

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Selective α-Monomethylation by an Amine–Borane/N,N-Dimethylformamide System as the Methyl Source

Authors: Hui-Min Xia, Feng-Lian Zhang, Tian Ye, and Yi-Feng Wang

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201804794 Angew. Chem. 10.1002/ange.201804794

Link to VoR: http://dx.doi.org/10.1002/anie.201804794 http://dx.doi.org/10.1002/ange.201804794

WILEY-VCH

WILEY-VCH

Selective α -Monomethylation by an Amine–Borane/N,N-**Dimethylformamide System as the Methyl Source**

Hui-Min Xia,^[†] Feng-Lian Zhang,^[†] Tian Ye, and Yi-Feng Wang*

Abstract: A new and practical α -monomethylation strategy using an amine-borane/N.N-dimethylformamide (R₃N-BH₃/DMF) system as the methyl source was developed. This protocol has been found to be effective in the α -monomethylation of arylacetonitriles and arvlacetamides. Mechanistic studies revealed that the formyl group of DMF delivered the carbon and one hydrogen atoms of the methyl group, and R₃N-BH₃ donated the remaining two hydrogen atoms. Such a unique reaction pathway enabled controllable assemblies of CDH₂-, CD₂H-, and CD₃- units using Me₂NH-BH₃/d₇-DMF, Me₃N-BD₃/DMF and Me₃N-BD₃/d₇-DMF systems, respectively. Further application of this method to the facile synthesis of anti-inflammatory flurbiprofen and its varied deuterium-labeled derivatives was demonstrated.

The methyl group has become a privileged functionality in medicinal chemistry and the pharmaceutical industry, owing to the magic methyl effect.^[1] Furthermore, deuterium-labeled compounds have been gaining increasing interest in medicinal chemistry.^[2] Deutetrabenazine is the first deuterated drug that has recently been approved by Food and Drug Administration to treat Huntigton's chorea.^[3] Meanwhile, a large number of deuterated drugs have already reached clinic trials.^[4] Therefore, the development of robust methylation methods, which are also capable of installing deuterated methyl groups with ease, has been recognized as a highly applicable goal in synthetic and medicinal chemistry. In particular, approaches that can precisely incorporate partially deuterium-labeled methyl groups (CD₂H and CDH₂) into molecules are arguably more desirable, since such functionalities are potentially useful in nuclear magnetic resonance,^[5] mass spectroscopy,^[6] and mechanistic and metabolic studies.^[7] However, their synthesis remains a challenging synthetic problem.^[8]

Selective C-monomethylation of active methylene compounds, such as alkyl nitriles and alkyl amides, is an important transformation in chemical synthesis. For example, the amonomethylation of arylacetonitriles represents one of the most appealing routes to make 2-arylpropionitriles.^[9] which are a class of important precursors of anti-inflammatory 2-arylpropionic acids, including ibuprofen, naproxen, and flurbiprofen. However, such a process has been rarely applied in the pharmaceutical

[*]	HM. Xia, ^[†] Dr. FL. Zhang, ^[†] T. Ye, Prof. Dr. YF. Wang
	Hefei National Laboratory for Physical Sciences at the Microscale,
	Center for Excellence in Molecular Synthesis of CAS, and
	Department of Chemistry
	University of Science and Technology of China
	96 Jinzhai Road, Hefei, Anhui 230026 (China)
	E-mail: yfwangzj@ustc.edu.cn
	Prof. Dr. YF. Wang
	State Key Laboratory of Elemento-Organic Chemistry
	Nankai University
	Tianjin 300071 (China)
[†]	These authors contributed equally to this work.

Supporting information for this article is given via a link at the end of [**] the document.((Please delete this text if not appropriate))

industry, largely due to the lack of highly efficient and selective monomethylation methods.^[9,10] The classical methylation reactions with electrophilic methylating agents (methyl halides and dimethyl sulfate) and bases often suffered from the formation of dimethylated side products (Scheme 1a).^[9] Direct αmonomethylation has previously been achieved with high using carbonate^[11] selectivity dimethyl or trimethyl orthoformate^[12] as the methyl source. However, high temperatures (150-210 °C) were required, thereby limiting its applicability. Recently, transition metal-catalyzed hydrogenborrowing reactions using methanol as the methyl source has been reported for methylation reactions.^[13] Nevertheless, only limited studies on a-methylation of arylacetonitriles have been described, mainly employing Ru,^[14] Ir,^[15] or Co^[16] complexes as the catalysts. Herein, we report a new α-monomethylation readily available amine-borane/N,Nprotocol usina dimethylformamide (R₃N-BH₃/DMF) system as the methyl source. The formyl group of DMF delivers the carbon and one hydrogen atoms of the methyl group, and R₃N-BH₃ donates the remaining two hydrogen atoms (Scheme 1b). Significantly, such a unique reaction pathway allows for the controllable installation of CDH₂-, CD₂H-, CD₃, and ¹³CD₂H motifs into products.

Scheme 1. The α -methylation of anylacetonitriles

During our studies of radical reactions of Lewis base-boryl radicals with nitriles,[17] we serendipitously found that the reaction of 2-naphthylacetonitrile (1a) and pyridine-BH3 in the presence of 2,2-azobis(isobutyronitrile) (AIBN) and t-BuOK gave 2-(naphthalen-2-yl)propanenitrile (2a) in 53% yield (Table 1, entry 1). The reaction proceeded effectively as well without the addition of AIBN (entry 2), which might exclude the mechanism involving the pyridine-boryl radical.^[17c,18] Notably, no product formation was observed when the reaction was carried out in dimethyl sulfoxide (DMSO) as the solvent instead of N,Ndimethylformamide (DMF) (entry 3) or in the absence of pyridine-BH₃ (entry 4), suggesting that the methyl group should originate from the combination of DMF and pyridine-BH₃. DMF is an abundant raw material and has been shown to be a versatile synthon for a variety of functional groups,^[19] whereas its combination with a Lewis base-BH3 serving as the methyl precursor has not been reported yet. We envisioned that such a unique reaction system could provide a conceptually distinct methylation protocol. Thus, we decided to further optimize the reaction conditions.

Firstly, a range of Lewis base ligated boranes were examined (Table 1). As a result, PPh₃, Me₂S, and R₃N ligated borane complexes were found to be capable of promoting the methylation of 1a (entries 5-9), among which Me₂NH-BH₃ proved to be the most effective one, giving 2a in 92% yield (entry 8). Then, the effect and role of bases were tested. At first, to rule out the influence by adventitious transition metal impurities in bases, t-BuOK with 99.99% purity (purchased from Sigma-Aldrich) was used, which gave a similar result (entry 9 vs entry 10). The utilization of K₂CO₃ as the base was unable to induce the present reaction (entry 11), implying that the deprotonation of arylactonitrile 1a would be a key step to initiate the reaction process. Switching the base to NaOH led to 2a in 47% yield (entry 12). Finally, t-BuONa was found to be the optimal base that could give 2a in 92% yield within 10 min of the reaction time (entry 13). Reducing the amount of Me₂NH-BH₃ to 1 equiv maintained a good yield (entry 14), and a gram scale reaction afforded 2a in 90% yield as well (entry 15). Using DMF as a reagent (4 equiv) and DMSO as the solvent, the reaction proceeded smoothly, delivering 2a in 91% yield (entry 16).

Table 1. Optimization of the α -methylation conditions^[a]

ſ	Lew	is base-BH ₃ (x e base (1.5 equiv)	quiv)	CH ₃
		conditions	\rightarrow	
1a				2a
entry	$LB-BH_3$ (x equiv)	base	conditions	yield ^[b] (%)
1 ^[c]	pyridine–BH ₃ (1.5)	<i>t</i> -BuOK	DMF, 2 h	53 (23) ^[d]
2	pyridine–BH ₃ (1.5)	<i>t</i> -BuOK	DMF, 2 h	50 (20) ^[d]
3	pyridine–BH ₃ (1.5)	<i>t</i> -BuOK	DMSO, 2 h	0 (87) ^[d]
4		<i>t</i> -BuOK	DMF, 2 h	0 (98) ^[d]
5	Ph₃P–BH₃ (1.5)	<i>t</i> -BuOK	DMF, 2 h	46 (8) ^[d]
6	Me ₂ S–BH ₃ (1.5)	<i>t</i> -BuOK	DMF, 10 min	64
7	NH ₃ –BH ₃ (1.5)	<i>t</i> -BuOK	DMF, 2 h	78 (15) ^[d]
8	Me ₂ NH–BH ₃ (1.5)	<i>t</i> -BuOK	DMF, 1 h	92 ^[f]
9	Me ₃ N–BH ₃ (1.5)	<i>t</i> -BuOK	DMF, 1 h	71
10	Me ₃ N–BH ₃ (1.5)	<i>t</i> -BuOK ^[e]	DMF, 1 h	74
11	Me ₂ NH–BH ₃ (1.5)	K ₂ CO ₃	DMF, 27 h	0 (88) ^[d]
12	Me ₂ NH–BH ₃ (1.5)	NaOH	DMF, 7 h	47 (40) ^[d]
13	Me ₂ NH–BH ₃ (1.5)	t-BuONa	DMF, 10 min	92 ^[f]
14	Me ₂ NH–BH ₃ (1.0)	<i>t</i> -BuONa	DMF, 10 min	92 ^[f]
15 ^[g]	Me ₂ NH–BH ₃ (1.0)	t-BuONa	DMF, 1 h	90 ^[f]
16 ^[h]	Me ₂ NH–BH ₃ (1.0)	t-BuONa	DMSO, 3 h	91 ^[f]

[a] The reactions were carried out using 0.2-0.3 mmol of **1a** at 80 °C under N₂. [b] ¹H NMR yield using tetrachloroethane as an internal standard. [c] AIBN (20 mol%) was used. [d] Recovery yield of **1a** is shown in parentheses. [e] *t*-BuOK (99.99% purity) was used. [f] Isolated yield. [g] A gram scale reaction of **1a**. [h] DMF (4 equiv) was added.

Using the optimized reaction conditions, we next investigated the generality of this methylation protocol. A variety of arylacetonitriles were methylated with Me₂NH–BH₃/DMF system to furnish the desired products (Scheme 2). Noticeably, in all cases only monomethylated products were obtained without the detection of any traces of dimethylated ones. Aryl ring bearing a wide range of functional groups could be converted to methylated products **2b-k** in good to excellent yields. The substrate bearing an alkene (for **1I**) or alkyne (for **1m**) tether was monomethylated in moderate yields, and no hydroboration product was observed in both cases. Remarkably,

potentially reactive nucleophilic functional groups, including free aniline (for 2n), N-H amide (for 2o, 2p), and alcohol (for 2q) were well tolerated, without the need for protecting groups. A carboxylic acid (for 2r) moiety was also tolerated without protection, even though 2.5 equiv of t-BuONa was required. Furthermore, a range of 2-heteroarylpropanenitriles bearing benzothiophene (for 2s), indole (for 2t), qunioline (for 2u), and pyridine (for 2v, 2w) motifs were produced in good yields. As for the limitation, the methylation of alkylnitrile 1x was unsuccessful, presumably due to the lower acidity of the α-methylene group.^[20] In addition to arylacetonitriles, 2-phenylacetamide could be monomethylated to give the desired product 2y in 68% yield. However, when ethyl 2-phenylacetate was subjected to the reaction conditions, a facile hydrolysis occurred to afford 2phenylacetic acid in 70% yield, [21] while the methylated product 2z was observed in 8% yield.

Scheme 2. Substrate scope. Reaction conditions: **1** (0.4-0.5 mmol), Me_2NH-BH_3 (1.0 equiv), *t*-BuONa (1.5 equiv) in DMF at 80 °C under N₂ atmosphere. [a] *t*-BuONa (2.5-3.0 equiv) was used. [b] The reaction was performed using *t*-BuOK (3.0 equiv) and Me_3N-BH_3 (2.5 equiv) at 120 °C for 11 h. [c] 2-phenylacetic acid derived from the hydrolysis of **1z** was formed in 70% yield.

To clarify the source of the methyl group, several mechanistic investigations were conducted (Scheme 3). First, to determine whether the methyl group is from the *N*-Me unit, ^[19c-19f, 22] a control experiment was tested using *N*,*N*-dimethylacetamide

(DMA) as the solvent instead of DMF. As a result, an ethylated product **3** was isolated in 68% yield, and no methylated product **2a** was observed. This implied that the *N*-Me group of DMF and DMA was unlikely to be transferred to the product. When DMF-(carbonyl-¹³C) was utilized, a ¹³C-labeled methylated product **2a**-**C** was formed in 69% yield. This strongly supported that the methyl carbon atom originated from the DMF formyl group. The employment of *d*₇-DMF as a reagent afforded **2a-D** in 92% yield with the installation of single D atom (>98% D₁-incorporation),^[23] suggesting that the formyl hydrogen atom was most likely transferred to the newly formed methyl group. Furthermore, using Me₃N–BD₃^[24] as the D source, **2a-D**₂ having two deuterium atoms (>98% D₂-incorporation)^[23] was obtained in 95% yield, which indicated that two hydrogen atoms of the methyl group came from the amine–borane complex.

Scheme 3. Mechanistic studies to clarify the source of the methyl group

Based on these findings, a plausible mechanism for the methylation reaction is outlined in Scheme 4a. 2-Naphthylacetonitrile (1a) is first deprotonated by *t*-BuONa to generate a stabilized carbon anion I, which attacks the formyl group of DMF to afford hemiaminal II. Removing the hydroxyl group followed by hydride reduction of the resulting iminium intermediate III gives α -dimethylaminomethyl substituted arylacetonitrile IV. An E1cB elimination of Me₂NH occurs to afford acrylonitrile V, a further hydride reduction of which furnishes the methylated product 2a.

To support this proposed mechanism as well as to rationalize why the dimethylation can be prevented under the optimized reaction conditions, additional mechanistic studies were performed. As shown in Scheme 4b, when the reaction was extended to 7 h, besides 2a (81% yield), product 4 bearing a dimethylaminomethyl group was formed in 4% yield. A further study showed that 2a could be partially converted to 4 under the standard reaction conditions with prolonged reaction time. The dimethylaminomethyl group in 4 was derived from the reaction of 2a with DMF followed by a hydride reduction of the iminium intermediate VI. This suggested that a similar reductive dimethylaminomethylation of 1a might occur to generate intermediate IV. In addition, we attempted to detect acrylonitrile V in the reaction process, but all were unsuccessful. Fortunately, when the reaction of 1y was stopped in 5 h, phenylacrylamide 5 was isolated in 13% yield (Scheme 4c).[25] This implied the intermediacy of V in the methylation process. Finally, a control experiment showed that reduction of acrylonitrile V took place under the standard reaction conditions, giving 2a in 61% yield (Scheme. 4d), which verified the final hydride reduction reaction in the proposed mechanism.^[26] The formation of 4 also indicated that the further reaction of the α -monomethylated product 2a

with amine-borane/DMF system was possible, but it was much slower than the first methylation reaction, probably due to the increased steric hindrance of **2a** that prohibits nucleophilic addition to DMF.

Scheme 4. A proposed mechanism and mechanistic details

Table 2. Selective synthesis of CDH2- and CD2H-substituted 2-arylpropionitriles $^{[a][b]}$

[a] Reaction conditions for the synthesis of **2-D**₁: **1** (0.2-0.3 mmol), Me₂NH–BH₃ (1.0 equiv), t-BuONa (1.5 equiv), d₇-DMF (4.0 equiv) in DMSO at 80 °C under N₂ atmosphere. Reaction conditions for the synthesis of **2-D**₂: **1** (0.2-0.3 mmol), Me₃N–BD₃ (3.0 equiv), t-BuONa (1.5 equiv) in DMF at 80 °C under N₂ atmosphere. [b] Deuterium incorporation was determined by ¹H NMR spectroscopic analysis.

A remarkable advantage of the present methylation method lies in its ability to precisely control the numbers of deuterium atom incorporated into the methyl group. For example, using Me₂NH–BH₃/d₇-DMF system affords a CDH₂ unit, while the employment of Me₃N–BD₃/DMF delivers a CD₂H motif. As shown in Table 2, both systems worked well for the synthesis of a range of CDH₂- and CD₂H-containing nitriles with exceptionally high levels of D-incorporation.

Notably, the present protocol was also able to make mixed methyl- 13 C/D isotopologues using DMF-(carbonyl- 13 C) and Me₃N–BD₃ as the methyl source. As depicted in Scheme 5, a series of arylacetonitriles **6** bearing a 13 CD₂H group were assembled in moderate to good yields with high levels of D-incorporation.

Scheme 5. Synthesis of mixed methyl-¹³C/D isotopologues

Given the versatility of the cyano group,^[27] the formed Dcontaining nitriles could be easily converted to a broad range of useful D-handled building blocks. Using **2a-D**₁ and **2a-D**₂ as model substrates, a variety of CDH₂- and CD₂H-substituted carboxylic acids, amides, amines, and ketones were obtained in good yields with the maintenance of excellent levels of D content (Scheme 6). These D-labeled synthons were difficult to access by existing D-incorporation methods,^[8,28] and they may have potential applications in various fields.

 $\begin{array}{l} \label{eq:scheme 6.} \mbox{ Diversified transformations to produce various CDH_2- and CD_2H-containing building blocks. Reaction conditions: a) NaOH, EtOH/H_2O, 110 <math display="inline">^\circ C$, 5 h, then 1N H_2SO4; b) NaOH, H_2O2 (8 equiv.), MeOH, rt, 6 h; c) LiAlH_4 (2 equiv.), Et_2O, rt, 24 h; d) PhB(OH)_2 (2 equiv.), Ni(dippe)Cl_2 (5 mol%), ZnCl_2 (1.5 equiv.), H_2O (1.0 equiv.), 1,4-dioxane, 80 $^\circ C$, 12 h.

Eventually, we showed the utility of our method in the synthesis of anti-inflammatory flurbiprofen^[29] and its D-labeled derivatives (Scheme 7). Arylacetonitrile **1aa** was first monomethylated using the present protocol followed by hydrolysis, giving flurbiprofen in 92% yield (two steps). Furthermore, CDH₂-, CD₂H-, and CD₃-substituted flurbiprofen were selectively accessed in both good yields and high levels of D-incorporation using Me₂NH–BH₃/d₇-DMF, Me₃N–BD₃/DMF, and Me₃N–BD₃/d₇-DMF systems, respectively.

WILEY-VCH

Scheme 7. Synthesis of flurbiprofen and its D-containing analogues. Reaction conditions: a) Me_2NH -BH₃ (1 equiv), *t*-BuONa (1.5 equiv), DMF, 80 °C, 3 h; b) Me_2NH -BH₃ (1 equiv), *t*-BuONa (1.5 equiv), *d*₇-DMF, 80 °C, 5 h; c) Me_3N -BD₃ (1 equiv), *t*-BuONa (1.5 equiv), *d*₇-DMF, 80 °C, 9 h; d) Me_3N -BD₃ (4 equiv), *t*-BuONa (2.5 equiv), *d*₇-DMF, 100 °C, 40 min; e) NaOH, EtOH/H₂O, 110 °C, 5 h, then 1N H₂SO₄. Deuterium incorporation was determined by ¹H NMR spectroscopic analysis.

In summary, we have developed a new protocol using R₃N–BH₃/DMF as the methyl source for the selective monomethylation of arylacetonitriles and arylacetamides. The reaction proceeds under mild reaction conditions with exclusive monomethylation selectivity. Significantly, selective installation of CDH₂, CD₂H, CD₃ and ¹³CD₂H units into the products with high level of D-incorporation has also achieved by tuning the deuterium sources. Using this strategy, varied D-labeled 2-arylpropionic acids have been readily accessed. We are continuously working to explore further methylation reactions using this R₃N–BH₃/DMF system as the methyl source.

Acknowledgements

This work was supported by the University of Science and Technology of China, NSFC (21672195 and 21702201), the Fundamental Research Funds for the Central Universities (WK2060190082), and Recruitment Program of Global Experts. F.-L.Z. is grateful for the grant from the China Postdoctoral Science Foundation (2016M602014). We thank Prof. Shunsuke Chiba (Nanyang Technological University, Singapore) for valuable suggestions.

Conflict of interest

The authors declare no conflict of interest.

Keywords: synthetic methods • methylation • 2-arylpropionitriles • *N*,*N*-dimethylformamide • deuterium labeling• deuterated methyl groups

[1] a) H. Schönherr, T. Cernak, Angew. Chem. 2013, 125, 12480–12492;
Angew. Chem. Int. Ed. 2013, 52, 12256–12267; b) E. J. Barreiro, A. E. Kümmerle, C. A. M. Fraga, Chem. Rev. 2011, 111, 5215–5246. c) C. S. Leung, S. S. F. Leung, J. Tirado-Rives, W. L. Jorgensen, J. Med. Chem. 2012, 55, 4489-4500. d) T. Hong, F. Wu, B. Fu, Y. Yuan, J. Xu, T. Wang, X. Zhou, Chin. J. Chem. 2017, 35, 853–856.

[2] a) J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. 2018, 130, 1774–1802; Angew. Chem. Int. Ed. 2018, 57, 1758–1784; b) T. G. Gant, J. Angewandte Chemie International Edition

COMMUNICATION

10.1002/anie.201804794

Med. Chem. **2014**, *57*, 3595–3611; c) S. L. Harbeson, R. D. Tung, *Med. Chem. News* **2014**, 8–22; d) A. Katsnelson, *Nat. Med.* **2013**, *19*, 656–656; e) N. A. Meanwell, *J. Med. Chem.* **2011**, *54*, 2529–2591; f) S. Katharine, *Nature* **2009**, *458*, 269.

[3] C. Schmidt, Nat. Biotechnol. 2017, 35, 493.

[4] a) G. S. Timmins, Expert Opin. Ther. Pat. 2017, 27, 1353-1361; b) A.

Mullard, Nat. Rev. Drug Discov. 2016, 15, 219-221.

[5] V. Agarwal, A. Diehl, N. Skrynnikov, B. Reif, J. Am. Chem. Soc. 2006, 128, 12620–12621.

[6] J. Atzrodt, V. Derdau, J. Labelled Compd. Radiopharm. 2010, 53, 674–685.
[7] a) E. M. Simmons, J. F. Hartwig, Angew. Chem. 2012, 124, 3120–3126; Angew. Chem. Int. Ed. 2012, 51, 3066–3072; b) E. M. Isin, C. S. Elmore, G. N. Nilsson, R. A. Thompson, L. Weidolf, Chem. Res. Toxicol. 2012, 25, 532–542; c) S. D. Nelson, W. F. Trager, Drug Metab. Dispos. 2003, 31, 1481–1497.

[8] a) V. Soulard, G. Villa, D. P. Vollmar, P. Renaud, J. Am. Chem. Soc. 2018, 140, 155–158; b) W. Kong, Q. Wang, J. Zhu, Angew. Chem. 2017, 129, 4045–4049; Angew. Chem. Int. Ed. 2017, 56, 3987–3991; c) Y. Ito, M. Yoshimatsu, Org. Chem. Front. 2015, 2, 201–205; c) J.-R. Zhang, L. Xu, Y.-Y. Liao, J.-C Deng, R.-Y. Tang, Chin. J. Chem. 2017, 35, 271–279; d) H. Zhuang, R. Zeng, J. Zou, Chin. J. Chem. 2016, 34, 368–372.

[9] J.-P. Rieu, A. Boucherle, H. Cousse, G. Mouzin, Tetrahedron 1986, 42,

4095–4131.

[10] M. Selva, A. Perosa, *Green Chem.* **2008**, *10*, 457–464.

[11] a) P. Tundo, M. Selva, Acc. Chem. Res. 2002, 35, 706–716; b) J. Molleti,
 G. D. Yadav, Mol. Catal. 2017, 438, 66–75.

[12] M. Selva, P. Tundo, J. Org. Chem. 1998, 63, 9540–9544.

[13] For recent reviews, see: a) K. Natte, H. Neumann, M. Beller, R. V. Jagadeesh, Angew. Chem. 2017, 129, 6482–6492; Angew. Chem. Int. Ed. 2017, 56, 6384–6394. b) F. Huang, Z. Liu, Z. Yu, Angew. Chem. 2016, 128, 872–885; Angew. Chem. Int. Ed. 2016, 55, 862–875.

[14] a) K. Motokura, D. Nishimura, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2004, 126, 5662–5663; b) S. Ogawa, Y. Obora, Chem. Commun. 2014, 50, 2491–2493; c) K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani, K. Jitsukawa, K. Kaneda, Chem. Eur. J. 2006, 12, 8228–8239. d) Z. Liu, Z. Yang, X. Yu, H. Zhang, B. Yu, Y. Zhao, Z. Liu, Org. Lett. 2017, 19, 5228–5231. e) S. Thiyagarajan, C. Gunanathan, ACS Catalysis 2017, 7, 5483–5490.

[15] S. Ogawa, Y. Obora, Chem. Commun. 2014, 50, 2491-2493

[16] Z. Liu, Z. Yang, X. Yu, H. Zhang, B. Yu, Y. Zhao, Z. Liu, Org. Lett. 2017, 19, 5228–5231.

[17] a) T. Kawamoto, S. J. Geib, D. P. Curran, J. Am. Chem. Soc. 2015, 137, 8617–8622. b) S.-C. Ren, F.-L. Zhang, J. Qi, Y.-S. Huang, A.-Q. Xu, H.-Y. Yan, Y.-F. Wang, J. Am. Chem. Soc. 2017, 139, 6050–6053; c) Y.-J. Yu, F.-L. Zhang, J. Cheng, J.-H. Hei, W.-T. Deng, Y.-F. Wang, Org. Lett. 2018, 20, 24–27.

[18] J. Lalevée, N. Blanchard, M.-A. Tehfe, A.-C. Chany, J.-P. Fouassier, *Chem. Eur. J.* **2010**, *16*, 12920–12927.

[19] For recent reviews, see: a) S. Ding, N. Jiao, Angew. Chem. 2012, 124, 9360–9371; Angew. Chem. Int. Ed. 2012, 51, 9226–9237; b) J. Muzart, Tetrahedron 2009, 65, 8313–8323; For leading reports on the use of DMF for methylation and methylenation reactions under oxidative contidions, in which the N-Me group of DMF provided the carbon atom, see: c) Y. Li, D. Xue, W. Lu, C. Wang, Z.-T. Liu, J. Xiao, Org. Lett. 2014, 16, 66–69; d) J. Liu, H. Yi, X. Zhang, C. Liu, R. Liu, G. Zhang, A. Lei, Chem. Commun. 2014, 50, 7636-7638; e) S. Mondal, S. Samanta, S. Santra, A. K. Bagdi, A. Hajra, Adv. Synth. Catal. 2016, 358, 3633–3641; f) F. Pu, Y. Li, Y.-H. Song, J. Xiao, Z.-W. Liu, C. Wang, Z.-T. Liu, J.-G. Chen, J. Lu, Adv. Synth. Catal. 2016, 358, 539–542.

[20] The reaction using stronger bases gave no desired methylated product as well. See Supporting Information for details.

[21] In this reaction, DMF was distilled from CaH₂ and was used immediately.

[22] T. Uemura, M. Yamaguchi, N. Chatani, Angew. Chem. 2016, 128, 3214-

3217; Angew. Chem. Int. Ed. 2016, 55, 3162-3165.

[23] Deuterium incorporation was determined by ¹H NMR spectroscopic analysis.

[24] R. E. Davis, A. E. Brown, R. Hopmann, C. L. Kibby, *J. Am. Chem. Soc.* **1963**, *85*, 487-487.

[25] The use of 2.5 equiv of Me_3N-BH_3 and extension of the reaction time to 11 h led to 2y in 68% isolated yield with the full consumption of 5. See Scheme 2 and Supporting Information.

[26] a) R. O. Hutchins, K. Learn, B. Nazer, D. Pytlewski, A. Pelter, *Org. Prep. Proced. Int.* **1984**, *16*, 335–372; b) A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, *Chem. Rev.* **2010**, *110*, 4023–4078.

[27] K. Friedrich, K. Wallenfels, *The Chemistry of the Cyano Group*, Wiley-Interscience, New York, **1970**.

[28] For recent reviews on hydrogen isotope exchange reactions, see: a) J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. 2018, 130, 3074–3101; Angew. Chem. Int. Ed. 2018, 57, 3022–3047. b) J. Atzrodt, V. Derdau, J. Labelled Compd. Radiopharm. 2010, 53, 674–685; c) J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, Angew. Chem. 2007, 119, 7890–7911; Angew. Chem. Int. Ed. 2007, 46, 7744–7765; d) T. Junk, W. J. Catallo, Chem. Soc. Rev. 1997, 26, 401–406.

[29] For selected recent examples on the synthesis of flurbiprofen, see: a) R.
 Shang, D.-S. Ji, L. Chu, Y. Fu, L. Liu, *Angew. Chem.* 2011, 123, 4562–4566;
 Angew. Chem. Int. Ed. 2011, 50, 4470–4474; b) K. W. Quasdorf, M. Riener, K.
 V. Petrova, N. K. Garg, *J. Am. Chem. Soc.* 2009, 131, 17748–17749.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents (Please choose one layout)

COMMUNICATION

Layout 2:

COMMUNICATION

An unprecedented and practical methylation protocol using a R_3N-BH_3/DMF system as the methyl source has been developed for the selective α -monomethylation of arylacetonitriles and arylacetamides. The formyl group of DMF delivers the carbon and one hydrogen atoms of the methyl group, and R_3N-BH_3 donates the remaining two hydrogen atoms. Such a cooperative manner enabled controllable assemblies of CDH₂-, CD₂H-, CD₃-, and ¹³CD₂H- units by tuning deuterium sources.

Hui-Min Xia, Feng-Lian Zhang, Tian Ye, and Yi-Feng Wang*

Page No. – Page No.Selective α-Monomethylation by an
Amine–Borane/N,N-Dimethylformamide System as the
Methyl Source