

Tetrahedron Letters 42 (2001) 7011-7014

TETRAHEDRON LETTERS

Stereoelectronic effects in the DIBAL reduction of aryl-1,2-ethanediol benzylidene acetals

Donald R. Gauthier, Jr.,* Ronald H. Szumigala, Jr., Joseph D. Armstrong, III and R. P. Volante

Department of Process Research, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA

Received 3 July 2001; revised 6 August 2001; accepted 8 August 2001

Abstract—Reduction of benzylidene acetal 8 with DIBAL-H selectively gave 4 in 89% yield. 1-Aryl-1,2-diol benzylidene acetals display unusual regioselectivity with electron withdrawing groups on the aryl group. \bigcirc 2001 Elsevier Science Ltd. All rights reserved.

As part of our NK-1 receptor antagonist program, we required primary protected (S)-1-(3,5-bis(trifluoromethyl)phenyl)-1,2-ethanediol **3** (Eq. (1)). In this communication, a synthesis of crystalline (S)-1-(3,5-bis(trifluoromethyl)phenyl)-2-(4-bromobenzyloxy)-1-ethanol (13) from **2** and a study on the stereoelectronic influence of benzylidene acetal reduction are described. A plausible mechanistic rational to explain the unusual regioselectivity of the benzylidene acetal reduction is proposed.

(S)-1-(3,5-Bis(trifluoromethyl)phenyl)-1,2-ethanediol (2, 99% ee) was prepared via Sharpless asymmetric dihydroxylation of 3,5-bis(trifluoromethyl)phenyl styrene.¹ *t*-Butyldimethylsilyl protection (3, P=TBS) was achieved under standard conditions (TBS-Cl, imidazole, DMF, 95%), however, a crystalline intermediate was desired. Several approaches to benzyl protected 3 were explored. Unfortunately, standard benzylation conditions (NaH, BnBr, DMF or Bn-trichloroacetimidate, TMSOTf, THF) did not yield the desired secondary alcohol 4 with satisfactory yield or regioselectivity (Eq. (2)). Epoxide opening of 3,5-bis(trifluoromethyl)phenyl styrene oxide (7) with BnOH afforded a respectable vield and ratio of the desired product (88%, 10:1, 4/5, Eq. (3)). However, asymmetric epoxidation² of 3,5bis(trifluoromethyl)phenyl styrene gave (S)-7 in only 80% ee.³ The benzylidene acetal **8** (1:1 *cis/trans* mixture), prepared in 90% yield from (S)-diol 2, $PhCH(OMe)_2$ and cat. *p*TsOH in toluene, was reduced with DIBAL-H⁴ (2.5 equiv., 0°C) to provide a favorable 17:1 ratio (4/5) of alcohol products (Eq. (4)).⁵ Desired regioisomer (S)-4 was isolated by chromatography in 89% yield as a low melting solid (mp 5–7°C).⁶ In expectation of preparing a higher melting crystalline analogue, we prepared *p*-methoxybenzyl and 4-bromobenzyl protected alcohols 11 and 13 via the respective benzylidene intermediates 9 and 10 (Eq. (5)). The DIBAL-H reduction was faster with 9 (0.5 h) and slower with 10 (3 h) compared to unsubstituted benzylidene 8, however, the regioselective outcome was unperturbed. To our satisfaction, the bromobenzyl-protected diol 13 was isolated as a crystalline solid,⁷ thus providing a means to eliminate chromatographic purification.

* Corresponding author. Tel.: 732-594-4672; fax: 732-594-1499; e-mail: donald_gauthier@merck.com

$$F_{3}C \xrightarrow{0} F_{3}C \xrightarrow{0} F_{3$$

(3)

The reduction of benzylidene acetals to give mono benzyl protected diols is a valu-able reaction for the selective functionalization of organic intermediates.⁸ Benzylidene acetals are generally reduced at the less sterically hindered oxygen, yielding the more hindered alcohol protected as the benzyl ether.⁹ The unusual

Table 1. DIBAL-H (2.5 equiv.) reduction of acetals 15a-h in toluene at $0^{\circ}C$

^a The purified acetals were isolated as a $\sim 1:1$ mixture of diastereomers.

^b Ratios were determined by ¹H NMR of the crude reaction mixtures.

^c Combined unoptimized yield of 16 and 17 after chromatography.

regioselectivity in the reduction of 8, 9 and 10 with the secondary alcohol being the major product, prompted us to explore the electronic effects of aryl group substitution in this reaction.¹⁰ A series of 1-aryl-1,2-ethanediols¹¹ was converted to the benzylidene acetals 15a-h (PhCH(OMe)₂, *p*TsOH in toluene, 23°C) and then reduced with DIBAL-H at 0°C (Table 1).¹² A trend is observed as selectivity for 16 diminishes with attenuated electron withdrawing capacity of the aryl substituent. Electron donating groups (15g and 15h, entries 7 and 8, Table 1) affected only slight preference for 17, the anticipated product based upon sterics.

Lewis acid-mediated nucleophilic additions to acetals have been the focus of significant research effort and several mechanistic investigations have been recently conducted.¹³ A plausible mechanistic rational for the regioselectivity in **8** is outlined in Scheme 1. Lewis acid complex A^1 may be considered higher in energy than B^1 with an electron withdrawing aryl group (Ar). DIBAL is associated with the less hindered oxygen in complex B^1 . Thus, the A^1/B^1 equilibrium should favor B^1 both kinetically and thermodynamically. However, the A^1/B^1

Scheme 1.

ratio appears to be less important in determining the product outcome.¹⁴ Oxocarbenium ion \mathbf{B}^2 is destablized with electron withdrawing groups compared with \mathbf{A}^2 . Thus, the product-determining factor in the reaction pathway depends on the relative stabilities of oxocarbenium ions $\mathbf{A}^2/\mathbf{B}^2$.¹⁵

The cis and trans benzylidene acetals 8a and 8b (Eq. (4)) were separated by column chromatography, assigned by ¹H NMR difference NOE, and subsequently each isomer was reduced. Interestingly, the trans diastereomer was reduced slower (1 h versus 0.5 h) and with enhanced regioselectivity (100:1 versus 9:1).¹⁶ A model is illustrated in Scheme 2 to explain the difference in rate and selectivity. Isomers 8a/8b proceed through diastereomeric Lewis acid complexes A¹ $(trans)/A^1$ (cis) and B^1 (trans)/ B^1 (cis), respectively. These Lewis acid complexes generate the *E*-oxocarbenium ion pairs $A^2 (trans)/A^2 (cis)$ and $B^2 (trans)/B^2$ (cis), which ultimately yield products 4 and 5, respectively. The slower reduction rate observed for 8a can be attributed to the increased steric demand of the coordinated DIBAL. The trans Ar and Ph groups dictate a more congested psuedo-axial/equatorial relationship in complexes A^1 (trans) and B^1 (trans). The enhanced regioselectivity observed for 8a may be due to the non-bonded interactions that impede the C-O bond shortening¹⁷ of the incipient *E*-oxocarbenium ion \mathbf{B}^2 (trans). These non-bonded interactions are absent in the formation of other E-oxocarbenium ions.

We have developed a two-step chromatography-free procedure to make (S)-1-(3,5-bis(trifluoromethyl)-phenyl)-2-(4-bromobenzyloxy)-1-ethanol (13) from (S)-1-(3,5-Bis(trifluoromethyl)phenyl)-1,2-ethanediol (2) via reduction of benzylidene acetal 10. In this work, we report that the electronic nature of aryl-1,2-ethanediols affects the selectivity of the reduction in that opposite regioselectivities dominate with electron withdrawing aryl groups.

Acknowledgements

The authors thank Ms. Lisa DiMichele for NOE experiments on 8a and 8b.

References

- Pye, P. J.; Rossen, K.; Weissman, S. A.; Maliakal, A.; Reamer, R. A.; Ball, R.; Tsou, N. N.; Volante, R. P.; Reider, P. J. *Chem. Eur. J.*, in press.
- Palucki, M.; McCormick, G. J.; Jacobsen, E. N. Tetrahedron Lett. 1995, 36, 5457–5460.
- 3. Mitsonobu cyclodehydration of (S)-diol 2 proceeds with high levels of retention, providing (S)-epoxide 7 in 99% ee, see: Weissman, S. A.; Rossen, K.; Reider, P. J. Org. Lett. 2001, 3, 2513–2515.
- Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983, 1593–1596.
- 5. Solvent effects were briefly explored. The reaction was much slower in THF and faster in DCM, but gave no significant change in the **4:5** ratio.
- 6. Compound (S)-4 (99% ee) was isolated by column chromatography as a low melting solid (mp 5–7°C); ¹H NMR (CDCl₃): δ 7.87 (s, 2H), 7.83 (s, 1H), 7.36 (m, 5H), 5.02 (ddd, J=8.2, 3.6, 3.1 Hz, 1H), 4.62 (s, 2H), 3.71 (dd, J=9.6, 3.6 Hz, 1H), 3.52 (dd, J=9.6, 8.2 Hz, 1H), 3.13 (d, J=3.1 Hz, 1H). ¹³C NMR (CDCl₃): δ 143.1, 137.2, (CF₃: 132.1, 131.7, 131.4, 131.1), 128.5, 128.1, 127.8, 126.4, 124.7, (CF₃C: 122.0, 121.6), 74.9, 73.6, 71.6. The % ee was determined by SFC chromatography using a Chiracel OJ column with a 4–40% MeOH gradient.
- 7. Compound (S)-13 (99% ee) was prepared as follows: A suspension of (S)-diol 2 (2.74 g, 10.0 mmol), 4-bromobenzaldehyde dimethyl acetal (2.77 g, 12.0 mmol) and pTsOH (0.10 g, 0.5 mmol) in toluene (30 mL) was aged for 1 h at 60°C. The solution was concentrated in vacuo (40°C, 50 mmHg) and flushed with one volume of tolu-

ene. The resulting solution was washed with 10% aq. NaHSO₃ (3×30 mL) and saturated brine (15 mL). The solution was azeotropically dried by flushing with one volume of toluene. The solution of 10 (ca. 1:1 mixture of acetal diastereomers) was cooled to 0°C and added 1.0 M DIBAL-H in toluene (25 mL, 25.0 mmol). The solution was aged 18 h at 0°C. The reaction was washed with 10% NaOH (25 mL) and saturated brine (15 mL). The solution was concentrated to a solid. (S)-13 was recrystallized from hexanes (10 mL/g) yielding 3.10 g (70%) of a white solid (mp = 74–75°C). ¹H NMR (CDCl₃): δ 7.83 (s, 2H), 7.80 (s, 1H), 7.47 (d, J=2.1 Hz, 2H), 7.16 (d, J=2.1 Hz, 2H), 5.00 (m, 1H), 4.53 (s, 2H), 3.67 (dd, J=2.4, 0.9 Hz, 1H), 3.48 (t, J=2.2 Hz, 1H), 2.94 (d, J=0.9 Hz, 1H). ¹³C NMR (CDCl₃): δ 142.9, 136.2, (CF₃: 131.9, 131.7, 131.5), 129.4, 126.4, 124.6, (CF₃C: 122.0, 121.9, 121.8), 74.9, 72.8, 71.7.

- Greene, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis, 2nd ed.; New York: Wiley-Interscience, 1991; pp. 128–134.
- The product outcome can be directed with a vicinal functional group via Lewis acid chelation. For example, see: (a) Mikami, T.; Asano, H.; Mitsunobu, O. Chem. Lett. 1987, 2033; (b) Pasto, M.; Moyano, A.; Pericas, M. A.; Riera, A. Tetrahedron: Asymmetry 1995, 6, 2329–2342; (c) Takano, S.; Kurotaki, A.; Sekiguchi, Y.; Satoh, S.; Hirama, M.; Ogasawara, K. Synthesis 1986, 811–817; (d) Flasche, M.; Scharf, H.-D. Tetrahedron: Asymmetry 1995, 6, 1543–1546.
- For examples of reagent controlled regioselection in the reduction of benzylidene protected carbohydrates, see: (a) Garegg, P. J. Pure Appl. Chem. 1984, 56, 845–858; (b) Johansson, R.; Samuelsson, B. J. Chem. Soc., Chem. Commun. 1984, 201–202; (c) Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1984, 2371–2374.
- Diols not commercially available were prepared from the corresponding styrene via OsO₄/NMO oxidation; see: Mukai, C.; Hirai, S.; Hanaoka, M.; *J. Org. Chem.* 1997, 62, 6619–6626.
- 12. All new compounds were fully characterised.

- 13. (a) Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc. 1991, 113, 8089-8110; (b) Denmark, S. E.; Almstead, N. G. J. Org. Chem. 1991, 56, 6485-6487; (c) Denmark, S. E.; Almstead, N. G. J. Org. Chem. 1991, 56, 6458-6467; (d) Denmark, S. E.; Willson, T. M.; Almstead, N. G. J. Am. Chem. Soc. 1989, 111, 9258-9260; (e) Denmark, S. E.; Willson, T. M. J. Am. Chem. Soc. 1989, 111, 3475-3476; (f) Denmark, S. E.; Willson, T. M.; Almstead, N. G. J. Am. Chem. Soc. 1989, 111, 2958; (g) Denmark, S. E.; Wilson, T.; Willson, T. M. J. Am. Chem. Soc. 1988, 110, 984; (h) Sammakia, T.; Smith, R. S. J. Am. Chem. Soc. 1994, 116, 7915-7916; (i) Sammakia, T.; Smith, R. S. J. Am. Chem. Soc. 1992, 114, 10998-10999; (j) Sammakia, T.; Smith, R. S. J. Org. Chem. 1992, 57, 2997-3000; (k) Mori, I.; Ishihara, K.; Flippin, L. A.; Nozaki, K.; Yamamoto, H.; Bartlett, P. A.; Heathcock, C. H. J. Org. Chem. 1990, 55, 6107-6115; (1) Ishihara, K.; Mori, A.; Yamamoto, H. Tetrahedron 1990, 46, 4595; (m) Yamamoto, Y.; Nishii, S.; Yamada, J. J. Am. Chem. Soc. 1986, 108, 7116; (n) Bartels, B.; Hunter, R. J. Org. Chem. **1993**, 58, 6756–6765.
- (a) Leggetter, B. E.; Brown, R. K. Can. J. Chem. 1964, 42, 1005–1008; (b) Leggetter, B. E.; Brown, R. K. Can. J. Chem. 1964, 42, 990–1004; (c) Leggetter, B. E.; Brown, R. K. Can. J. Chem. 1965, 43, 1030–1035.
- 15. Reduction may also occur through intimate ion pairs precluding the formation of solvent separated oxocarbenium ions A^2/B^2 (see Ref. 13). However, the overall electronic consequence is analogous.

$$16 \xrightarrow[Ar]{O}{(Ar)$$

- 16. Epimerization of **8a** or **8b** did not occur during the reaction. Reaction progress and product ratios were determined by HPLC.
- 17. Mori, A.; Fujiwara, J.; Maruoka, K.; Yamamoto, H. J. Organomet. Chem. **1985**, 285, 83–94.