European Journal of Organic Chemistry

DOI: 10.1002/ejoc.201300719

An Efficient Approach to Azolyl-Substituted Steroids through Copper-Catalyzed Ullmann C–N Coupling

Pages: 11

Yury N. Kotovshchikov,^[a] Gennadij V. Latyshev,^[a] Nikolay V. Lukashev,^{*[a]} and Irina P. Beletskaya^[a]

Keywords: Steroids / Nitrogen heterocycles / Cross-coupling / Amination / Copper

Ullmann-type C–N coupling of vinyliodides and nitrogen heterocycles has been shown to be a straightforward and highly efficient approach to azolyl-substituted steroids. The amination reaction proved sensitive to steric effects exerted by the substituents in both iodide and heterocycle. The influence of reaction conditions (catalyst, base, solvent, and temperature) on conversion of the iodosteroid and the selectivity

Introduction

Steroids occupy a unique position among other natural compounds due to their high biological activity and involvement into the most important processes in living organisms. Structural similarity of the main steroidal hormones and, at the same time, significant dependence of their pharmacological properties upon the nature and position of substituents mean that steroids are ideal precursors for the synthesis of new drugs.^[1] For instance, the introduction of heterocyclic moieties into the C-17 position was observed to lead to 17α -hydroxylase inhibitors, which could be applied in anticancer therapy.^[2] Therefore, the development of new efficient protocols for steroid functionalization is an important synthetic problem.

Modern methods based on reactions catalyzed by transition-metal complexes provide a wide range of opportunities for the synthesis of steroid derivatives bearing diverse functionality.^[3] Previously, Pd-catalyzed cross-coupling reactions have been applied to the synthesis of potential aromatase inhibitors in our group,^[4] and a few reports on the use of some Cu-catalyzed protocols in steroid chemistry have also been published.^[5] Nevertheless, the application of Cu-catalyzed cross-coupling methodology to modification of steroids and steroid-like compounds remains practically unexplored. Taking into account the rapid development of new protocols in so-called "modified Ullmann chemistry",^[6] Cu-catalyzed reactions may become promising tools was investigated. The catalytic system comprising 10 mol-% CuI and 20 mol-% dipivaloylmethane with $\rm K_2CO_3$ in dimethyl sulfoxide at 100 °C delivered the best result. The elaborated protocol has permitted iodosteroids with various substituted indoles, imidazoles, carbazole, indazole, and secamides to be coupled, affording the corresponding azolyl-substituted steroids in good to excellent yields.

for steroid derivatization. The amination of aryl and vinyl halides with amines, amides and nitrogen heterocycles attracts a special interest. In these areas Cu-catalyzed methods are often superior to their Pd-catalyzed counterparts.^[7]

The methods of bond formation between $C(sp^2)$ atoms of the steroidal framework and N atoms of aromatic heterocycles are of practical interest in the synthesis of biologically active compounds. So far, the only commonly used method to obtain such azolyl-substituted steroids^[2a,2b] was Michael addition of azole salts to the corresponding β -chloroenals followed by chloride anion elimination (Scheme 1). An additional step of catalytic decarbonylation is necessary for the removal of the auxiliary formyl group. However, the addition-elimination process is not selective in some cases,^[8] and the decarbonylation reaction requires expensive rhodium complexes. In the present work we wanted to develop an alternative approach based on direct vinylation of NHheterocycles that does not require the introduction and subsequent removal of the activating formyl group.

Results and Discussion

Synthesis of Iodosteroids

Steroidal vinyliodides needed for the modified Ullmann coupling were synthesized according to the standard procedures^[9] through the oxidation of hydrazones obtained from the corresponding ketosteroids by iodine.^[10]

Thus, enol ether 1 was transformed into 17-hydrazone 2, which was then treated with iodine, yielding, after subsequent removal of the enol ether protecting group, 17-iodo-steroid 3 in good yield (Scheme 2).

A similar procedure was applied to the preparation of testosterone (4) and cholest-4-en-3-one (5) derivatives 8 and

 [[]a] Chemistry Department, M.V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow, 119991, Russia

E-mail: nvluk@org.chem.msu.ru

Homepage: http://www.chem.msu.ru

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300719.

FULL PAPER

Scheme 1. Synthetic approaches to azolylsteroids.

Scheme 2. Synthesis of 17-iodosteroid 3.

Scheme 3. Synthesis of 3-iodosteroids 8 and 9.

9. The iodination of 3-hydrazones **6** and **7** followed by equilibration of the forming iododiene mixture in the presence of triflic acid^[9a] afforded 3-iodosteroids **8** and **9** in moderate yields (Scheme 3).

Cu-Catalyzed C-N Coupling of Iodosteroids and Azoles

Conditions for the reaction between vinyliodides and azoles were optimized by using the cross-coupling of iodosteroid **3** with indole as a model reaction (Scheme 4). Initially we tried to apply one of the well-established protocols for Pd-catalyzed C–N coupling,^[11] however, reaction conditions employing 4 mol-% [Pd(dba)₂], 5 mol-% BINAP, and 2 equiv. Cs₂CO₃ in dioxane at 100 °C only provided 9% of the reductive dehalogenation by-product **11** after 24 h, and none of the desired coupling product **10a** was detected. Cucatalyzed systems are generally more effective than their Pdcatalyzed counterparts for the cross-coupling of azoles with aryl or vinyl iodides, so we decided to focus on the Cucatalyzed variant of the C–N coupling and investigated the factors influencing the activity of the catalytic system.

Use of a ligand-free protocol^[12] led to a mixture of 5% coupling product **10a** and 30% by-product **11**. Reductive dehalogenation reaction of iodosteroid **3** giving **11** was also observed in the absence of indole. This side-reaction is known to accompany Cu-catalyzed amination when the substrates used are sterically hindered.^[13] Although the mechanism of reductive dehalogenation remains unclear,

Scheme 4. Amination of 17-iodosteroid 3 with indole.

possible pathways can include either protonation or homolytic cleavage of copper(III) intermediates.

The poor performance of the ligand-free system prompted us to study a number of N,N- (L1–L7^[14]), N,O-(L8–L11^[15]) and O,O-donating (L12–L20^[16]) ligands (Figure 1). The choice of ligand indeed had a dramatic influence on the catalytic activity, and the use of different ligands resulted in levels of iodosteroid 3 conversion that varied over a wide range (from 14 to 93%, as shown in Table 1) and resulted in different selectivity towards products 10a and 11.

Figure 1. Ligands for the catalytic copper complex.

Table 1. Ligand effects on the Cu-catalyzed amination of ${\bf 3}$ with indole. $^{[a]}$

Ligand	Yield 10a/11 [%] ^[b]	Ligand	Yield 10a/11 [%] ^[b]
L1	22:14	L11	72:21
L2	4:12	L12 ^[c]	41:30
L3	68:13	L13	7:23
L4	14:15	L14 (DPM)	79:10
L5	8:8	L15	9:7
L6	<5:60	L16	7:7
L7	8:72	L17	21:11
L8	5:27	L18	25:13
L9	4:16	L19	23:12
L10	24:20	L20	13:12

[a] Reaction conditions: CuI (10%), ligand (20%), indole (1.5 equiv.), K_2CO_3 (2 equiv.), DMSO, 100 °C, 24 h. [b] Based on ¹H NMR spectroscopic analysis. [c] Cu(acac)₂ was used.

Interestingly, the introduction of additional substituents, which usually improves the performance of Cu-catalyzed systems, in our case led to a decrease in the yields (see for example, L2 vs. L1, and L4 vs. L3) and loss of selectivity. The use of L6 and L7 led to high conversion of starting

Eurjocan Journal of Organic Chem

iodosteroid 3, but undesired product 11 was formed almost exclusively.

Among the N,O ligands, 8-hydroxyquinoline L11^[15e] furnished almost complete conversion, although a rather high amount of reduction product was formed. Salicylic acid/ aldehyde derivatives L8^[15d] and L9^[15b] were shown to be ineffective.

The O,O ligands were mainly represented by 1,3-diketones. The use of ligands with an electron-withdrawing CF_3 group L13 and cyclic ketones L15 and L16 led to low conversions; diketo esters L17–L19 led to slightly better results, and a preformed copper(II) complex with the simplest 1,3diketone, acetylacetone L12, demonstrated moderate activity. The highest yield of desired indolylsteroid 10a was achieved by using dipivaloylmethane (DPM) L14 as ligand.

As reported in Table 2, the reaction did not occur in nonpolar solvents such as toluene or dioxane (entries 1 and 2). The best conversion was observed in dimethyl sulfoxide (DMSO), and the addition of water had no significant effect (entries 5 and 6). Less polar solvents such as acetonitrile and *N*,*N*-dimethylformamide (DMF) appeared less effective (entries 3 and 4).

Table 2. Solvent effects on Cu-catalyzed amination of ${\bf 3}$ with indole $^{[a]}$

Entry	Solvent	Yield 10a/11 [%][b]
1	toluene	0:0
2	dioxane	0:0
3	MeCN	21:1
4	DMF	58:3
5	DMSO/H ₂ O (9:1)	77:6
6	DMSO	79:10

[a] Reaction conditions: CuI (10%), DPM (20%), indole (1.5 equiv.), K_2CO_3 (2 equiv.), 100 °C, 24 h. [b] Based on ¹H NMR spectroscopic analysis.

The best bases for the reaction were found to be K_2CO_3 and, unexpectedly, Et_3N (Table 3, entries 6 and 7). The latter is almost never used for C–N cross-coupling, either Pdor Cu-catalyzed, and is commonly regarded as an ineffective base. The result obtained in our study can probably prompt a reevaluation of this simple and convenient base for amination methods. Curiously enough, most widely

Table 3. The effect of base and temperature on the Cu-catalyzed amination of ${\bf 3}$ with indole. $^{[a]}$

Entry	Base	Temperature [°C]	Yield 10a/11 [%] ^[b]
1	K ₃ PO ₄	100	7:3
2	Cs_2CO_3	100	9:2
3	NaOAc	100	15:10
4	Na_2CO_3	100	26:2
5	KHCO ₃	100	49:4
6	Et ₃ N	100	78:6
7	K ₂ CO ₃	100	79:10
8	K ₂ CO ₃	130	74:15
9	K_2CO_3	80	29:0
10	tBuOK(Na) or KOH	100	0:0 ^[c]

[a] Reaction conditions: CuI (10%), DPM (20%), indole (1.5 equiv.), base (2 equiv.), DMSO, 24 h. [b] Based on ¹H NMR spectroscopic analysis. [c] Partial decomposition of **3** was observed.

azoles.

FULL PAPER

used bases such as K_3PO_4 and Cs_2CO_3 showed unsatisfactory results (Table 3, entries 1 and 2). Probably, these bases are too strong and promote the formation of inactive anionic copper complexes **12**,^[17] thus effectively quenching the catalytic cycle (Scheme 5). Indeed, it was observed that the reaction of iodosteroid **3** with preformed indolylsodium instead of indole in the presence of 10 mol-% CuI and 20 mol-% DPM was suppressed almost completely.

Scheme 5. Plausible mechanism of the Cu-catalyzed C-N coupling.

Increasing the reaction temperature from 100 to 130 °C led to practically the same conversion but increased the amount of by-product **11** (Table 3, entry 8). Decreasing the reaction temperature to 80 °C lowered the conversion considerably (Table 3, entry 9). Thus, a temperature of 100 °C was accepted as optimal.

We investigated the coupling of 3 with various azoles under the developed conditions and the yields of isolated compounds are presented in Table 4. Despite the high conversion and rather good selectivity reached with DPM as ligand, the formation of by-product 11 significantly complicated chromatographic isolation of the coupling product 10a and, as a result, the isolated yield was only 55%. 5-Methoxyindole also gave a moderate yield of 10b (55%), whereas the reaction of 3 with 5-bromoindole was complicated by competing amination of 10c with 5-bromoindole. Thus, the reactivity of the C–I bond in 3 towards Cu-catalyzed amination is roughly comparable to that of the C–Br bond in 5-bromoindole. Coupling of 3 with indoles bearing electron-withdrawing substituents such as 3-formyl- and 4cyano-indole gave very low yields together with the formation of significant amounts of reductive dehalogenation product 11.

The amination of **3** proved to be very sensitive to steric effects exerted by the heterocycle. Thus, no coupling product was formed when 5-chloro-2-methylindole was used. Other azoles also gave lower yields with **3** than unsubstituted indole. For instance, pyrazole afforded 22% yield of the coupling product, whereas less than 10% yield of azolyl-steroid was detected in the reaction with more sterically demanding indazole. The coupling of **3** with imidazole, although giving moderate yield of azolylsteroid (52%), clearly showed that the reaction was in fact inhibited by imidazole itself. The conversion with 3 equiv. imidazole was much lower than that obtained under the standard conditions for which 1.2 equiv. was employed (31 vs. 65%). Not unexpectedly, no product was observed in the reaction with benzimidazole.

Table 4. Yields of amination products in the reaction of 3 with

[a] ¹H NMR yield in parentheses. [b] Amination of **10c** with 5bromoindole was also observed (22%). [c] Reaction time 48 h.

The developed procedure proved to be very efficient in coupling of less sterically hindered 3-iodosteroids 8 and 9, with various NH-heterocycles giving azolyl-substituted steroids 13 and 14 in good to excellent yields (Table 5). The yields with cholestane derivative 9 were consistently lower than with 8, reflecting significantly diminished solubility of this substrate in DMSO. The formation of reductive dehalogenation by-products was not observed at all, in contrast to the amination of substrate 3.

The dimethylamino group of gramine and the carbonyl group of 3-acetylindole were tolerated by this protocol (Table 5, entries 3 and 17). The presence of electron-withdrawing groups in azoles led to somewhat diminished yields, although the effect was not so catastrophic as for **3** even for substantially acidic azoles (entry 11). Carbazole (entries 6 and 18), 5-chloro-2-methylindole (entry 4), and 2-phenylindole (entry 5) did not exert enough steric hindrance to noticably impede coupling product formation. However, the combination of both steric bulk and increased acidity of azole was harmful to the coupling. Thus, only 46 and 13% yields were observed by ¹H NMR spectroscopic analysis in the reaction of 5-chloro-3-cyano-2-methylindole with **8** and **9**, respectively.

Coupling with ambident pyrazole and imidazole derivatives exclusively afforded vinylation of the less crowded ni-

Azolyl-Substituted Steroids

Table 5. Yields of amination products in the reaction of 8 and 9 with N-nucleophiles.

[a] ¹H NMR yield in parentheses. [b] Amination of 13h with 4-bromopyrazole was observed (10%).

trogen atom (Table 5, entries 7 and 11). The structures of the obtained products **13g** and **13l** were confirmed by 1D NOESY and ¹³C NMR spectroscopic data,^[18] respectively. The reaction of **8** with benzotriazole gave solely more stable isomer **13n**, whereas the coupling with indazole afforded a 9:1 mixture of isomeric 1- and 2-substituted indazoles **13i** and **13j**, respectively. The structures of the major and the minor products were determined by comparison of their ¹³C NMR spectra with data measured for 1- and 2-methylindazoles.^[19] A similar regioselectivity of the Cu-catalyzed indazole and benzotriazole arylation favoring the 1-substituted isomer has been reported.^[14b] Other nitrogen nucleophiles were also screened for coupling with iodosteroids under the same conditions. Although no coupling product was observed in the reaction of **9** with pyrrolidine, the suggested conditions appear to be applicable to the preparation of enamides. The reaction of **8** with pyrrolidin-2-one and acetanilide afforded the desired products **130** and **13p** in good yield (Table 5, entries 14 and 15). However, more acidic phthalimide failed to give any significant amount of product.

We are currently exploring the application of Cu-catalyzed couplings for attachment of other nucleophiles to the steroid core.

Pages: 11

FULL PAPER

Conclusions

We have developed a highly efficient procedure for the synthesis of azolyl-substituted steroids by utilizing a catalyst system comprising CuI and dipivaloylmethane. A number of nitrogen heterocycles could be used in the vinylation process, affording the corresponding coupling products in good to excellent yields. The protocol is also applicable for a limited number of secondary amides.

Experimental Section

General: NMR spectra were recorded with a Bruker Avance 400 and an Agilent 400MR spectrometer (¹H 400 MHz, ¹³C 100.6 MHz) at ambient temperature. Chemical shifts are presented in ppm (δ scale) and referenced to hexamethyldisiloxane (δ = 0.05 ppm) in the ¹H NMR spectra and to the solvent signal in the ¹³C NMR spectra. MALDI-TOF spectra were recorded with a Bruker Daltonics UltraFlex instrument in dithranol matrix. Elemental analyses were performed with an Elementar Vario MICRO cube apparatus. Column chromatography was carried out on Macherey–Nagel silica gel 60 (0.040–0.063 mm).

3-Methoxyandrosta-3,5-dien-17-one Hydrazone (2): A suspension of **1** (15.00 g, 49.9 mmol) in a mixture of 95% ethanol (104 mL), hydrazine hydrate (28.5 mL, 586 mmol), and triethylamine (25 mL) was heated to reflux for 2 h with stirring. The resulting solution was diluted with CH₂Cl₂, washed with water, dried with anhydrous Na₂SO₄ and evaporated in vacuo. The product was used in the next step for the synthesis of **3** without further purification, yield 15.49 g (99%); white solid; m.p. 133–134 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.22$ (m, 1 H, 6-CH), 5.12 (d, J = 1.5 Hz, 1 H, 4-CH), 4.75 (br. s, 2 H, NH₂), 3.56 (s, 3 H, OCH₃), 2.34–2.03 (m, 5 H), 1.95–1.64 (m, 6 H), 1.54–1.02 (m, 6 H), 0.98 (s, 3 H, 19-CH₃), 0.88 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 165.9$ (C(17)=NNH₂), 155.4 (*C*(3)OMe), 141.0 (5-C), 117.7 (6-CH), 98.4 (4-CH), 54.3, 54.1, 48.6, 43.9 (q), 35.3 (q), 34.1, 33.7, 31.2 (2 C), 25.2, 24.4, 23.3, 20.8, 18.9, 16.9 ppm.

17-Iodoandrosta-4,16-dien-3-one (3): Iodine (25.3 g, 99.7 mmol) was slowly added to a solution of 2 (15.49 g, 49.3 mmol) in a mixture of dioxane (300 mL) and triethylamine (66 mL). When gaseous products no longer evolved, the mixture was stirred for 30 min, treated with an aqueous solution of sodium sulfite, and extracted with CH₂Cl₂. The extract was washed with water, dried with anhydrous Na₂SO₄ and evaporated in vacuo. The residue was mixed with 95% ethanol (130 mL) and conc. HCl (1.05 mL) and heated to reflux for 2.5 h with stirring. The resulting solution was diluted with CH2Cl2, washed with water, dried with anhydrous Na2SO4 and evaporated in vacuo. The crude product was subjected to column chromatography on silica gel (CH₂Cl₂/Et₂O, 20:1) and then recrystallized from methanol, yield 13.27 g (68%); yellow needles; m.p. 169 °C (MeOH) (ref. 169 °C).^[9b] ¹H NMR (400 MHz, CDCl₃): δ = 6.12 (dd, J = 6.6, 1.8 Hz, 1 H, 16-CH), 5.73 (m, 1 H, 4-CH), 2.49–2.25 (m, 4 H), 2.16 (ddd, J = 14.9, 6.6, 3.3 Hz, 1 H), 2.05-1.93 (m, 2 H), 1.87 (m, 1 H), 1.81-1.60 (m, 4 H), 1.56-1.41 (m, 2 H), 1.29–0.94 (m, 3 H), 1.20 (s, 3 H, 19-CH₃), 0.77 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 199.3 (C(3)=O), 170.6 (5-C), 137.4 (16-CH), 124.0 (4-CH), 112.1 (17-CI), 54.0, 53.9, 49.8 (q), 38.6 (q), 35.9, 35.5, 34.6, 33.9, 33.6, 32.6, 31.3, 20.7, 17.1, 15.2 ppm.

17β-Hydroxyandrost-4-en-3-one Hydrazone (6):^[20] Obtained from **4** (3.391 g, 11.8 mmol) and hydrazine hydrate (6.7 mL, 140 mmol) ac-

cording to the procedure used for the synthesis of **2** without addition of triethylamine. The product was used in the next step for the synthesis of **8** without further purification, yield 3.520 g (99%); white foam. ¹H NMR (400 MHz, CDCl₃): δ = 5.75 (br. s, 1 H, 4-CH), 5.02 (br. s, 2 H, NH₂), 3.61 (t, *J* = 8.6 Hz, 1 H, 17-CHOH), 2.55 (m, 1 H), 2.42–0.71 (m, 19 H), 1.04 (s, 3 H, 19-CH₃), 0.76 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 151.7 (C(3)=NNH₂ or 5-C), 150.8 (C(3)=NNH₂ or 5-C), 121.0 (4-CH), 81.5 (17-CHOH), 53.7, 50.6, 42.7 (q), 37.5 (q), 36.5, 35.8, 34.8, 32.0, 31.7, 30.3, 23.3, 21.0, 18.8, 17.8, 11.0 ppm.

3-Iodoandrosta-3,5-dien-17β-ol (8): Iodine (6.9 g, 27 mmol) was slowly added to a solution of 6 (3.520 g, 11.6 mmol) in a mixture of dioxane (81 mL) and triethylamine (18 mL). When gaseous products no longer evolved, the mixture was stirred for 30 min, treated with an aqueous solution of sodium sulfite, and extracted with CH₂Cl₂. The extract was washed with water, dried with anhydrous Na₂SO₄ and evaporated in vacuo. The residue was subjected to column chromatography on silica gel (CH2Cl2) to afford an equimolar mixture of $\Delta^{3,5}$ - and $\Delta^{2,4}$ -iodosteroids (by ¹H NMR). The product mixture was dissolved in anhydrous CH2Cl2 (10 mL), trifluoromethanesulfonic acid (20 mg) was added, and the mixture was stirred for 24 h at room temp. Triethylamine (1 mL) was added, the mixture was diluted with CH₂Cl₂, washed with water, dried with anhydrous Na₂SO₄, and evaporated in vacuo. The residue was subjected to chromatography on silica gel (CH₂Cl₂) and then recrystallized from methanol, yield 2.60 g (56%); light-yellow crystals; m.p. 154–155 °C (MeOH) (ref. 155–157 °C).^[9a] ¹H NMR (400 MHz, CDCl₃): δ = 6.54 (br. s, 1 H, 4-CH), 5.35 (m, 1 H, 6-CH), 3.64 (t, J = 8.5 Hz, 1 H, 17-CHOH), 2.70-2.53 (m, 2 H), 2.22-2.00 (m, 2 H), 1.83 (m, 1 H), 1.74-1.22 (m, 10 H), 1.15-0.91 (m, 3 H), 0.96 (s, 3 H, 19-CH₃), 0.76 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 142.3 (5-C), 139.2 (4-CH), 124.3 (6-CH), 94.9 (3-CI), 81.8 (17-CHOH), 51.4, 48.2, 42.9 (q), 37.2, 36.4, 36.3, 34.3 (q), 31.6, 31.1, 30.5, 23.3, 20.6, 18.9, 11.0 ppm.

Cholest-4-en-3-one Hydrazone (7):^[21] Obtained from **5** (2.070 g, 5.20 mmol) and hydrazine hydrate (2.0 mL, 42 mmol) according to procedure used for the synthesis of **2** without addition of triethylamine. The product was used in the next step for the synthesis of **9** without further purification, yield 2.070 g (100%); white solid; m.p. 242–244 °C. ¹H NMR (400 MHz, CDCl₃): δ = 5.73 (br. s, 1 H, 4-CH), 4.99 (br. s, 2 H, NH₂), 2.59–2.49 (m, 2 H), 2.38–2.12 (m, 3 H), 2.05–0.76 (m, 23 H), 1.03 (s, 3 H, 19-CH₃), 0.89 (d, *J* = 6.3 Hz, 3 H, 21-CH₃), 0.850 [d, *J* = 6.6 Hz, 3 H, CH(*CH*₃)₂], 0.846 [d, *J* = 6.6 Hz, 3 H, CH(*CH*₃)₂], 0.846 [d, *J* = 6.6 Hz, 3 H, CH(*CH*₃)₂], 0.857 [d, *J* = 152.1 (C(3)=NNH₂ or 5-C), 150.9 (C(3)=NNH₂ or 5-C), 121.0 (4-CH), 56.2, 56.1, 53.7, 42.4 (q), 39.8, 39.5, 37.5 (q), 36.1, 35.9, 35.8, 34.8, 32.2 (2 C), 28.2, 28.0, 24.2, 23.8, 22.8, 22.6, 21.5, 18.9, 18.7, 17.8, 12.0 ppm.

3-Iodocholesta-3,5-diene (9): Obtained from **7** (2.000 g, 5.19 mmol) and iodine (2.667 g, 10.5 mmol) according to the procedure used for the synthesis of **8**. Eluent: hexanes, yield 1.085 g (42%); lightbrown solid; m.p. 86–88 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.53 (br. s, 1 H, 4-CH), 5.35 (m, 1 H, 6-CH), 2.70–2.52 (m, 2 H), 2.13 (m, 1 H), 2.00 (m, 1 H), 1.82 (m, 1 H), 1.72–0.62 (m, 21 H), 0.94 (s, 3 H, 19-CH₃), 0.90 (d, *J* = 6.4 Hz, 3 H, 21-CH₃), 0.850 [d, *J* = 6.6 Hz, 3 H, CH(CH₃)₂], 0.847 [d, *J* = 6.6 Hz, 3 H, CH(CH₃)₂], 0.68 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 142.3 (5-C), 139.3 (4-CH), 124.8 (6-CH), 94.8 (3-CI), 56.8, 56.1, 48.0, 42.4 (q), 39.6, 39.5, 37.3, 36.3, 36.2, 35.8, 34.2 (q), 31.6 (2 C), 28.2, 28.0, 24.1, 23.8, 22.8, 22.6, 21.0, 18.9, 18.7, 11.9 ppm. C₂₇H₄₃I (494.53): calcd. C 65.57, H 8.76; found C 65.52, H 8.63.

C-N Coupling of Iodosteroids and Azoles. General Procedure: In a vial with a screw cap, iodosteroid (0.150 mmol), azole

Pages: 11

Azolyl-Substituted Steroids

(0.180 mmol), anhydrous K_2CO_3 (41.5 mg, 0.300 mmol), CuI (2.9 mg, 15 µmol, 10 mol-%), and dipivaloylmethane (6.3 µL, 30 µmol, 20 mol-%) were mixed under an Ar atmosphere in DMSO (0.5 mL). The reaction mixture was stirred at 100 °C for 24 h, then diluted with CH₂Cl₂ (25 mL) and washed with water (5 × 25 mL). The organic layer was dried with anhydrous Na₂SO₄, and the solvents were evaporated in vacuo. The residue was purified by column chromatography.

17-(1H-Indol-1-yl)androsta-4,16-dien-3-one (10a): Eluent: hexanes/ EtOAc (4:1), yield 23.4 mg (55%); light-brown solid; m.p. 183-184 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.60 [d, J = 7.8 Hz, 1 H, 4- or 7-CH(indole)], 7.48 [d, J = 8.2 Hz, 1 H, 4- or 7-CH(indole)], 7.18 [m, 1 H, 5- or 6-CH(indole)], 7.14 [d, J = 3.3 Hz, 1 H, 2-CH(indole)], 7.10 [m, 1 H, 5- or 6-CH(indole)], 6.54 [d, J = 3.3 Hz, 1 H, 3-CH(indole)], 5.84 (dd, J = 2.9, 1.7 Hz, 1 H, 16-CH), 5.75 (br. s, 1 H, 4-CH), 2.51–2.28 (m, 5 H), 2.18 (ddd, J = 15.2, 11.2, 1.6 Hz, 1 H), 2.04–1.43 (m, 8 H), 1.31–1.02 (m, 3 H), 1.20 (s, 3 H, 19-CH₃), 0.99 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 199.3 (C(3)=O), 170.7 (5-C), 149.4 (17-C), 137.1 [7a-C(indole)], 128.4 [3a-C(indole)], 126.7, 124.1, 122.0, 121.6, 120.6, 120.0, 111.2 [7-CH(indole)], 102.5 [3-CH(indole)], 55.0, 54.1, 47.3 (q), 38.7 (q), 35.5, 34.8, 34.1, 33.9, 32.7, 31.3, 30.0, 20.7, 17.2, 16.0 ppm. C₂₇H₃₁NO (385.24): calcd. C 84.11, H 8.10, N 3.63; found C 84.17, H 8.29, N 3.70.

17-(5-Methoxy-1H-indol-1-yl)androsta-4,16-dien-3-one (10b): Eluent: hexanes/EtOAc (4:1), yield 34.2 mg (55%); white solid; m.p. 147–150 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.37 [d, J = 8.9 Hz, 1 H, 7-CH(indole)], 7.12 [d, J = 3.3 Hz, 1 H, 2-CH(indole)], 7.05 [d, J = 2.4 Hz, 1 H, 4-CH(indole)], 6.83 [dd, J = 8.9, 2.4 Hz, 1 H,6-CH(indole)], 6.46 [d, J = 3.3 Hz, 1 H, 3-CH(indole)], 5.80 (dd, J = 3.1, 1.7 Hz, 1 H, 16-CH), 5.75 (br. s, 1 H, 4-CH), 3.83 (s, 3 H, $CH_{3}O$, 2.51–2.28 (m, 4 H), 2.16 (ddd, J = 15.2, 11.2, 1.7 Hz, 1 H), 2.03-1.42 (m, 9 H), 1.27-1.03 (m, 3 H), 1.20 (s, 3 H, 19-CH₃), 1.00 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 199.3 (C(3)=O), 170.6 (5-C), 154.3 [5-C(indole)], 149.5 (17-C), 132.3 [7a-C(indole)], 128.8 [3a-C(indole)], 127.1 [2-CH(indole)], 124.1 (4-CH), 120.7 (16-CH), 112.2 [6- or 7-CH(indole)], 112.0 [6- or 7-CH(indole)], 102.3 [3- or 4-CH(indole)], 102.2 [3- or 4-CH(indole)], 55.8 (CH₃O), 55.0, 54.1, 47.2 (q), 38.7 (q), 35.6, 34.9, 34.1, 33.9, 32.7, 31.3, 29.9, 20.8, 17.2, 16.1 ppm. MALDI-TOF: m/z calcd. for C₂₈H₃₃NO₂ [M]⁺ 415.2511; found 415.2574.

17-(5-Bromo-1*H***-indol-1-yl)androsta-4,16-dien-3-one (10c):** Eluent: hexanes/EtOAc (4:1), yield 17.8 mg (26%); white solid; m.p. 187–188 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.71 [d, *J* = 1.5 Hz, 1 H, 4-CH(indole)], 7.33 [d, *J* = 8.8 Hz, 1 H, 7-CH(indole)], 7.24 [dd, *J* = 8.8, 1.5 Hz, 1 H, 6-CH(indole)], 7.13 [d, *J* = 3.0 Hz, 1 H, 2-CH(indole)], 6.48 [d, *J* = 3.0 Hz, 1 H, 3-CH(indole)], 5.82 (dd, *J* = 3.0, 1.5 Hz, 1 H, 16-CH), 5.75 (br. s, 1 H, 4-CH), 2.51–2.29 (m, 5 H), 2.18 (m, 1 H), 2.04–1.43 (m, 8 H), 1.27–1.04 (m, 3 H), 1.21 (s, 3 H, 19-CH₃), 0.98 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 199.3 (C(3)=O), 170.5 (5-C), 149.2 (17-C), 135.9 [7a-C(indole)], 130.1 [3a-C(indole)], 127.9, 124.9, 124.1, 123.1, 122.4, 113.2 [5-CBr(indole)], 112.6 [7-CH(indole)], 102.1 [3-CH(indole)], 55.1, 54.1, 47.3 (q), 38.7 (q), 35.6, 34.8, 34.1, 33.9, 32.6, 31.3, 30.0, 20.7, 17.2, 16.0 ppm. MALDI-TOF: *m/z* calcd. for C₂₇H₃₀BrNO [M]⁺ 463.1511; found 463.1535.

17-(1*H***-Imidazol-1-yl)androsta-4,16-dien-3-one (10d):** Eluent: CH₂Cl₂/MeOH (20:1), yield 26.2 mg (52%); light-brown solid; m.p. 168–171 °C (ref. 147–150 °C).^[2a] ¹H NMR (400 MHz, CDCl₃): δ = 7.67 [br. s, 1 H, CH(imidazole)], 7.15 [br. s, 2 H, CH(imidazole)], 5.74 (br. s, 1 H, 4-CH), 5.68 (dd, *J* = 3.3, 1.5 Hz, 1 H, 16-CH), 2.51–2.23 (m, 5 H), 2.11–1.46 (m, 9 H), 1.27–1.03 (m, 3 H), 1.22 (s,

3 H, 19-CH₃), 1.01 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 199.2 (C(3)=O), 170.2 (5-C), 148.6 (17-C), 137.0 [v. br., 2 C, CH(imidazole)], 129.7 [v. br., CH(imidazole)], 124.2 (4-CH), 118.9 (16-CH), 55.4, 53.9, 46.2 (q), 38.6 (q), 35.5, 34.6, 33.84, 33.82, 32.5, 31.2, 29.6, 20.7, 17.1, 15.9 ppm. MALDI-TOF: *m/z* calcd. for C₂₂H₂₉N₂O [M + H]⁺ 337.2280; found 337.2311.

3-(1H-Indol-1-yl)androsta-3,5-dien-17β-ol (13a): Eluent: CH₂Cl₂/ MeOH (100:1), yield 56.2 mg (97%); white solid; m.p. 153-155 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.60 [d, J = 7.8 Hz, 1 H, 4- or 7-CH(indole)], 7.52 [d, J = 8.3 Hz, 1 H, 4- or 7-CH(indole)], 7.22– 7.15 [m, 2 H, CH(indole)], 7.10 [t, J = 7.4 Hz, 1 H, 5- or 6-CH(indole)], 6.55 [dd, J = 3.3, 0.6 Hz, 1 H, 3-CH(indole)], 6.19 (br. s, 1 H, 4-CH), 5.50 (m, 1 H, 6-CH), 3.66 (t, J = 8.4 Hz, 1 H, 17-CHOH), 2.71-2.50 (m, 2 H), 2.24 (m, 1 H), 2.15-1.96 (m, 2 H), 1.87 (m, 1 H), 1.79–1.57 (m, 4 H), 1.54–0.98 (m, 8 H), 1.10 (s, 3 H, 19-CH₃), 0.80 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, $CDCl_3$): $\delta = 140.3$ (5-C), 135.6 [7a-C(indole)], 133.2 (3-C), 129.0 [3a-C(indole)], 126.3 (4-CH), 124.2 [2-CH(indole)], 121.94 [6-CH or 5-CH(indole)], 121.85 [6-CH or 5-CH(indole)], 120.9 [4-CH(indole)], 119.9 [6-CH(indole)], 111.4 [7-CH(indole)], 102.7 [3-CH(indole)], 81.8 (17-CHOH), 51.4, 48.2, 42.9 (q), 36.5, 35.0 (q), 33.9, 31.9, 31.5, 30.5, 26.4, 23.4, 20.8, 19.1, 11.1 ppm. C₂₇H₃₃NO (387.56): calcd. C 83.68, H 8.58, N 3.61; found C 83.60, H 8.56, N 3.61.

3-(3-Cyano-1*H***-indol-1-yl)androsta-3,5-dien-17β-ol (13b):** Eluent: CH₂Cl₂/MeOH (100:1), yield 50.7 mg (82%); white solid; m.p. 197-199 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.74 [dd, J = 6.8, 2.0 Hz, 1 H, 4- or 7-CH(indole)], 7.65 [s, 1 H, 2-CH(indole)], 7.50 [dd, J =6.6, 1.9 Hz, 1 H, 4- or 7-CH(indole)], 7.35-7.25 [m, 2 H, 5- and 6-CH(indole)], 6.21 (d, J = 1.6 Hz, 1 H, 4-CH), 5.59 (m, 1 H, 6-CH), 3.67 (t, J = 8.5 Hz, 1 H, 17-CHOH), 2.65 (m, 1 H, 2-CH^{β}), 2.47 (dd, J = 17.6, 4.9 Hz, 1 H, 2-CH^{α}), 2.26 (m, 1 H), 2.15–1.97 (m, 2 H), 1.88 (m, 1 H), 1.81-0.98 (m, 12 H), 1.09 (s, 3 H, 19-CH₃), 0.81 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 139.5 (5-C), 135.3 [7a-C(indole)], 133.5 [2-CH(indole)], 131.6 (3-C), 127.8 [3a-C(indole)], 127.0, 125.4, 124.1, 122.4, 119.9, 115.6 (C=N), 112.1 [7-CH(indole)], 87.1 [3-C(indole)], 81.7 (17-CHOH), 51.4, 48.2, 42.9 (q), 36.5, 34.9 (q), 33.8, 31.8, 31.6, 30.5, 26.4, 23.3, 20.8, 19.1, 11.1 ppm. MALDI-TOF: m/z calcd. for C28H32N2O [M]⁺ 412.2515; found 412.2542.

3-{3-[(Dimethylamino)methyl]-1H-indol-1-yl}androsta-3,5-dien-17βol (13c): Eluent: CH₂Cl₂/MeOH (10:1), yield 54.7 mg (82%); lightbrown solid; m.p. 208–210 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.63 [d, J = 7.8 Hz, 1 H, 4- or 7-CH(indole)], 7.52 [d, J = 8.2 Hz, 1 H, 4- or 7-CH(indole)], 7.31 [s, 1 H, 2-CH(indole)], 7.20 [t, J = 7.6 Hz, 1 H, 5- or 6-CH(indole)], 7.13 [t, J = 7.3 Hz, 1 H, 5- or 6-CH(indole)], 6.19 (m, 1 H, 4-CH), 5.50 (m, 1 H, 6-CH), 3.80 [br. s, 2 H, CH₂N(CH₃)₂], 3.66 (t, J = 8.5 Hz, 1 H, 17-CHOH), 2.71–2.51 (m, 2 H), 2.40 [br. s, 6 H, N(CH₃)₂], 2.24 (m, 1 H), 2.13-1.95 (m, 2 H), 1.87 (m, 1 H), 1.78-0.76 (m, 12 H), 1.09 (s, 3 H, 19-CH₃), 0.80 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 140.2 (5-C), 135.9 [7a-C(indole)], 132.8 (3-C), 128.8 [3a-C(indole)], 126.8, 124.4, 122.2, 122.0, 120.2, 119.0, 111.6 [7-CH(indole)], 81.7 (17-CHOH), 53.7 [CH₂N(CH₃)₂], 51.5, 48.2, 44.4 [2 C, N(CH₃)₂], 42.9 (q), 36.5, 35.0 (q), 33.9, 31.9, 31.6, 30.5, 26.4, 23.4, 20.8, 19.1, 11.1 ppm. MALDI-TOF: m/z calcd. for $C_{30}H_{41}N_2O$ [M + H]⁺ 445.3219; found 445.3207.

3-(5-Chloro-2-methyl-1*H***-indol-1-yl)androsta-3,5-dien-17β-ol (13d):** Eluent: CH₂Cl₂/MeOH (100:1), yield 65.0 mg (99%); white solid; m.p. 208–210 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.44 [d, *J* = 1.7 Hz, 1 H, 4-CH(indole)], 7.05 [d, *J* = 8.7 Hz, 1 H, 7-CH(indole)], 7.01 [dd, *J* = 8.7, 1.7 Hz, 1 H, 6-CH(indole)], 6.20 [s, 1 H, 3-CH(in-

Pages: 11

FULL PAPER

dole)], 6.05 (d, J = 2.0 Hz, 1 H, 4-CH), 5.54 (m, 1 H, 6-CH), 3.67 (t, J = 8.5 Hz, 1 H, 17-CHOH), 2.50–2.38 (m, 1 H), 2.32 (br. s, 3 H, CH₃), 2.30–2.19 (m, 2 H), 2.09 (m, 1 H), 1.97 (m, 1 H), 1.87 (m, 1 H), 1.79–0.99 (m, 12 H), 1.11 (s, 3 H, 19-CH₃), 0.81 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 140.1$ (5-C), 138.1 [7a-C(indole)], 135.6 [2-CMe(indole)], 131.9 (3-C), 129.7 (4-CH), 129.2 [3a-C(indole)], 126.4 (6-CH), 125.1 [5-CCl(indole)], 120.8 [4-CH(indole)], 118.9 [6-CH(indole)], 110.8 [7-CH(indole)], 100.0 [3-CH(indole)], 81.8 (17-CHOH), 51.4, 48.2, 42.9 (q), 36.5, 34.8 (q), 34.0, 31.9, 31.5, 30.5, 26.7, 23.4, 20.8, 19.1, 12.9, 11.1 ppm. C₂₈H₃₄CINO (436.03): calcd. C 77.13, H 7.86, N 3.21; found C 76.98, H 7.94, N 3.30.

3-(2-Phenyl-1*H***-indol-1-yl)androsta-3,5-dien-17β-ol** (13e): Eluent: CH₂Cl₂/MeOH (100:1), yield 62.7 mg (90%); white solid; m.p. 198-199 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.60 [d, J = 7.3 Hz, 3 H, 2,6-CH(Ph), 4- or 7-CH(indole)], 7.41-7.33 [m, 3 H, 3,5-CH(Ph), 4- or 7-CH(indole)], 7.29 [t, J = 7.2 Hz, 1 H, 4-CH(Ph)], 7.17 [t, J = 7.2 Hz, 1 H, 5- or 6-CH(indole)], 7.11 [t, J = 7.3 Hz, 1 H, 5- or 6-CH(indole)], 6.67 [s, 1 H, 3-CH(indole)], 6.32 (br. s, 1 H, 4-CH), 5.55 (m, 1 H, 6-CH), 3.64 (t, J = 8.4 Hz, 1 H, 17-CHOH), 2.25 (m, 1 H), 2.16-2.00 (m, 2 H), 1.94-0.90 (m, 15 H), 0.99 (s, 3 H, 19-CH₃), 0.77 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 140.5$ (5-C), 139.8 (q), 138.4 (q), 133.4 (q), 133.3 (q), 128.6, 128.4 [2 C, CH(Ph)], 128.2 (q), 127.8 [2 C, CH(Ph)], 127.5, 125.3, 121.9, 120.4, 120.3, 110.6 [7-CH(indole)], 102.9 [3-CH(indole)], 81.8 (17-CHOH), 51.4, 48.0, 42.8 (q), 36.5, 34.8 (q), 33.9, 31.8, 31.5, 30.4, 27.0, 23.3, 20.7, 19.1, 11.0 ppm. C₃₃H₃₇NO (463.65): calcd. C 85.48, H 8.04, N 3.02; found C 85.07, H 8.17, N 2.73.

3-(9H-Carbazol-9-yl)androsta-3,5-dien-17β-ol (13f): Eluent: CH₂Cl₂/MeOH (100:1), yield 60.5 mg (92%); white solid; m.p. 268-269 °C. ¹H NMR (400 MHz, CDCl₃ + [D₆]DMSO): δ = 8.06 [d, J = 7.7 Hz, 2 H, 4,5-CH(carbazole)], 7.39 [m, 2 H, 2,7-CH(carbazole)], 7.34 [d, J = 8.0 Hz, 2 H, 1,8-CH(carbazole)], 7.20 [m, 2 H, 3,6-CH(carbazole)], 6.24 (m, 1 H, 4-CH), 5.58 (m, 1 H, 6-CH), 4.24 (br. s, 1 H, OH), 3.56 (m, 1 H, 17-CHOH), 2.61-2.39 (m, 2 H), 2.25 (m, 1 H), 2.07–1.84 (m, 3 H), 1.81–0.97 (m, 11 H), 1.19 (s, 3 H, 19-CH₃), 0.78 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃) + $[D_6]DMSO$): δ = 138.7 [2 C, 8a,9a-C(carbazole)], 138.5 (5-C), 129.8 (3-C), 127.5 (4-CH), 124.6 (6-CH), 124.3 [2 C, 2,7-CH(carbazole)], 121.2 [2 C, 4a,4b-C(carbazole)], 118.6 [2 C, CH(carbazole)], 117.9 [2 C, CH(carbazole)], 108.4 [2 C, 1,8-CH(carbazole)], 79.0 (17-CHOH), 49.8, 46.6, 41.3 (q), 35.1, 33.3 (q), 32.3, 30.2, 30.0, 28.6, 23.4, 21.8, 19.2, 17.6, 9.9 ppm. C₃₁H₃₅NO (437.62): calcd. C 85.08, H 8.06, N 3.20; found C 85.29, H 8.20, N 3.17.

3-(3-Nitro-1*H***-pyrazol-1-yl)androsta-3,5-dien-17β-ol (13g):** Eluent: CH₂Cl₂/MeOH (50:1), yield 51.7 mg (90%); yellow solid; m.p. 208– 209 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.73 [d, J = 2.6 Hz, 1 H, 5-CH(pyrazole)], 6.96 [d, J = 2.6 Hz, 1 H, 4-CH(pyrazole)], 6.52 (d, J = 1.9 Hz, 1 H, 4-CH), 5.67 (m, 1 H, 6-CH), 3.66 (t, J = 8.5 Hz, 1 H, 17-CHOH), 2.80 (dd, J = 17.7, 5.0 Hz, 1 H, 2-CH^a), 2.63 (m, 1 H, 2-CH^β), 2.27 (m, 1 H), 2.13–1.99 (m, 2 H), 1.87 (m, 1 H), 1.78–0.98 (m, 12 H), 1.00 (s, 3 H, 19-CH₃), 0.79 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 156.0 [3-C(pyrazole)], 139.2 (5-C), 132.8 (3-C), 128.3, 128.0, 119.1, 103.5 [4-CH(pyrazole)], 81.7 (17-CHOH), 51.4, 48.0, 42.8 (q), 36.4, 34.9 (q), 33.2, 31.7, 31.7, 30.4, 23.3, 23.0, 20.7, 18.9, 11.0 ppm. MALDI-TOF: *m/z* calcd. for C₂₂H₂₉N₃O₃ [M]⁺ 383.2209; found 383.2275.

3-(4-Bromo-1*H***-pyrazol-1-yl)androsta-3,5-dien-17β-ol (13h):** Eluent: CH₂Cl₂/MeOH (100:1), yield 41.4 mg (66%); white solid; m.p. 204–206 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.67 [br. s, 1 H, CH(pyrazole)], 7.53 [br. s, 1 H, CH(pyrazole)], 6.36 (d, *J* = 1.5 Hz, 1 H, 4-CH), 5.55 (m, 1 H, 6-CH), 3.65 (t, *J* = 8.5 Hz, 1 H, 17-CHOH),

2.73 (dd, J = 17.6, 4.9 Hz, 1 H, 2-CH^a), 2.56 (m, 1 H, 2-CH^β), 2.23 (m, 1 H), 2.13–1.95 (m, 2 H), 1.86 (m, 1 H), 1.77–0.96 (m, 12 H), 0.99 (s, 3 H, 19-CH₃), 0.78 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 140.4$ [CH(pyrazole)], 139.6 (5-C), 133.1 (3-C), 126.1, 125.6, 115.6, 94.4 [4-CBr(pyrazole)], 81.8 (17-CHOH), 51.4, 48.1, 42.9 (q), 36.5, 35.0 (q), 33.4, 31.8, 31.6, 30.5, 23.3, 23.0, 20.8, 19.0, 11.1 ppm. MALDI-TOF: *m/z* calcd. for C₂₂H₃₀BrN₂O [M + H]⁺ 417.1542; found 417.1544.

3-(1*H*-Indazol-1-yl)androsta-3,5-dien-17 β -ol (13i) and 3-(2*H*-Indazol-2-yl)androsta-3,5-dien-17 β -ol (13j): Eluent: CH₂Cl₂/MeOH (100:1). According to ¹H NMR, a 9:1 inseparable mixture of isomers 13i and 13j was obtained, yield 58.2 mg (100%); white solid; m.p. 146–151 °C.

3-(1*H***-indazol-1-yl)androsta-3,5-dien-17β-ol (13i, major isomer):** ¹H NMR (400 MHz, CDCl₃): $\delta = 8.07$ [s, 1 H, 3-CH(indazole)], 7.72 [d, *J* = 8.1 Hz, 1 H, 4- or 7-CH(indazole)], 7.69 [d, *J* = 8.6 Hz, 1 H, 4- or 7-CH(indazole)], 7.37 [t, *J* = 8.1 Hz, 1 H, 5- or 6-CH(indazole)], 7.16 [t, *J* = 7.5 Hz, 1 H, 5- or 6-CH(indazole)], 6.31 (d, *J* = 1.9 Hz, 1 H, 4-CH), 5.54 (m, 1 H, 6-CH), 3.67 (t, *J* = 8.5 Hz, 1 H, 17-CHOH), 3.00 (dd, *J* = 18.2, 5.1 Hz, 1 H), 2.70 (m, 1 H), 2.25 (m, 1 H), 2.14–1.99 (m, 2 H), 1.87 (m, 1 H), 1.79–1.57 (m, 4 H), 1.55–0.99 (m, 8 H), 1.10 (s, 3 H, 19-CH₃), 0.80 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 140.3$ (5-C), 138.6 [7a-C(indazole)], 134.5 (3-C), 134.3 [CH(indazole)], 126.6 (4-CH), 124.9 [3a-C(indazole)], 124.5 (6-CH), 121.2 [CH(indazole)], 121.1 [CH(indazole)], 119.1 [CH(indazole)], 111.4 [CH(indazole)], 81.8 (17-CHOH), 51.5, 48.2, 42.9 (q), 36.5, 35.1 (q), 33.7, 31.9, 31.6, 30.5, 25.1, 23.4, 20.8, 19.1, 11.1 ppm.

3-(2*H***-indazol-2-yl)androsta-3,5-dien-17β-ol (13j, minor isomer):** ¹H NMR (400 MHz, CDCl₃): δ (main signals) = 8.15 [s, 1 H, 3-CH(indazole)], 7.62 [d, J = 8.5 Hz, 1 H, 4- or 7-CH(indazole)], 7.69 [d, J = 8.3 Hz, 1 H, 4- or 7-CH(indazole)], 7.26 [dd, J = 8.6, 6.9 Hz, 1 H, 5- or 6-CH(indazole)], 7.04 [dd, J = 8.0, 7.0 Hz, 1 H, 5- or 6-CH(indazole)], 6.78 (br. s, 1 H, 4-CH), 5.68 (m, 1 H, 6-CH), 3.67 (t, J = 8.5 Hz, 1 H, 17-CHOH), 2.94 (dd, J = 17.7, 5.2 Hz, 1 H), 2.79 (m, 1 H), 1.05 (s, 3 H, 19-CH₃), 0.79 (s, 3 H, 18-CH₃) ppm. C₂₆H₃₂N₂O (388.55): calcd. C 80.37, H 8.30, N 7.21; found C 80.18, H 8.34, N 7.39.

3-(1H-Imidazol-1-yl)androsta-3,5-dien-17β-ol (13k): Eluent: CH₂Cl₂/MeOH (20:1), yield 48.1 mg (95%); white solid; m.p. 224-225 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.01 [br. s, 1 H, CH(imidazole)], 7.56 [br. s, 1 H, CH(imidazole)], 7.00 [br. s, 1 H, CH(imidazole)], 6.28 (br. s, 1 H, 4-CH), 5.53 (m, 1 H, 6-CH), 4.46 [d, J = 4.6 Hz, 1 H, OH], 3.45 (m, 1 H, 17-CHOH), 2.67-2.51 (m, 14-2), 2.51 (m, 14-2),2 H), 2.17 (m, 1 H), 1.99-0.99 (m, 14 H), 0.94 (s, 3 H, 19-CH₃), 0.67 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): δ = 139.5 (5-C), 134.6 [2-CH(imidazole)], 130.6 (3-C), 129.1 [5-CH(imidazole)], 124.5 (4-CH), 116.6 [4-CH(imidazole)], 115.4 (6-CH), 79.9 (17-CHOH), 51.0, 47.8, 42.4 (q), 36.3, 34.3 (q), 32.9, 31.4, 31.1, 29.8, 23.6, 23.0, 20.4, 18.7, 11.3 ppm. C₂₂H₃₀N₂O (338.49): calcd. C 78.06, H 8.93, N 8.28; found C 78.14, H 8.80, N 8.11.

3-(2-Methyl-4-nitro-1*H***-imidazol-1-yl)androsta-3,5-dien-17β-ol (13):** Eluent: CH₂Cl₂/MeOH (50:1), yield 32.3 mg (54%); white solid; m.p. > 300 °C. ¹H NMR (400 MHz, CDCl₃ + CD₃OD): δ = 7.72 [br. s, 1 H, 5-CH(imidazole)], 6.07 (d, *J* = 1.6 Hz, 1 H, 4-CH), 5.66 (m, 1 H, 6-CH), 3.65 (t, *J* = 8.6 Hz, 1 H, 17-CHOH), 2.55 (m, 1 H, 2-CH^β), 2.38 (br. s, 3 H, CH₃), 2.34–2.19 (m, 3 H), 2.12–1.97 (m, 2 H), 1.88 (m, 1 H), 1.78–1.57 (m, 4 H), 1.54–0.98 (m, 7 H), 1.03 (s, 3 H, 19-CH₃), 0.80 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃ + CD₃OD): δ = 146.5 [2- or 4-C(imidazole)], 144.6 [2- or 4-C(imidazole)], 138.7 (5-C), 129.9 (3-C), 129.3 (4- or 6-CH), 128.5

8

Pages: 11

Azolyl-Substituted Steroids

(4- or 6-CH), 119.5 [5-CH(imidazole)], 81.4 (17-CHOH), 51.3, 47.9, 42.8 (q), 36.3, 34.6 (q), 33.5, 31.6, 31.5, 30.1, 26.8, 23.2, 20.7, 18.9, 13.6 [CH₃C(imidazole)], 11.0 ppm. MALDI-TOF: m/z calcd. for C₂₃H₃₂N₃O₃ [M + H]⁺ 398.2444; found 398.2452.

3-(1*H***-Benzimidazol-1-yl)androsta-3,5-dien-17β-ol (13m):** Eluent: CH₂Cl₂/MeOH (20:1), yield 55.0 mg (94%); white solid; m.p. 245– 247 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.11 [br. s, 1 H, 2-CH(benzimidazole)], 7.85 [br. s, 1 H, 4-CH(benzimidazole)], 7.60 [br. s, 1 H, 7-CH(benzimidazole)], 7.27 [m, 2 H, 5- and 6-CH(benzimidazole)], 6.23 (d, J = 1.5 Hz, 1 H, 4-CH), 5.59 (m, 1 H, 6-CH), 3.66 (t, J = 8.5 Hz, 1 H, 17-CHOH), 2.70 (m, 1 H, 2-CH^{β}), 2.56 (dd, J = 17.9, 5.1 Hz, 1 H, 2-CH^{α}), 2.32–1.98 (m, 4 H), 1.89 (m, 1 H), 1.79-1.41 (m, 7 H), 1.32 (qd, J = 12.1, 5.9 Hz, 1 H), 1.19-0.98 (m, 3 H), 1.09 (s, 3 H, 19-CH₃), 0.81 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 141.8 [v. br., 2- and 3a-C(benzimidazole)] 139.6 (5-C), 135.1 [v. br., 7a-C(benzimidazole)], 130.4 (3-C), 126.4 (6-CH), 123.3 [5- or 6-CH(benzimidazole)], 123.2 [5or 6-CH(benzimidazole)], 122.3 (4-CH), 120.4 [4-CH(benzimidazole)], 111.5 [br., 7-CH(benzimidazole)], 81.6 (17-CHOH), 51.4, 48.2, 42.9 (q), 36.5, 34.9 (q), 33.7, 31.8, 31.5, 30.4, 26.1, 23.3, 20.7, 19.0, 11.1 ppm. MALDI-TOF: m/z calcd. for C₂₆H₃₃N₂O $[M + H]^+$ 389.2593; found 389.2582.

3-(1H-1,2,3-Benzotriazol-1-yl)androsta-3,5-dien-17B-ol (13n): Eluent: CH₂Cl₂/MeOH (100:1), yield 52.0 mg (89%); white solid; m.p. 202–204 °C. ¹H NMR (400 MHz, CDCl₃ + [D₆]DMSO): δ = 8.07 [d, J = 7.8 Hz, 1 H, 4-CH(benzotriazole)], 7.72 [d, J = 7.8 Hz, 1 H, 1 H]7-CH(benzotriazole)], 7.48 [t, J = 7.8 Hz, 1 H, 5- or 6-CH(benzotriazole)], 7.36 [t, J = 7.8 Hz, 1 H, 5- or 6-CH(benzotriazole)], 6.43 (br. s, 1 H, 4-CH), 5.65 (m, 1 H, 6-CH), 3.66 (t, J = 8.5 Hz, 1 H, 17-CHOH), 3.08 (dd, J = 18.4, 4.9 Hz, 1 H, 2-CH^{α}), 2.86 (m, 1 H, 2-CH^β), 2.28 (m, 1 H), 2.15–1.42 (m, 11 H), 1.32 (m, 1 H), 1.20– 0.98 (m, 3 H), 1.11 (s, 3 H, 19-CH₃), 0.81 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃ + [D₆]DMSO): δ = 146.4 [3a-C(benzotriazole)], 139.6 (5-C), 132.2 (3-C), 132.0 [7a-C(benzotriazole)], 127.6, 127.1, 124.1, 121.0, 120.0, 111.2 [7-CH(benzotriazole)], 81.6 (17-CHOH), 51.4, 48.1, 42.8 (q), 36.5, 35.0 (q), 33.5, 31.8, 31.6, 30.4, 25.0, 23.3, 20.7, 19.0, 11.0 ppm. MALDI-TOF: m/z calcd. for C₂₅H₃₂N₃O [M + H]⁺ 390.2545; found 390.2454.

3-(2-Oxopyrrolidin-1-yl)androsta-3,5-dien-17β-ol (130): Eluent: CH₂Cl₂/MeOH (20:1), yield 39.0 mg (73%); white solid; m.p. 214– 217 °C. ¹H NMR (400 MHz, CDCl₃): δ = 5.65 (d, *J* = 1.4 Hz, 1 H, 4-CH), 5.35 (m, 1 H, 6-CH), 3.68–3.51 (m, 3 H, 17-CHOH, CH₂N), 2.81–2.63 (m, 2 H, 2-CH₂), 2.46 [t, *J* = 8.0 Hz, 2 H, CH₂C(O)], 2.18 (m, 1 H), 2.11–1.97 (m, 3 H), 1.90–1.81 (m, 2 H), 1.74–0.94 (m, 12 H), 0.97 (s, 3 H, 19-CH₃), 0.77 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 174.1 (C=O), 140.7 (5-C), 135.2 (3-C), 122.4 (6-CH), 114.5 (4-CH), 81.8 (17-CHOH), 51.5, 48.5 (CH₂N), 48.3, 42.9 (q), 36.5, 34.6 (q), 33.9, 32.9 [CH₂C(O)], 31.8, 31.5, 30.5, 24.2, 23.3, 20.7, 18.9, 18.0 [4-CH₂(pyrrolidine)], 11.0 ppm. MALDI-TOF: *m/z* calcd. for C₂₃H₃₄NO₂ [M + H]⁺ 356.2590; found 356.2490.

3-[Acetyl(phenyl)amino]androsta-3,5-dien-17β-ol (13p): Eluent: CH₂Cl₂/MeOH (50:1), yield 36.6 mg (60%); white solid; m.p. 237– 238 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.43–7.10 [m, 5 H, CH(Ph)], 6.03 (br. s, 1 H, 4-CH), 5.53 (br. s, 1 H, 6-CH), 3.64 (t, *J* = 8.4 Hz, 1 H, 17-CHOH), 2.21 [br. s, 3 H, CH₃C(O)], 2.15–0.90 (m, 18 H), 0.95 (s, 3 H, 19-CH₃), 0.77 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 170.0 (C=O), 140.4 (5-C), 129.0 (br.), 126.1 (v. br.), 81.8 (17-CHOH), 51.5, 48.1, 42.9 (q), 36.5, 34.7 (q), 33.9, 31.8, 31.5, 30.5, 25.4, 23.3 (2 C), 20.8, 19.0, 11.1 ppm [3-C, 1-C(Ph) and 5-C ¹³C NMR signals were not observed due to signal broadness]. MALDI-TOF: m/z calcd. for C₂₇H₃₆NO₂ [M + H]⁺ 406.2746; found 406.2723.

3-(1H-Indol-1-yl)cholesta-3,5-diene (14a): Eluent: hexanes, yield 48.5 mg (67%); white solid; m.p. 144–145 °C. ¹H NMR (400 MHz, $CDCl_3$): $\delta = 7.60 [d, J = 7.8 Hz, 1 H, 4- or 7-CH(indole)], 7.52 [d,$ J = 8.2 Hz, 1 H, 4- or 7-CH(indole)], 7.22-7.14 [m, 2 H, CH(indole)], 7.09 [t, J = 7.5 Hz, 1 H, 5- or 6-CH(indole)], 6.54 [d, J =3.2 Hz, 1 H, 3-CH(indole)], 6.18 (br. s, 1 H, 4-CH), 5.50 (m, 1 H, 6-CH), 2.69–2.48 (m, 2 H), 2.22 (m, 1 H), 2.09–1.93 (m, 2 H), 1.84 (m, 1 H), 1.77–0.96 (m, 20 H), 1.08 (s, 3 H, 19-CH₃), 0.92 (d, J =6.6 Hz, 3 H, 21-CH₃), 0.859 [d, J = 6.6 Hz, 3 H, CH(CH₃)₂], 0.856 [d, J = 6.6 Hz, 3 H, CH(CH₃)₂], 0.72 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 140.2 (5-C), 135.6 [7a-C(indole)], 133.1 (3-C), 129.0 [3a-C(indole)], 126.3 (4-CH), 124.7 [2-CH(indole)], 122.1 [6-CH or 5-CH(indole)], 121.8 [6-CH or 5-CH(indole)], 120.9 [4-CH(indole)], 119.9 [6-CH(indole)], 111.4 [7-CH(indole)], 102.6 [3-CH(indole)], 56.9, 56.1, 48.1, 42.5 (q), 39.7, 39.5, 36.2, 35.8, 34.9 (q), 33.9, 32.0, 31.8, 28.2, 28.0, 26.4, 24.2, 23.8, 22.8, 22.6, 21.2, 19.1, 18.7, 12.0 ppm. C₃₅H₄₉N (483.77): calcd. C 86.90, H 10.21, N 2.90; found C 86.69, H 10.09, N 2.77.

3-(3-Acetyl-1*H*-indol-1-yl)cholesta-3,5-diene (14b): Eluent: CH₂Cl₂, yield 44.2 mg (56%); white solid; m.p. 186–187 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.38 [m, 1 H, CH(indole)], 7.79 [s, 1 H, 2-CH(indole)], 7.45 [m, 1 H, CH(indole)], 7.31-7.21 [m, 2 H, CH(indole)], 6.23 (s, 1 H, 4-CH), 5.59 (m, 1 H, 6-CH), 2.74–2.46 (m, 2 H), 2.53 [s, 3 H, CH₃C(O)], 2.25 (m, 1 H), 2.09–1.96 (m, 2 H), 1.85 (m, 1 H), 1.79–0.96 (m, 20 H), 1.10 (s, 3 H, 19-CH₃), 0.93 (d, J =6.4 Hz, 3 H, 21-CH₃), 0.862 [d, J = 6.6 Hz, 3 H, CH(CH₃)₂], 0.857 [d, J = 6.6 Hz, 3 H, CH(CH₃)₂], 0.73 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (APT) (100.6 MHz, CDCl₃): δ = 193.1 (C=O), 139.6 (5-C), 136.8 [7a-C(indole)], 133.5 (CH), 132.0 (3-C), 127.0 (CH), 126.4 [3a-C(indole)], 125.3 (CH), 123.5 (CH), 122.8 (CH), 122.6 (CH), 117.8 [3-C(indole)], 111.4 [7-CH(indole)], 56.8 (CH), 56.1 (CH), 48.1 (CH), 42.5 (q), 39.7 (CH₂), 39.5 (CH₂), 36.2 (CH₂), 35.8 (CH), 34.9 (q), 33.8 (CH₂), 32.0 (CH₂), 31.8 (CH), 28.2 (CH₂), 28.0 (CH), 27.7 [CH₃C(O)], 26.5 (CH₂), 24.2 (CH₂), 23.8 (CH₂), 22.8 [CH(CH₃)₂], 22.6 [CH(CH₃)₂], 21.2 (CH₂), 19.1 (19-CH₃), 18.7 (21-CH₃), 12.0 (18-CH₃) ppm. $C_{37}H_{51}NO$ (525.81): calcd. C 84.52, H 9.78, N 2.66; found C 84.84, H 9.89, N 2.58.

3-(9H-Carbazol-9-yl)cholesta-3,5-diene (14c): Eluent: hexanes/ EtOAc (50:1), yield 65.4 mg (82%); white solid; m.p. 148-151 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.06 [d, J = 7.7 Hz, 2 H, 4,5-CH(carbazole)], 7.39 [m, 2 H, 2,7-CH(carbazole)], 7.34 [d, J = 7.8 Hz, 2 H, 1,8-CH(carbazole)], 7.20 [m, 2 H, 3,6-CH(carbazole)], 6.26 (m, 1 H, 4-CH), 5.55 (m, 1 H, 6-CH), 2.60-2.42 (m, 2 H), 2.23 (m, 1 H), 2.09–1.94 (m, 2 H), 1.84 (m, 1 H), 1.78–0.97 (m, 20 H), 1.17 (s, 3 H, 19-CH₃), 0.92 (d, J = 6.6 Hz, 3 H, 21-CH₃), 0.863 [d, J = 6.6 Hz, 3 H, CH(CH₃)₂], 0.859 [d, J = 6.6 Hz, 3 H, CH(CH₃)₂], 0.73 (s, 3 H, 18-CH₃) ppm. ¹³C NMR (100.6 MHz, $CDCl_3$): $\delta = 140.5 [2 C, 8a, 9a-C(carbazole)], 140.3 (5-C), 131.7 (3-$ C), 129.1 (4-CH), 126.2 (6-CH), 125.6 [2 C, 2,7-CH(carbazole)], 123.1 [2 C, 4a,4b-C(carbazole)], 120.2 [2 C, CH(carbazole)], 119.3 [2 C, CH(carbazole)], 109.9 [2 C, 1,8-CH(carbazole)], 56.9, 56.1, 48.2, 42.5 (q), 39.7, 39.5, 36.2, 35.8, 34.9 (q), 34.0, 32.0, 31.8, 28.2, 28.0, 25.0, 24.2, 23.8, 22.8, 22.6, 21.2, 19.2, 18.7, 12.0 ppm. C₃₉H₅₁N (533.83): calcd. C 87.75, H 9.63, N 2.62; found C 87.74, H 9.73, N 2.43.

Supporting Information (see footnote on the first page of this article): Copies of the ¹H and ¹³C NMR spectra for compounds 2, 3, 7–9, 10a–d, 13a–p and 14a–c.

FULL PAPER

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grant number 11-03-00265-a) and M. V. Lomonosov Moscow State University Program of Development.

- a) J. R. Hanson, Nat. Prod. Rep. 2007, 24, 1342–1349; b) J. R. Hanson, Nat. Prod. Rep. 2010, 27, 887–899.
- [2] a) V. C. O. Njar, K. Kato, I. P. Nnane, D. N. Grigoryev, B. J. Long, A. M. H. Brodie, *J. Med. Chem.* **1998**, *41*, 902–912; b) V. D. Handratta, T. S. Vasaitis, V. C. Njar, L. K. Gediya, R. Kataria, P. Chopra, D. Newman Jr., R. Farquhar, Z. Guo, Y. Qiu, A. M. Brodie, *J. Med. Chem.* **2005**, *48*, 2972–2984; c) E. Bastona, F. R. Leroux, *Recent Pat. Anti-Cancer Drug Discovery* **2007**, *2*, 31–58.
- [3] For reviews on the application of transition-metal catalysis in steroid chemistry, see: a) R. Skoda-Földes, L. Kollár, *Chem. Rev.* 2003, 103, 4095–4130; b) M. Kotora, F. Hessler, B. Eignerová, *Eur. J. Org. Chem.* 2012, 29–42.
- [4] a) N. V. Lukashev, G. V. Latyshev, P. A. Donez, G. A. Skryabin, I. P. Beletskaya, *Synthesis* **2005**, 1578–1580; b) N. V. Lukashev, G. V. Latyshev, P. A. Donez, G. A. Skryabin, I. P. Beletskaya, *Synthesis* **2006**, 533–539.
- [5] a) C. Jin, J. P. Burgess, J. A. Kepler, C. E. Cook, Org. Lett.
 2007, 9, 1887–1890; b) F. U. Rahman, A. U. Rahman, T. W. Tan, J. Chin. Chem. Soc. 2010, 57, 1237–1242.
- [6] For reviews on Cu-catalyzed Ullmann-type coupling, see: a)
 I. P. Beletskaya, A. V. Cheprakov, *Coord. Chem. Rev.* 2004, 248, 2337–2364; b) G. Evano, N. Blanchard, M. Toumi, *Chem. Rev.* 2008, 108, 3054–3131; c) F. Monnier, M. Taillefer, *Angew. Chem.* 2009, 121, 7088; *Angew. Chem. Int. Ed.* 2009, 48, 6954–6971.
- [7] For a recent review on Pd- and Cu-catalyzed amination, see: I. P. Beletskaya, A. V. Cheprakov, *Organometallics* 2012, 31, 7753–7808.
- [8] V. M. Moreira, J. A. Salvador, A. M. Beja, J. A. Paixão, *Steroids* 2011, 76, 582–587.
- [9] a) G. V. Latyshev, N. V. Lukashev, I. P. Beletskaya, *Russ. J. Org. Chem.* 2007, 43, 933–935; b) G. V. Latyshev, N. V. Lukashev, I. P. Beletskaya, *Russ. J. Org. Chem.* 2008, 44, 785–790.
- [10] H. R. Barton, G. Bashiardes, J. Fourrey, *Tetrahedron* **1988**, *44*, 147–162.
- [11] a) J. F. Hartwig, Angew. Chem. 1998, 110, 2154; Angew. Chem. Int. Ed. 1998, 37, 2046–2067; b) J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 2000, 65, 1144–1157.
- [12] For selected examples of ligand-free protocols, see: a) F. Bellina, C. Calandri, S. Cauteruccio, R. Rossi, *Eur. J. Org.*

Chem. **2007**, 2147–2151; b) E. Sperotto, J. G. de Vries, G. P. M. van Klink, G. van Koten, *Tetrahedron Lett.* **2007**, *48*, 7366–7370; c) Z. L. Xu, H. X. Li, Z. G. Ren, W. Y. Du, W. C. Xu, J. P. Lang, *Tetrahedron* **2011**, *67*, 5282–5288; d) Q. Yang, Y. Wang, B. Zhang, M. Zhang, *Chin. J. Chem.* **2012**, *30*, 2389–2393; e) Q. Yang, Y. Wang, D. Lin, M. Zhang, *Tetrahedron Lett.* **2013**, *54*, 1994–1997.

- [13] a) A. K. Verma, J. Singh, R. C. Larock, *Tetrahedron* 2009, 65, 8434–8439; b) H. Wang, Y. Li, L. Jiang, R. Zhang, K. Jin, D. Zhao, C. Duan, *Org. Biomol. Chem.* 2011, 9, 4983–4986.
- [14] For selected examples of N,N ligands, see: a) J. C. Antilla, A. Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 11684–11688; b) J. C. Antilla, J. M. Baskin, T. E. Barder, S. L. Buchwald, J. Org. Chem. 2004, 69, 5578–5587; c) R. A. Altman, E. D. Koval, S. L. Buchwald, J. Org. Chem. 2007, 72, 6190–6199; d) E. Alcalde, I. Dinarès, S. Rodríguez, C. G. de Miguel, *Eur. J. Org. Chem.* 2005, 1637–1643; e) M. Kuil, E. K. Bekedam, G. M. Visser, A. van den Hoogenband, J. W. Terpstra, P. C. J. Kamer, P. W. N. M. van Leeuwen, G. P. F. van Strijdonck, *Tetrahedron Lett.* 2005, 46, 2405–2409.
- [15] For selected examples of N,O ligands, see: a) X. Guo, H. Rao, H. Fu, Y. Jiang, Y. Zhao, *Adv. Synth. Catal.* 2006, *348*, 2197–2202; b) H. J. Cristau, P. P. Cellier, J. F. Spindler, M. Taillefer, *Chem. Eur. J.* 2004, *10*, 5607–5622; c) D. Ma, Q. Cai, *Synlett* 2004, 128–130; d) F. Y. Kwong, S. L. Buchwald, *Org. Lett.* 2003, *5*, 793–796; e) L. Liu, M. Frohn, N. Xi, C. Dominguez, R. Hungate, P. J. Reider, *J. Org. Chem.* 2005, *70*, 10135–10138.
- [16] For selected examples of O,O ligands, see: a) D. Jiang, H. Fu,
 Y. Jiang, Y. Zhao, J. Org. Chem. 2007, 72, 672–674; b) X. Lv,
 W. Bao, J. Org. Chem. 2007, 72, 3863–3867; c) V. H. Purecha,
 N. S. Nandurkar, B. M. Bhanage, J. M. Nagarkar, *Tetrahedron Lett.* 2008, 49, 1384–1387; d) H. C. Ma, X. Z. Jiang, J. Org. Chem. 2007, 72, 8943–8946; e) Y. Z. Huang, J. Gao, H. Ma, H.
 Miao, J. Xu, *Tetrahedron Lett.* 2008, 49, 948–951.
- [17] a) E. R. Strieter, D. G. Blackmond, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4120–4121; b) J. W. Tye, Z. Weng, A. M. Johns, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 9971–9983; c) R. Giri, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 15860–15863.
- [18] A. McKillop, D. E. Wright, M. L. Podmore, R. K. Chambers, *Tetrahedron* **1983**, *39*, 3797–3800.
- [19] J. Elguero, A. Fruchier, E. M. Tjiou, S. Trofimenko, J. Heterocycl. Compd. 1995, 31, 1006–1026.
- [20] A. Piórko, R. G. Sutherland, A. Vessiéres-Jaouen, G. Jaouen, J. Organomet. Chem. 1996, 512, 79–84.
- [21] M. F. Grundon, H. B. Henbest, M. D. Scott, J. Chem. Soc. 1963, 1855–1858.

Received: May 16, 2013 Published Online: ■ Azolyl-Substituted Steroids

Date: 02-10-13 18:04:22

Pages: 11

Eurjoean Journal of Organic Chemistry

Copper Catalysis

ᆗ

A facile synthetic route to azolyl-substituted steroids has been developed on the basis of Cu-catalyzed cross-coupling of steroidal vinyliodides and aromatic NHheterocycles. The protocol has been shown to be convenient and highly efficient, affording coupling products in good to excellent yields.

Yu. N. Kotovshchikov, G. V. Latyshev, N. V. Lukashev,* I. P. Beletskaya 1–11

An Efficient Approach to Azolyl-Substituted Steroids through Copper-Catalyzed Ullmann C–N Coupling

Keywords: Steroids / Nitrogen heterocycles / Cross-coupling / Amination / Copper