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A B S T R A C T   

In this study, a series of 8-quinolinesulfonamide derivatives was synthesized, and their anti-inflammatory ac
tivity was evaluated. Among them, compound 3l was found to be the best anti-inflammatory agent, with IC50 
values of 2.61 ± 0.39, 9.74 ± 0.85, and 12.71 ± 1.34 μM against NO, TNF-α and IL-1β production respectively. 
And 3l could significantly prevent lipopolysaccharide (LPS)-induced expression of inflammatory mediators 
(iNOS and COX-2). Molecule docking results showed that 3l could bind to the LPS binding site of toll-like re
ceptor 4 (TLR4)/MD-2, and 3l was then identified as TLR4/MD-2 inhibitor by co-immunoprecipitation (co-IP) 
and cellular thermal shift assay (CTESA). Preliminary mechanism studies indicated that 3l could prevent TLR4 
from being activated by disrupting TLR4/MD-2 heterodimerization and TLR4 homodimerization, thereby 
blocking the activation of the NF-κB/MAPK signaling pathway. Furthermore, observation of rat foot swelling, 
joint pathology and serum inflammatory cytokine levels proved that compound 3l had a significant therapeutic 
effect on adjuvant-induced arthritis (AIA) in rats in vivo. These results indicated that compound 3l is a potential 
anti-inflammatory agent, from which more effective anti-inflammatory drugs could be developed.   

1. Introduction 

Inflammation is a biological protective response of the organism 
against injury or infection [1,2]. Disorder in tissues may cause inflam
mation, such as joint disease, cancer, and heart failure [3–6]. However, 
inflammation can be reduced by inhibiting the production of inflam
matory factors (e.g., TNF-α, IL-1β, IL-6, and NO) [7–9]. The classic drugs 
currently used for the treatment of inflammation are nonsteroidal anti- 
inflammatory drugs, such as aspirin, but these drugs can cause some 
adverse reactions [10,11]. Therefore, new anti-inflammatory drugs 
must be discovered and developed. 

Toll-like receptors (TLRs) are a class of proteins that play a key role 
in the innate immune system [12]. Among them, TLR4 has been shown 
to be related to various inflammatory diseases and can regulate the 
immune homeostasis of the human system; thus, it is considered the 
most influential target [13,14]. TLR4, along with its accessory protein 
MD-2, is dimerized under LPS stimulation, which promotes the inter
action between the downstream effector myeloid differentiation factor 
88 and dimerized TLR4/MD-2 to control the cascade of NF-κB and MAPK 

that results in the activation of downstream cytokines, such as NO, TNF- 
α, and IL-1β [12,15–18]. Several studies have shown that various com
pounds that act as TLR4/MD-2 inhibitors can exert anti-inflammatory 
effects by preventing the combination of TLR4 and MD-2 [19–21]. 
Thus, inhibiting TLR4/MD-2 activation can effectively reduce the 
expression of TLR4-related inflammatory cytokines to reduce 
inflammation. 

Most quinoline derivatives have good anti-inflammatory activity 
(Fig. 1) [22–26]. Hence, the quinoline scaffold can be used as a key 
matrix structure to design drugs with a better anti-inflammatory activ
ity. In addition, sulfonamide groups play an important role in anti- 
inflammatory drugs. Certain agents with a benzenesulfonamide struc
ture, such as nimesulide, celecoxib, and parecoxib, are commonly used 
in clinical settings to reduce inflammation (Fig. 1) [27–29]. In this study, 
we introduced sulfonamide groups into the quinoline ring to synthesize 
a series of 8-quinolinesulfonamide derivatives (Fig. 1). We evaluated 
derivatives anti-inflammatory activities in vitro. The title 8-quinolinesul
fonamide derivative optimized was further evaluated to elucidate their 
potential mechanism of action and used to explore ameliorate 
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inflammation in a AIA mouse model. 

2. Results and discussion 

2.1. Chemistry 

The synthesis route of 8-quinolinesulfonamide derivatives is illus
trated in Scheme 1. A series of compounds, 3a–3n, were obtained by 
reacting various substituents of aniline and 8-quinolinesulfonyl chloride 
and triethylamine in dichloromethane at room temperature. 

2.2. ADMET predictions for compounds 

The absorption, distribution, metabolism, excretion, and toxicity 
(ADMET) of compounds 3a–3n were predicted using the Discovery 
Studio 2017 (DS 2017) software [30,31]. The results are depicted in the 
2D graphs of ADMET PSA 2D and ADMET AlogP98. Compound 3a had 
poor solubility at 25 ◦C (solubility level of 3), whereas compounds 
3b–3n had good solubility at this temperature (solubility level of 1 or 2) 
(Fig. 2 and Table 1). All compounds were within the 95% and 99% 
confidence intervals of blood–brain barrier (BBB) penetration and had 
good HIA (absorption level of 0). Moreover, compounds 3a–3n were 

likely to bind to plasma proteins (PPB# prediction was true). Results 
showed that these compounds were non-cytochrome P450 2D6 in
hibitors (CYP2D6# prediction was false). The druggability and safety of 
the compounds were initially evaluated through ADMET predictions. 
Subsequently, the anti-inflammatory activity of the compounds was 
studied. 

2.3. Inhibition of NO production and inflammatory factors in LPS- 
induced RAW264.7 cells 

A series of synthetic 8-quinolinesulfonamide derivatives were 
determined and their cytotoxicity in macrophage RAW264.7 cells was 
evaluated by MTT assay to prevent the toxicity of compounds 3a–3n to 
the cells from interfering with the analysis of experimental results. As 
shown in Table 2, compared with positive drug indomethacin, com
pounds 3a and 3h displayed weak cytotoxicity, whereas the other 
compounds showed low toxicity. 

LPS is a common immunostimulator that can stimulate RAW264.7 
cells to induce and secrete NO, IL-1β, TNF-α, and other inflammatory 
factors [2,32,33]. Overproduction of NO and pro-inflammatory factors 
is closely related to inflammatory diseases [2,34,35]. Thus, the anti- 
inflammatory activity of all compounds synthesized herein was 

Fig. 1. A strategy for designing an anti-inflammatory drug.  
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evaluated. A nonsteroidal anti-inflammatory drug, indomethacin, was 
selected as a positive control. RAW264.7 cells were incultured with 
different concentrations of the compounds (100, 60, 40, 20, 10, 5, 2.5, 
1.25 and 0.6725 μM) for 1 h and stimulated by LPS for 24 h. The 
inhibitory effect of the compounds on NO production in the cell super
natant was detected using a NO content detection kit (Table 3). 

Analysis of structure–activity relationship revealed that the intro
duction of different substituents of the phenyl ring expressed different 
degrees of anti-inflammatory activity. When the phenyl ring had no 
substituent (3a), the anti-inflammatory activity of the compound was 
weaker than that of the positive drug indomethacin. Furthermore, 
compound 3k exhibited poor anti-inflammatory activity, much less than 

that of the positive drug, which may be the cause of steric hindrance. 
However, the introduction of a single substituent on the phenyl ring of 
the other compounds evidently enhanced their anti-inflammatory ac
tivity and was superior to positive drug. Among these compounds, that 
with the CF3 group (i.e., compound 3l) had the best inhibitory activity, 
which is about 16 times stronger than indomethacin. Moreover, the 
electronegativity of the substituents on the phenyl ring was strongly 
related to the inhibitory activity. When a strong electron withdrawing 
group (F or Cl) was introduced into the phenyl ring, the inhibitory ac
tivity against NO production was evidently enhanced, and its activity 
was related to the position of the substituent on the phenyl ring. The 
introduction of substituents at the C2, C3, and C4 positions of phenyl 

 

Compd R Compd R 

3a H 3h 2-F 

3b 2-CH3 3i 3-F 

3c 3-CH3 3j 4-F 

3d 4-CH3 3k 3,4-F 

3e 2-OCH3 3l 4-CF3

3f 3-OCH3 3m 4-OCF3

3g 4-OCH3 3n 3-Cl

Scheme 1. Synthesis of 8-quinolinesulfonamide derivatives 3a–3n. Reagents and conditions: dichloromethane, triethylamine, ethanol, room temperature, 3–10 h. a 

Yield of the compound obtained. 
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rings gradually decreased the inhibitory activities of the derivatives 
against NO, such as compounds 3h, 3i, and 3j. Interestingly, in contrast 
to the electron-withdrawing group, the activity of the electron-donating 
group at the C4 position (compound 3d) was better than that at the C2 
(compound 3b) and C3 (compound 3c) positions. This trend was also 
observed in compounds 3e, 3f, and 3g. Moreover, the effectiveness of 
the compound with a F substituent was better than that of the derivative 
with a Cl substituent in the 3 position of the phenyl ring, which also 
surpassing of indomethacin. 

In this study, the inhibitory effect of the compounds on the pro
duction of IL-1β and TNF-α was detected via ELISA to evaluate further 
their anti-inflammatory activity. As shown in Table 3, compound 3l had 
the best inhibitory effect on the secretion of inflammatory factors NO, 
IL-1β, and TNF-α in RAW264.7 cells. 

NO production is mediated by COX-2 and iNOS. When inflammatory 
cells are stimulated by LPS, COX-2 and iNOS are overexpressed [1,36,37]. 
The effects of compound 3l on the expression of pro-inflammatory factors 
in LPS-treated RAW264.7 cells were analyzed via Western blot. Results 
showed that compound 3l could reduce the expression of iNOS and COX-2 
in a concentration-dependent manner (Fig. 3). 

2.4. Reverse virtual screening and molecular docking 

Reverse virtual screening is used to find and identify potential targets 

from receptors through known ligand structures via three methods, 
namely, shape screening, pharmacophore screening, and reverse dock
ing [38,39]. In the present study, reverse virtual screening was applied 
to validate that the 8-quinolinesulfonamide derivative compound 3l had 
a good binding relationship with TLR4/MD-2 protein (PDB:3FXI) 
(Fig. S1). Thus, TLR4/MD-2 was considered as a possible target of 
compound 3l. The results were further analyzed via molecule docking 
by using the CDOCKER program in Discovery Studio 2017 soft. As 
shown in Fig. 4, compound 3l had a good binding in the LPS-binding 
pocket of the TLR4/MD-2 complex and formed an interaction with the 
amino acids of the TLR4 protein (Ser183, Ala58, Asp181, Asn156, and 
Val134) and the amino acids of the MD-2 protein (Leu108, Arg106, and 
Glu111). Therefore, we speculated that compound 3l could be used as a 
TLR4/MD-2 inhibitor to exert anti-inflammatory effects. 

2.5. Effects of compound 3l on TLR4/MD-2 complex 

Given that molecular docking established a direct relationship be
tween compound 3l and the active site of the TLR4/MD-2 complex, we 
further confirmed that TLR4/MD-2 as the target of compound 3l by co- 
IP, the result showed that 3l significantly inhibited dimerization of the 
TLR4/MD-2 complex (Fig. 5). 

TLR4/MD-2 heterodimerization in the presence of LPS results in 
homodimerization of TLR4, inducing the release of pro-inflammatory 

Fig. 2. Regression of ADMET_PSA_2D and ADMET_AlogP98. Red represents the 95% confidence interval of HIA, and green denotes the 99% confidence interval of 
HIA. Pink indicates the 95% confidence interval of BBB, and the sky blue ellipse signifies the 99% confidence interval of BBB. All compounds are within the con
fidence interval. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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cytokines, such as NO, IL-6, and TNF-α [16,19,40], thus the interaction 
between compound 3l and TLR4 was further analyzed by CETSA and 
immunoprecipitation. CETSA is a biophysical technique for monitoring 
ligand–potein interactions [41,42]. In the CETSA method, cells or cell 
extract samples are heated at different temperatures to evaluate the 
compound’s effect on the thermal stability of protein, thereby providing 
quantitative evidence for compound–protein interactions [43,44]. Re
sults showed that the TLR4 protein collected from RAW264.7 cells co- 
cultured with compound 3l had a better stability than the cells incu
bated in the absence of this compound at 50 ◦C and 55 ◦C, indicating that 
TLR4 interacted with this compound (Fig. 6). To evaluate the effect of 3l 
on TLR4 dimerization, HEK293T cells were co-transfected with TLR4- 
HA acid and TLR4-Flag plasmids for 24 h, and then TLR4-Flag and 
TLR4-HA acid complexes were detected by co-IP. Compound 3l sub
stantially reduced the TLR4-Flag of TLR4-HA, indicating that this com
pound disrupted the TLR4 dimerization associated with LPS (Fig. 7). 

2.6. Inhibition of LPS-induced NF-κB/MAPK signaling activation 

When the TLR4/MD-2 complex is stimulated by LPS, a series of signal 

cascades are initiated to activate the NF-κB and MAPK signaling path
ways [15,21,45]. Accordingly, the effect of the compound on the 
expression of related proteins in the NF-κB and MAPK signaling path
ways were analyzed. 

Compound 3l inhibited the phosphorylation and degradation of IκB 

Table 1 
ADMET predictions for compounds 3a-3n.  

compd Absorption levela BBB levelb Solubility levelc CYP2D6d PPBe AlogP98f PSA 2Dg 

3a 0 2 3 false true 2.709 58.672 
3b 0 2 2 false true 2.709 58.672 
3c 0 2 2 false true 2.914 58.672 
3d 0 2 2 false true 3.168 58.672 
3e 0 2 2 false true 2.487 67.602 
3f 0 2 2 false true 2.99 67.602 
3g 0 2 2 false true 2.503 67.602 
3h 0 2 2 false true 2.99 58.672 
3i 0 2 2 false true 2.487 58.672 
3j 0 2 2 false true 2.99 58.672 
3k 0 2 2 false true 2.197 58.735 
3l 0 2 2 false true 3.446 58.672 
3m 0 1 1 false true 2.487 67.602 
3n 0 2 2 false true 4.623 58.672  

a Absorption (level 0 means good).  

b Distribution: Aqueous solubility (level 1 means very good, level 2 means moderate).  

c Distribution: Blood–brain barrier penetration (level 1 means very good, level 2 means moderate, k level 3 means poor).  

d Metabolism.  

e Excretion.  

f Predicted octanol/water.  

g Two-dimensional.  

Table 2 
Cytotoxicity of the compounds.  

compd RAW264.7 cells IC50 

(μM)a 
compd RAW264.7 cells IC50 

(μM)a 

3a 90.26 ± 1.7 3i >100 
3b >100 3j >100 
3c >100 3k >100 
3d >100 3l >100 
3e >100 3m >100 
3f >100 3n >100 
3g >100 Indomethacin 93.88 ± 2.6 
3h 90.01 ± 1.9 Control >100  

a Concentration of the compounds at 50% survival of RAW264.7 cells. IC50 
values are calculated from the average of three experiments (mean ± SD).  

Table 3 
Inhibition by the compounds of the IC50 value produced by inflammatory 
factors.  

Compound NO inhibition IC50 
(μM)a 

IL-1β inhibition 
IC50 (μM)b 

TNF-α inhibition 
IC50 (μM)c 

3a 47.96 ± 0.58 46.62 ± 1.53 37.18 ± 2.57 
3b 31.39 ± 0.41 28.91 ± 0.51 40.08 ± 1.24 
3c 22.94 ± 1.44 14.79 ± 0.82 14.53 ± 1.61 
3d 18.06 ± 0.46 14.67 ± 0.93 36.13 ± 0.37 
3e 31.07 ± 1.17 24.97 ± 0.58 45.25 ± 1.22 
3f 19.98 ± 0.71 23.07 ± 0.49 20.89 ± 0.77 
3g 16.78 ± 0.30 30.05 ± 1.27 40.71 ± 1.62 
3h 5.47 ± 0.72 12.24 ± 1.33 26.69 ± 1.05 
3i 17.92 ± 0.32 49.30 ± 0.33 33.34 ± 0.47 
3j 24.81 ± 0.44 39.63 ± 0.21 47.65 ± 0.94 
3k ＞100 ＞100 ＞100 
3l 2.61 ± 0.39 9.74 ± 0.85 12.71 ± 1.34 
3m 9.76 ± 0.66 10.78 ± 0.96 17.32 ± 0.49 
3n 25.41 ± 0.53 54.45 ± 0.38 28.74 ± 0.79 
Indomethacin 34.99 ± 0.26 36.15 ± 0.62 40.96 ± 0.63  

a Concentration of the compounds when 50% NO was produced in LPS- 
stimulated RAW264.7 cells. IC50 values are calculated from the average of 
three experiments (mean ± SD).  

b Concentration of the compounds when 50% IL-1β was produced in LPS- 
stimulated RAW264.7 cells. IC50 values are calculated from the average of 
three experiments (mean ± SD).  

c Concentration of the compounds when 50% TNF-α was produced in LPS- 
stimulated RAW264.7 cells. IC50 values are calculated from the average of 
three experiments (mean ± SD).  
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to block the activation of IκB kinase (Fig. 8A). Moreover, it inhibited the 
phosphorylation of P65 in a concentration-dependent manner and pre
vented the translocation of NF-κB P65 from the cytoplasm to the nu
cleus. RAW264.7 cells were stimulated to activate the MAPK signaling 
pathway, leading to considerable phosphorylation of MAPK (P38, JNK, 
and ERK). As suggested in Fig. 8B, compound 3l (1, 3, and 10 μM) could 
also inhibit LPS-induced P38, JNK, and ERK phosphorylation in a 

concentration-dependent manner. 

2.7. Anti-inflammatory activity of compound 3l in vivo 

The anti-inflammatory activity of compound 3l in vivo was confirmed 
by using compound 3l (10 and 30 mg/kg) and a positive drug (10 mg/ 
kg) used to treat the rat adjuvant-induced arthritis (AIA) model. 

Fig. 3. Effects of compound 3l on the expression of related inflammatory proteins. RAW264.7 cells were incubated with different concentrations of compound 3l and 
the positive drug (1, 3, and 10 μM) Bay11-7082 for 1 h. The cells were then stimulated by LPS for 24 h. The effects of compound 3l on iNOS and COX-2 were analyzed 
by Western blot. The results were showed as means ± SD (n = 3) of at least three independent experiments. ###p < 0.0001 compared with control, **p < 0.001, ***p 
< 0.001 compared with LPS-stimulated cells. 

Fig. 4. Compound 3l bound to the LPS-binding pocket of the TLR4/MD-2 complex (PDB: 3FXI). Green denotes the TLR4 protein, and blue indicates the MD-2 protein. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Co-immunoprecipitation showing effect of compound 3l pretreatment the formation of TLR4/MD-2 complex in RAW264.7 cells exposed to LPS. The results 
were showed as means ± SD (n = 3) of at least three independent experiments. *p < 0.01 compared with LPS-stimulated cells. 
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Compared with the model group, the drug group reduced the swelling of 
the rats’ feet in a concentration-dependent manner (Fig. 9A and B). On 
day 24, 30 mg/kg of compound 3l significantly decreased the arthritis 
index (Fig. 9C). Compared with that in the model group, body weight in 
the drug group improved at doses of ≥ 10 mg/kg (Fig. 9D). 

Subsequently, histopathological section of rat knee joints were 
stained with hematoxylin and eosin (HE) to investigate the effects of 
compound 3l on pathological changes in AIA rats. As depicted in Fig. 10, 
the model group showed obvious synovial cell proliferation, inflam
matory cell infiltration and pannus formation. These symptoms in AIA 
rats treated with compound 3l were alleviated in a dose-dependent 
manner (Fig. 10). 

Fuethermore, the ELISA method was used to detect inflammatory 
factors in the serum of AIA rats. In the results, compared with those in 
the normal group, the levels of IL-1β, and TNF-α in the model group 
remarkably increased. However, compound 3l could reduce the in
flammatory factors in the serum of rats in a dose-dependent manner. 

Similarly, indomethacin had an inhibitory effect on the production of 
inflammatory factors (Fig. 11). 

3. Conclusions 

This study aimed to discover novel agents with anti-inflammatory 
activity. A series of 8-quinolinesulfonamide derivatives were synthe
sized. Preliminary evaluation results of the anti-inflammatory activity of 
these derivatives revealed that most of them had good inhibitory activity 
against NO, IL-1β, and TNF-α. Analysis of the structure–activity rela
tionship of these compounds showed that those with a single substituent 
on the phenyl ring had enhanced anti-inflammatory activity. Among 
these compounds, compound 3l had the best anti-inflammatory activity 
and could significantly suppress the expression levels of iNOS and COX- 
2. The potential target (TLR4/MD-2) of compound 3l was obtained 
through reverse screening, and confirmed by molecular docking, co-IP 
and CTESA. Preliminary results of mechanism studies indicated that 
compound 3l could block the activation of NF-κB/MAPK signaling 
pathway in a concentration-dependent manner by disrupting TLR4/MD- 
2 dimerization. In addition, according to in vivo studies, compared with 
the model group, the treatment group (compound 3l) effectively 
reduced inflammation in the AIA rat model. These findings indicated 
that compound 3l has a great potential for the treatment of inflamma
tion. We are investigating this compound in greater detail to understand 
further its anti-inflammatory activity. 

4. Experimental section 

4.1. Chemistry 

Unless otherwise specified, aniline with various substituents, trie
thylamine, ethanol, and various solvents used in this experiment were 
obtained from commercial sources and did not require further purifi
cation. The reaction was monitored by thin-layer chromatography (TLC) 
on a silica gel plate (HSGF254 Yantai Jiangyou Silica Gel Development 
Co., Ltd., China) by using the solvents petroleum ether and ethyl acetate. 
The compounds were detected via high-resolution mass spectrometry. 
Proton nuclear magnetic resonance spectrum and carbon nuclear mag
netic resonance spectrum were measured at 400 and 101 MHz, respec
tively. The reaction mixture through CombiFlash NextGen 300+ silica 
gel column (Teledyne ISCO, USA, Silica gel: 200–300 mesh) for purifi
cation to obtain the target product. 

4.2. General procedure for the synthesis of compounds 3a–3n 

According to the reported method [46], 8-quinolinesulfonyl chloride 

Fig. 6. Interaction between of compound 3l and TLR4. RAW264.7 cells were 
treated with 3l for 12 h, and then the expression of TLR4 protein at different 
temperatures (45 ◦C, 50 ◦C, 55 ◦C, 60 ◦C and 65 ◦C) was detected. The results 
were showed as means ± SD (n = 3) of at least three independent experiments. 
*p < 0.01 compared with LPS-stimulated cells. 

Fig. 7. Co-immunoprecipitation analysis the destructive effects of compound 3l on TLR4 dimerization. HEK293T cells were co-transfected with TLR4-hyaluronic acid 
and TLR-Flag, the sampled proteins were immunoprecipitated using anti-HA magnetic beads. The results were showed as means ± SD (n = 3) of at least three 
independent experiments. *p < 0.01 compared with LPS-stimulated cells. 
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(227 mg, 1.0 equivalent, 1 mM) and aniline with various substituents 
(2.0 equivalent, 2 mM) were stirred in dichloromethane solvent for 15 
min, and then triethylamine was added dropwise (101 mg, 2.0 equiva
lents, 2 mM). The reaction was stirred for 3–10 h at room temperature. 
After the TLC detection reaction was completed, the dichloromethane 
was removed by evaporation to obtain a reaction mixture. The mixture 
was purified by silica gel column chromatography using a mixture of 
ethyl acetate and petroleum ether to obtain the target compounds 
(3a–3n). 

N-phenylquinoline-8-sulfonamide (3a) [47]. Yield: 68%. 1H NMR 
(500 MHz, DMSO) δ 10.16 (s, 1H), 9.19 (dd, J = 4.1, 1.5 Hz, 1H), 
8.53–8.45 (m, 1H), 8.42 (d, J = 7.3 Hz, 1H), 8.23 (d, J = 8.1 Hz, 1H), 
7.70 (dt, J = 10.1, 5.6 Hz, 2H), 7.11 (d, J = 6.2 Hz, 4H), 6.89 (ddd, J =
8.1, 5.9, 1.9 Hz, 1H). 13C NMR (126 MHz, DMSO‑d6) δ 151.91, 143.18, 
138.26, 137.40, 135.64, 134.66, 132.61, 129.29, 128.83, 126.06, 
124.14, 123.07, 120.18. HRMS (ESI) m/z [M + H]+: 285.06530 calcd for 
C15H12N2O2S: 285.06833; 

N-(o-tolyl)quinoline-8-sulfonamide (3b). White solid, Yield: 63%, m. 
p. 155.4–157.7 ◦C. 1H NMR (500 MHz, DMSO) δ 9.23 (s, 1H), 9.17 (dd, J 
= 4.1, 1.5 Hz, 1H), 8.58 (dd, J = 8.3, 1.4 Hz, 1H), 8.30 (d, J = 8.1 Hz, 
1H), 8.24 (d, J = 6.4 Hz, 1H), 7.76 (dd, J = 8.3, 4.2 Hz, 1H), 7.69 (t, J =

7.7 Hz, 1H), 7.07 (d, J = 7.0 Hz, 1H), 7.01–6.91 (m, 2H), 6.85 (d, J = 7.4 
Hz, 1H), 2.06 (s, 3H). 13C NMR (126 MHz, DMSO) δ 151.94, 143.19, 
137.64, 136.74, 135.84, 134.48, 133.81, 131.62, 131.13, 129.01, 
126.67, 126.33, 126.14, 125.13, 123.17, 18.16. HRMS (ESI) m/z [M +
H]+: 299.08095 calcd for C16H14N2O2S: 299.08392; 

N-(m-tolyl)quinoline-8-sulfonamide (3c). White solid, Yield: 59%, 
m.p. 161.4–162.9 ◦C. 1H NMR (500 MHz, DMSO) δ 10.02 (s, 1H), 9.15 
(dd, J = 4.2, 1.7 Hz, 1H), 8.51 (dd, J = 8.3, 1.6 Hz, 1H), 8.37 (dd, J =
7.3, 1.1 Hz, 1H), 8.26 (d, J = 8.2 Hz, 1H), 7.77–7.66 (m, 2H), 6.95 (t, J 
= 7.8 Hz, 1H), 6.89 (s, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.70 (d, J = 7.5 Hz, 
1H), 2.08 (s, 3H). 13C NMR (126 MHz, DMSO) δ 151.91, 143.19, 138.53, 
138.18, 137.45, 135.72, 134.66, 132.52, 129.09, 128.85, 126.09, 
124.85, 123.09, 120.65, 117.13, 21.45. HRMS (ESI) m/z [M + H]+: 
299.08095 calcd for C16H14N2O2S: 299.08389; 

N-(p-tolyl)quinoline-8-sulfonamide (3d) [48]. Yield: 59%. 1H NMR 
(500 MHz, DMSO) δ 9.91 (s, 1H), 9.17 (d, J = 3.7 Hz, 1H), 8.50 (d, J =
8.2 Hz, 1H), 8.33 (d, J = 7.2 Hz, 1H), 8.24 (d, J = 8.1 Hz, 1H), 7.82–7.65 
(m, 2H), 6.94 (d, J = 7.9 Hz, 2H), 6.88 (d, J = 7.8 Hz, 2H), 2.06 (s, 3H). 
13C NMR (126 MHz, DMSO) δ 151.90, 143.17, 137.43, 135.63, 135.53, 
134.58, 133.46, 132.52, 129.71, 128.81), 126.08, 123.08, 120.70, 
20.62. HRMS (ESI) m/z [M + H]+: 299.08095 calcd for C16H14N2O2S: 

Fig. 8. Compound 3l inhibits LPS-induced activation of NF-κB signaling pathway and MAPK signaling pathway. (A) Compound 3l inhibites NF-κB signaling pathway 
in RAW 264.7 cells. (B) Compound 3l inhibites MAPK signaling pathway in RAW 264.7 cells. RAW264.7 cells were cultured with different concentrations of 
compound 3l (1, 3, and 10 μM) for 1 h. Subsequently, LPS was added for 24 h. The results were showed as means ± SD (n = 3) of at least three independent 
experiments. ###p < 0.0001 compared with control, *p < 0.01,**p < 0.001, ***p < 0.0001 compared with LPS-stimulated cells. 
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Fig. 9. Effects of compound 3l on adjuvant-induced arthritic rats. (A) Pictures of treated and untreated feet of rats. (B) Effect of compound 3l on the body weight of 
adjuvant-induced arthritic model rats. (C) Effects of compound 3l on paw swelling in adjuvant-induced arthritic model rats. (D) Effects of compound 3l on the 
arthritis index of adjuvant-induced arthritic model rats. 

Fig. 10. The effect of compound 3l on the joint pathological tissue of AIA model rats was explored by HE staining experiment (magnification × 10). (A) Normal; (B) 
AA; (C) Indometacin 10 mg/kg; (D) Compound 3l, 30 mg/kg; (E) Compound 3l, 10 mg/kg. 
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299.08392; 
N-(2-methoxyphenyl)quinoline-8-sulfonamide (3e) [49]. Yield: 

50%. 1H NMR (500 MHz, DMSO) δ 9.19 (dd, J = 4.1, 1.4 Hz, 1H), 8.95 
(s, 1H), 8.56 (dd, J = 8.3, 1.2 Hz, 1H), 8.38–8.22 (m, 2H), 7.77 (dd, J =
8.3, 4.2 Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.41 (d, J = 7.0 Hz, 1H), 6.96 
(t, J = 7.8 Hz, 1H), 6.87–6.72 (m, 2H), 3.31 (s, 3H). 13C NMR (126 MHz, 
DMSO) δ 151.79, 150.46, 142.91, 137.61, 135.76, 134.66, 131.36, 
128.89, 126.48, 125.90, 123.16, 121.86, 121.05, 111.91, 55.77. HRMS 
(ESI) m/z [M + H]+: 315.07587 calcd for C16H14N2O3S: 315.07877. 

N-(3-methoxyphenyl)quinoline-8-sulfonamide (3f). White solid, 
Yield: 51%, m.p. 164.8–166.6 ◦C. 1H NMR (500 MHz, DMSO) δ 10.10 (s, 
1H), 9.15 (dd, J = 4.0, 1.4 Hz, 1H), 8.51 (d, J = 7.1 Hz, 1H), 8.39 (d, J =
6.6 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 7.79–7.65 (m, 2H), 6.98 (t, J = 8.4 
Hz, 1H), 6.72–6.57 (m, 2H), 6.46 (d, J = 9.7 Hz, 1H), 3.55 (s, 3H). 13C 
NMR (126 MHz, DMSO) δ 159.85, 151.92, 143.18, 139.42, 137.45, 
135.58, 134.76, 132.70, 130.11, 128.86, 126.11, 123.11, 112.15, 
108.96, 106.06, 55.30. HRMS (ESI) m/z [M + H]+: 315.07587 calcd for 
C16H14N2O3S: 315.07867. 

N-(4-methoxyphenyl)quinoline-8-sulfonamide (3g) [48]. Yield: 
43%. 1H NMR (500 MHz, DMSO) δ 9.72 (s, 1H), 9.19 (dd, J = 4.1, 1.5 
Hz, 1H), 8.52 (dd, J = 8.3, 1.3 Hz, 1H), 8.38–8.17 (m, 2H), 7.74 (dd, J =
8.3, 4.2 Hz, 1H), 7.67 (t, J = 7.7 Hz, 1H), 6.93 (d, J = 8.9 Hz, 2H), 6.66 
(d, J = 9.0 Hz, 2H), 3.57 (s, 3H). 13C NMR (126 MHz, DMSO) δ 156.72, 
151.90, 143.19, 137.48, 135.64, 134.50, 132.38, 130.68, 128.79, 
126.11, 123.40, 123.10, 114.45, 55.45. HRMS (ESI) m/z [M + H]+: 
315.07587 calcd for C16H14N2O3S: 315.07880; 

N-(2-fluorophenyl)quinoline-8-sulfonamide (3h). White solid, 
Yield:47%, m.p. 175.4–177.3 ◦C. 1H NMR (500 MHz, DMSO) δ 9.66 (s, 
1H), 9.12 (s, 1H), 8.57 (d, J = 7.1 Hz, 1H), 8.28 (dd, J = 27.4, 6.4 Hz, 
2H), 7.91–7.60 (m, 2H), 7.22 (s, 1H), 7.14–6.93 (m, 3H). 13C NMR (126 
MHz, DMSO) δ 156.77, 151.86, 143.14, 137.55, 136.18, 134.71, 131.53 
, 128.94, 127.40, 126.54, 126.04, 125.25, 124.95, 123.15, 116.26. 
HRMS (ESI) m/z [M + H]+: 303.05588 calcd for C15H11FN2O2S: 
303.05875; 

N-(3-fluorophenyl)quinoline-8-sulfonamide (3i). White solid, Yield: 
56%, m.p. 184.4–185.9 ◦C. 1H NMR (500 MHz, DMSO) δ 10.56 (s, 1H), 
9.20 (dd, J = 4.2, 1.7 Hz, 1H), 8.59–8.47 (m, 2H), 8.28 (dd, J = 8.2, 1.2 
Hz, 1H), 7.82–7.68 (m, 2H), 7.16 (dd, J = 15.1, 7.9 Hz, 1H), 7.04–6.94 
(m, 2H), 6.81–6.64 (m, 1H). 13C NMR (126 MHz, DMSO) δ 163.47, 
161.54, 151.97, 143.14, 140.23, 137.41, 135.35, 134.91, 132.85, 
130.99, 128.87, 126.07, 123.10, 115.36, 110.47, 110.30, 106.49, 
106.29. HRMS (ESI) m/z [M + H]+: 303.05588 calcd for C15H11FN2O2S: 
303.05884; 

N-(4-fluorophenyl)quinoline-8-sulfonamide(3j). White solid, Yield: 

58%, m.p. 197.4–200.1 ◦C. 1H NMR (500 MHz, DMSO) δ 10.15 (s, 1H), 
9.21 (dd, J = 4.0, 1.4 Hz, 1H), 8.53 (dd, J = 8.3, 1.2 Hz, 1H), 8.39 (d, J =
7.2 Hz, 1H), 8.28 (d, J = 7.9 Hz, 1H), 7.86–7.66 (m, 2H), 7.12 (dd, J =
8.9, 4.9 Hz, 2H), 6.99 (t, J = 8.8 Hz, 2H). 13C NMR (126 MHz, DMSO) δ 
160.22, 158.30, 151.94, 143.15, 137.44, 135.43, 134.71, 134.45, 
132.58, 128.82, 126.08, 123.10, 122.75, 116.07, 115.89. HRMS (ESI) 
m/z [M + H]+: 303.05588 calcd for C15H11FN2O2S: 303.05884; 

N-(3,4-difluorophenyl)quinoline-8-sulfonamide (3k). White solid, 
Yield: 48%, m.p. 174.4–177.1 ◦C. 1H NMR (500 MHz, DMSO) δ 10.52 (s, 
1H), 9.23 (d, J = 2.7 Hz, 1H), 8.53 (dd, J = 28.7, 7.6 Hz, 2H), 8.33 (d, J 
= 8.0 Hz, 1H), 7.78 (dd, J = 12.3, 5.7 Hz, 2H), 7.21 (ddd, J = 13.3, 9.6, 
5.7 Hz, 2H), 6.97 (d, J = 8.9 Hz, 1H). 13C NMR (126 MHz, DMSO) δ 
151.99, 143.10, 137.45, 135.17, 134.95, 132.82, 128.86, 126.09, 
123.13, 118.13, 117.98, 116.50, 116.43, 109.32, 109.16. HRMS (ESI) 
m/z [M + H]+: 321.04646 calcd for C15H10F2N2O2S: 321.04938; 

N-(4-(trifluoromethyl)phenyl)quinoline-8-sulfonamide (3l) [50]. 
Yield: 54%. 1H NMR (500 MHz, DMSO) δ 10.83 (s, 1H), 9.15 (d, J = 2.6 
Hz, 1H), 8.51 (dd, J = 11.9, 8.0 Hz, 2H), 8.31 (d, J = 8.0 Hz, 1H), 
7.86–7.65 (m, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H). 13C 
NMR (126 MHz, DMSO) δ 152.03, 143.12, 142.20, 137.48, 135.31, 
135.10, 132.95, 128.93, 126.69, 126.66, 126.13, 123.18, 118.87. HRMS 
(ESI) m/z [M + H]+: 353.05269 calcd for C16H11F3N2O2S: 353.05542; 

N-(4-(trifluoromethoxy)phenyl)quinoline-8-sulfonamide (3 m). 
White solid, Yield: 51%, m.p. 203.6–205.7 ◦C. 1H NMR (500 MHz, 
DMSO) δ 10.43 (s, 1H), 9.16 (dd, J = 4.2, 1.7 Hz, 1H), 8.53 (dd, J = 8.4, 
1.6 Hz, 1H), 8.43 (dd, J = 7.3, 1.2 Hz, 1H), 8.29 (dd, J = 8.2, 1.1 Hz, 
1H), 7.79–7.66 (m, 2H), 7.26–7.09 (m, 4H). 13C NMR (126 MHz, DMSO) 
δ 151.97, 144.53, 144.52, 143.14 (s, 1H), 137.54, 137.48, 135.46, 
134.89, 132.66, 128.89, 126.12, 123.15, 122.23, 121.33. HRMS (ESI) 
m/z [M + H]+: 369.04760 calcd for C16H11F3N2O3S: 369.05038; 

N-(3-chlorophenyl)quinoline-8-sulfonamide (3n). White solid, Yield: 
57%, m.p. 189.8–193.2 ◦C. 1H NMR (500 MHz, DMSO) δ 10.55 (s, 1H), 
9.19 (dd, J = 4.2, 1.6 Hz, 1H), 8.56–8.45 (m, 2H), 8.34–8.24 (m, 1H), 
7.82–7.69 (m, 2H), 7.21 (d, J = 1.7 Hz, 1H), 7.18–7.08 (m, 2H), 
6.99–6.91 (m, 1H). 13C NMR (126 MHz, DMSO) δ 151.99, 143.12, 
139.92, 137.43, 135.31, 134.96, 133.57, 132.83, 130.99, 128.87, 
126.09, 123.64, 123.12, 119.14, 117.95. HRMS (ESI) m/z [M + H]+: 
319.02633 calcd for C15H11ClN2O2S: 319.02954. 

4.3. ADMET prediction 

Compounds 3a–3n were introduced into the DS 2017 software, and 
ADMET descriptors were selected after the compounds were treated. All 
ADMET parameters, namely, aqueous solubility, BBB penetration, 

Fig. 11. Inhibitory effects of compound 3l on inflammatory factors in adjuvant-induced arthritic model rats. (A) Inhibitory effects of compound 3l on IL-1β pro
duction in vivo. (B) Inhibitory effects of compound 3l on TNF-α production in vivo. The results were showed as means ± SD (n = 3) of at least three independent 
experiments. ###p < 0.0001 compared with the normal group, **p < 0.001, ***p < 0.0001 compared with the model group. 
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CYP2D6 binding, hepatotoxicity, and intestinal absorption plasma pro
tein binding, were selected to predict the results. 

4.4. Cell culture 

Mouse macrophages (RAW264.7 cells, Anhui Medical University) 
and HEK293T cells (Anhui Medical University) were cultured in DMEM 
(Hyclone, USA) containing 10% fetal bovine serum, 50 U/ml penicillin, 
and 50 μg/ml gentamicin and then incubated in an incubator containing 
5% CO2 at 37 ◦C. 

4.5. Cell viability assay 

The cytotoxicity of the compounds to RAW264.7 cells was evaluated 
via MTT assay. RAW264.7 cells (5,000 cells/well) were seeded in a 96- 
well plate for 24 h (Sigma Aldrich, Australia), and the old medium was 
discarded. The cells were treated with medium containing the com
pounds (100, 80, 50, 25, and 12.5 μM) for 24 h and incubated with MTT 
(5 mg/ml, 20 μL/well) for 4 h. The cell culture supernatants were then 
discarded, and 150 μL DMSO was added to each well to dissolve for
mazan. The 96-well plate was placed on a shaker to shake for 10 min, 
and the absorbance was measured at 492 nm. 

4.6. In vitro determination of NO content 

RAW264.7 cells (6 × 104 cells per well) were seeded in a 48-well 
plate for 24 h, and then the medium with different concentrations 
(100, 60, 40, 20, 10, 5, 2.5, 1.25 and 0.6725 μM) of the compounds was 
added to continue the culture. After incubation for 1 h, LPS (1 μg/ml, 30 
μL/well) was added to stimulate the cells for 24 h. Afterward, 50 μL of 
the cell culture supernatant was collected and put it into a 96-well plate. 
Griess Reagent I and Griess Reagent II (50 μL/well) were also added to 
the 96-well plate to determine the content of NO. After 5 min, the 
absorbance of the sample was measured at 540 nm. 

4.7. In vitro determination of IL-1β and TNF-α content 

The steps were similar to those described in Section 4.6. RAW264.7 
cells (6 × 104 cells/well) were seeded in 48-well plates. After 24 h, the 
medium containing different concentrations of the compounds was 
added for 1 h, and then the cells were added with LPS (1 μg/mL) for 24 h. 
The content of TNF-α and IL-β in the cell supernatant was measured via 
ELISA (Jyimei, Wuhan, China) following the manufacturer’s 
instructions. 

4.8. Western blot analysis 

4.8.1. Antibodies 
iNOS was purchased from Zenbio, China (Cat number, 340668, 

Dilution ratio, 1:1000); COX-2 was purchased from Zenbio, China (Cat 
number, 383971, Dilution ratio, 1:1000); Actin was purchased from 
Beyotime, China (Cat number, AF5003, Dilution ratio, 1:5000); IκB was 
purchased from Beyotime, China (Cat number, AF1282, Dilution ratio, 
1:2000); p-IκB was purchased from Beyotime, China (Cat number, 
AF1870, Dilution ratio, 1:1000); P65 was purchased from Zenbio, China 
(Cat number, 380172, Dilution ratio, 1:5000); p-P65 was purchased 
from Zenbio, China (Cat number, 310012, Dilution ratio, 1:1000); P38 
was purchased from Zenbio, China (Cat number, R25239, Dilution ratio, 
1:1000); p-P38 was purchased from Zenbio, China (Cat number, 
310091, Dilution ratio, 1:1000); ERK was purchased from Zenbio, China 
(Cat number, 343830, Dilution ratio, 1:1000); p-ERK was purchased 
from Zenbio, China (Cat number, 301245, Dilution ratio, 1:1000); JNK 
was purchased from Zenbio, China (Cat number, 310012, Dilution ratio, 
1:1000); p-JNK was purchased from Zenbio, China (Cat number, 
310012, Dilution ratio, 1:1000); secondary antibody was purchased 
from Zenbio, China (Cat number, 550064, Dilution ratio, 1:10000). 

4.8.2. General procedure 
RAW264.7 cells (3 × 105 cells/well) were seeded in 6-well plates and 

incubated for 24 h. The cells were pretreated with compound 3l (1, 3, 
and 10 μM) for 1 h and then stimulated with LPS (1 μg/mL) for 24 h. 
After washing the cells with 1 × PBS, 300 μL of cell lysis buffer (RIRA 
lysis buffer, phosphatase inhibitor, protease inhibitor, and PMSF) was 
added to each well, incubated on ice for 30 min, and then centrifuged at 
12,000 r/min for 30 min at 4 ◦C to collect the supernatant. Protein 
content was determined using a protein quantification kit (BCA Assay, 
Beyotime, Shanghai, China). Total proteins were separated by 10% SDS- 
PAGE and then transferred from the gel to a PVDF membrane (Millipore, 
Sigma). The membranes were blocked in TBST solution containing 5% 
skimmed milk for 2 h. Afterward, the membranes were washed three 
times (TBST) and incubated with the primary antibody dilution over
night at 4 ◦C. After washing three times with TBST, the membranes were 
combined with the corresponding diluted secondary antibody for 90 min 
at room temperature. The blots were visualized by a chemiluminescence 
imager (Tanon 5200, Shanghai, China). 

4.9. Target fishing and molecular docking 

The potential drug targets of compound 3l were predicted and 
screened using the DS 2017 software. The structure of compound 3l 
(ligand) was drawn using the Chemdraw 2017 software and imported 
into the DS software. After the ligand was prepared and the energy was 
minimized, the potential targets of the compounds were virtually 
screened through the Ligand Profiler program in the DS software. The 
results were analyzed according to the fit value of the binding between 
the ligand and each protein (the higher the fit value was, the better 
compound 3l matched the corresponding protein). The target corre
sponding to the protein was the likely target of the compound. For 
further analysis, compound 3l and adenosine kinase protein were 
combined through CDOCKER molecular docking. 

4.10. Co-immunoprecipitation 

After 30 min of pretreatment with 3l of 30 μM, RAW264.7 cells were 
stimulated by LPS for 15 min. The cells were lysed by adding buffer (Cell 
lysis buffer for Western and IP, PMSF), and the cell lysate was collected. 
The cell extracts were incubated with an appropriate amount of anti- 
MD2 antibody (Cat number, 822065, Dilution ratio, 1:1000, Zenbio, 
China) and precipitated with A + G agarose beads (Beyotime, China) 
overnight at 4 ◦C. After boiling, the released protein was detected by 
immunoblot using anti-TLR4 antibody (Cat number, 505208, Dilu
tion ratio, 1:1000, Zenbio, China). 

HEK293T cells were seeded at 4 × 105 cells/dish in a 6-well plate 
overnight and then co-transfected with HA-TLR4 (3 μg) and Flag-TLR4 
(3 μg) plasmids for 24 h. Afterward, the cells were seeded at 4 × 105 

in a 5 cm (i.d.) dish and cultured for 24 h. The cells were pretreated with 
compound 3l for 1 h and cultured with LPS (1 mg/mL) treatment 12 h. 
The IP lysis buffer (Cell lysis buffer for Western and IP, PMSF) was added 
to the Petri dish to harvest the cells. The effect of compound 3l on the 
formation of TLR4 dimers was analyzed by Western blot and anti-HA 
magnetic beads. 

4.11. Cellular thermal shift assay 

RAW264.7 cells were seeded in a 6-well plate for 24 h (6 × 104 cells/ 
well). After the cells were treated with compound 3l (30 μM) for 12 h, 
the protein was collected with cell lysate. The protein was then evenly 
divided into four parts and heated at different temperatures (45 ◦C, 
50 ◦C, 55 ◦C, 60 ◦C and 65 ◦C) for 3 min. The results were analyzed by 
Western blot. 
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4.12. In vivo experiment 

4.12.1. Animals 
Sprague–Dawley female rats weighing 160–180 g were purchased 

from the Animal Experiment Center of Anhui University of Chinese 
Medicine. The temperature, relative humidity, and dark–light cycle per 
day of the animal room was maintained at 23 ◦C–25 ◦C, 40%–60%, and 
12 h, respectively. The animal experiments were approved by the 
Experimental Animal Ethics Committee of Anhui Medical University. 

4.12.2. Induction of adjuvant arthritis and experimental design 
The rats were injected with 0.1 mL Freund’s adjuvant complete 

(FCA) intracutaneously into the left hind feet to cause inflammation. The 
rats in the normal group were injected with the same amount of phys
iological saline at the same site. 

The rats were randomly divided into four groups after 10 days of FCA 
injection. The two groups were treated with compound 3l (10 and 30 
mg/kg) for 14 days, and the rats in the positive control group were 
treated with indomethacin (10 mg/kg) for 14 days. 

4.12.3. HE staining 
The inflamed contralateral knee joints of the rats were removed, kept 

in 4% paraformaldehyde solution, decalcified with 5% formic acid, and 
then embedded in paraffin. The sections were stained with HE. Histo
pathological changes were observed under an optical microscope. 

4.12.4. In vivo determination of IL-1β, and TNF-α content 
After the rats were anesthetized, blood was collected from the heart 

artery. It was allowed to stand for 30 min. The blood sample was 
centrifuged at 3000 r/min for 10 min at 4 ◦C to collect the serum. The 
serum levels of IL-1β, and TNF-α were determined via ELISA. 

4.12.5. Statistical analysis 
Data are reported as mean ± SEM of at least three independent ex

periments and data analysis was performed with GraphPad Prism 8 
software. 
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