tetrahedron Letters* 730.
- Ikeya, Y., Taguchi, H., Yosioka, I. and Kobayashi, H. (1979) Chem. Pharm. Bull. 27, 1383.
- Zhai, H.-B. and Cong, P.-Z. (1990) Acta Pharm. Sinica 25, 110.
- 9. Li, L.-N., Huang, X. and Tan, R. (1985) Planta Med. 51, 297.