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Stereoelectronic effects in the DIBAL reduction of
aryl-1,2-ethanediol benzylidene acetals
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Abstract—Reduction of benzylidene acetal 8 with DIBAL-H selectively gave 4 in 89% yield. 1-Aryl-1,2-diol benzylidene acetals
display unusual regioselectivity with electron withdrawing groups on the aryl group. © 2001 Elsevier Science Ltd. All rights
reserved.

As part of our NK-1 receptor antagonist program, we
required primary protected (S)-1-(3,5-bis(trifluoro-
methyl)phenyl)-1,2-ethanediol 3 (Eq. (1)). In this com-
munication, a synthesis of crystalline (S)-1-(3,5-bis(tri-
fluoromethyl)phenyl)-2-(4-bromobenzyloxy)-1-ethanol
(13) from 2 and a study on the stereoelectronic influ-
ence of benzylidene acetal reduction are described. A
plausible mechanistic rational to explain the unusual
regioselectivity of the benzylidene acetal reduction is
proposed.

(1)
(S)-1-(3,5-Bis(trifluoromethyl)phenyl)-1,2-ethanediol (2,
99% ee) was prepared via Sharpless asymmetric dihy-
droxylation of 3,5-bis(trifluoromethyl)phenyl styrene.1

t-Butyldimethylsilyl protection (3, P=TBS) was
achieved under standard conditions (TBS-Cl, imidazole,
DMF, 95%), however, a crystalline intermediate was
desired. Several approaches to benzyl protected 3 were
explored. Unfortunately, standard benzylation condi-

tions (NaH, BnBr, DMF or Bn-trichloroacetimidate,
TMSOTf, THF) did not yield the desired secondary
alcohol 4 with satisfactory yield or regioselectivity (Eq.
(2)). Epoxide opening of 3,5-bis(trifluoromethyl)phenyl
styrene oxide (7) with BnOH afforded a respectable
yield and ratio of the desired product (88%, 10:1, 4/5,
Eq. (3)). However, asymmetric epoxidation2 of 3,5-
bis(trifluoromethyl)phenyl styrene gave (S)-7 in only
80% ee.3 The benzylidene acetal 8 (1:1 cis/trans mix-
ture), prepared in 90% yield from (S)-diol 2,
PhCH(OMe)2 and cat. pTsOH in toluene, was reduced
with DIBAL-H4 (2.5 equiv., 0°C) to provide a favor-
able 17:1 ratio (4/5) of alcohol products (Eq. (4)).5

Desired regioisomer (S)-4 was isolated by chromatogra-
phy in 89% yield as a low melting solid (mp 5–7°C).6 In
expectation of preparing a higher melting crystalline
analogue, we prepared p-methoxybenzyl and 4-bromo-
benzyl protected alcohols 11 and 13 via the respec-
tive benzylidene intermediates 9 and 10 (Eq. (5)). The
DIBAL-H reduction was faster with 9 (0.5 h) and
slower with 10 (3 h) compared to unsubstituted benzyl-
idene 8, however, the regioselective outcome was unper-
turbed. To our satisfaction, the bromobenzyl-protected
diol 13 was isolated as a crystalline solid,7 thus provid-
ing a means to eliminate chromatographic purification.

(2)
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(3)

The reduction of benzylidene acetals to give mono
benzyl protected diols is a valu-able reaction for the
selective functionalization of organic intermediates.8

Benzylidene acetals are generally reduced at the less
sterically hindered oxygen, yielding the more hindered
alcohol protected as the benzyl ether.9 The unusual

regioselectivity in the reduction of 8, 9 and 10 with the
secondary alcohol being the major product, prompted
us to explore the electronic effects of aryl group substi-
tution in this reaction.10 A series of 1-aryl-1,2-
ethanediols11 was converted to the benzylidene acetals
15a–h (PhCH(OMe)2, pTsOH in toluene, 23°C) and
then reduced with DIBAL-H at 0°C (Table 1).12 A
trend is observed as selectivity for 16 diminishes with
attenuated electron withdrawing capacity of the aryl
substituent. Electron donating groups (15g and 15h,
entries 7 and 8, Table 1) affected only slight preference
for 17, the anticipated product based upon sterics.

Lewis acid-mediated nucleophilic additions to acetals
have been the focus of significant research effort and
several mechanistic investigations have been recently
conducted.13 A plausible mechanistic rational for the
regioselectivity in 8 is outlined in Scheme 1. Lewis acid
complex A1 may be considered higher in energy than B1

with an electron withdrawing aryl group (Ar). DIBAL
is associated with the less hindered oxygen in complex
B1. Thus, the A1/B1 equilibrium should favor B1 both
kinetically and thermodynamically. However, the A1/B1

(4)

(5)

Table 1. DIBAL-H (2.5 equiv.) reduction of acetals 15a–h
in toluene at 0°C

15a R Ratio 16:17bEntry Yield (%)c

a Perfluoro 8.2:1 701
b 3-CF32 3.9:1 95

3 872.0:14-Fc
4-Cld 2.6:14 78

5 e 4-Br 2.5:1 83
f H 1.3:16 90
g 3-Me7 1:1.1 78

8 h 4-MeO 1:3 83

a The purified acetals were isolated as a �1:1 mixture of
diastereomers.

b Ratios were determined by 1H NMR of the crude reaction mixtures.
c Combined unoptimized yield of 16 and 17 after chromatography.

Scheme 1.
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Scheme 2.

ratio appears to be less important in determining the
product outcome.14 Oxocarbenium ion B2 is destablized
with electron withdrawing groups compared with A2.
Thus, the product-determining factor in the reaction
pathway depends on the relative stabilities of oxocarbe-
nium ions A2/B2.15

The cis and trans benzylidene acetals 8a and 8b (Eq.
(4)) were separated by column chromatography,
assigned by 1H NMR difference NOE, and subse-
quently each isomer was reduced. Interestingly, the
trans diastereomer was reduced slower (1 h versus 0.5
h) and with enhanced regioselectivity (100:1 versus
9:1).16 A model is illustrated in Scheme 2 to explain the
difference in rate and selectivity. Isomers 8a/8b proceed
through diastereomeric Lewis acid complexes A1

(trans)/A1 (cis) and B1 (trans)/B1 (cis), respectively.
These Lewis acid complexes generate the E-oxocarbe-
nium ion pairs A2 (trans)/A2 (cis) and B2 (trans)/B2

(cis), which ultimately yield products 4 and 5, respec-
tively. The slower reduction rate observed for 8a can be
attributed to the increased steric demand of the coordi-
nated DIBAL. The trans Ar and Ph groups dictate a
more congested psuedo-axial/equatorial relationship in
complexes A1 (trans) and B1 (trans). The enhanced
regioselectivity observed for 8a may be due to the
non-bonded interactions that impede the C�O bond
shortening17 of the incipient E-oxocarbenium ion B2

(trans). These non-bonded interactions are absent in the
formation of other E-oxocarbenium ions.

We have developed a two-step chromatography-free
procedure to make (S)-1-(3,5-bis(trifluoromethyl)-
phenyl)-2-(4-bromobenzyloxy)-1-ethanol (13) from (S)-
1-(3,5-Bis(trifluoromethyl)phenyl)-1,2-ethanediol (2) via
reduction of benzylidene acetal 10. In this work, we
report that the electronic nature of aryl-1,2-ethanediols
affects the selectivity of the reduction in that opposite
regioselectivities dominate with electron withdrawing
aryl groups.
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