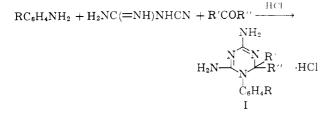
Anthelmintic Agents. 1,2-Dihydro-s-Triazines¹


BARBARA ROTH, ROBERT B. BURROWS, AND GEORGE H. HITCHINGS

The Wellcome Research Laboratories, Burroughs Wellcome & Co., Tackuhoc, New York

Received January 11, 1963

A series of 1-aryl-4,6-diamino-1,2-dihydro-s-triazines which contain *ortho*-substituents in the benzene ring, or bulky groups in the 2-position of the dihydrotriazine ring, is described. Such compounds have been found to have high anthelmintic activity against intestinal parasites and negligible microbiological activity. This is in contrast to the related compounds without the sterically hindering substituents, which have been found by various groups in the past to be potent antimicrobial agents.

In the course of some chemical studies with a series of 2,6-diamino-5-(*ortho*-substituted phenyl)-4,5-dihydropyrimidines,² it became of interest to prepare some of the corresponding dihydrotriazines for comparative purposes. Carrington, Crowther, and co-workers³⁻⁵ and Modest and co-workers⁶⁻⁸ have prepared a large number of 1-aryl-4,6-diamino-1,2-dihydro-s-triazines by the condensation of biguanides with ketones or aldehydes, or by a one step reaction in which aromatic amines are heated with dicyandiamide in the presence of ketones or aldehydes. 1-(*p*-Chlorophenyl)-4,6-di-

amino-1,2-dihydro-2,2-dimethyl-s-triazine (I, R = p-Cl, R' and R'' = CH₃) was found by the investigators at the Imperial Chemical Industries, Ltd., to be the active metabolite of the antimalarial drug chlorguanide (N¹ - (p - chlorophenyl) - N⁵ - isopropylbiguanide).^{3,9} A considerable number of compounds of this type have been demonstrated to possess activity against experimental avian and rodent malaria.^{5,10} activity against coecidiosis in chicks,^{11,12} anti-folic acid activity in microbiological systems,^{6,13-15} antibacterial activity against certain pathogenic bacteria,^{16,17} antitumor activity

(1) Presented in part at the 137th National Meeting, American Chemical Society, Cleveland, Ohio, April, 1960.

- (2) G. H. Hitchings, P. B. Russell, and N. Whittaker, J. Chem. Suc., 1019 (1956).
- (3) H. C. Carrington, A. F. Crowther, D. G. Davey, A. A. Levi, and F. L. Rose, *Nature*, **168**, 1080 (1951).
- (4) H. C. Carrington, A. F. Crowther, and G. J. Stacey, J. Chem. S.c., 1017 (1954).

(5) A. F. Crowther, British Patent **70**9,906 (1954); Chem. Abstr., **49**, 90465 (1955).

(6) E. J. Modest, G. E. Foley, M. M. Pechet, and S. Farber, J. Am. Chem. Soc., 74, 855 (1952).

(7) E. J. Modest, J. Org. Chem., 21, 1 (1956).

(8) E. J. Modest and P. Levine, *ibid.*, **21**, 14 (1956).

(9) A. F. Crowther and A. A. Levi, Brit. J. Pharmacol., 8, 93 (1953).

(10) R. I. Hewitt, W. S. Wallace, A. Gumble, E. White, and J. H. Wil-

liams, Am. J. Trop. Med. Hyg., 3, 225 (1954).

(11) R. E. Lux, Antibiot. Chemotherapy, 4, 971 (1954).
 (12) S. Schalit and R. A. Cutler, J. Org. Chem., 24, 573 (1959)

(13) G. E. Foley and E. J. Modest, "Proc. 52nd Gen. Meeting, Soc. Am.

Baet.," Boston, Mass., May 1, 1952, p. 63.
 (14) G. E. Foley, Proc. Soc. Exptl. Biol. Med., 83, 733 (1953); ibid., 83,

740 (1953); G. E. Foley and P. L. Watson, *ibid.*, **83**, 742 (1953).

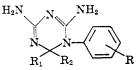
(16) M. W. Fisher and L. Doub, Biochem. Pharmacol., 3, 10 (1959).

(17) G. E. Foley, E. J. Modest, J. R. Cataldo, and H. D. Riley, *ibid.*, **3**, 31 (1959).

against certain experimental tumors,^{18,19} and activity against experimental murine toxoplasmosis,²⁰ In all of these studies the compounds which were particularly active contained *meta* or *para* substitution in the benzene ring; those containing *ortho* substitution, particularly di-*ortho* substitution, were almost completely inactive. The more active compounds also had small alkyl groups, such as dimethyl, or one longer unbranched alkyl group in the 2-position of the triazine ring, while bulky groups, such as pentamethylene, usually led to low activity.

The two compounds which were initially chosen for our laboratory study of ortho-substituted dihydrotriazines were of the formula I where R = o-ethyl or o,o-' dimethyl, and R' and R'' = methyl in each case. These compounds were subjected to routine pharmacological screening. As expected, they showed no activity in the microbiological assay with *Lactobacillus* casei, nor in the adenocarcinoma 755 tumor screen. However, in determining the acute toxicity, the observation was made that the oral LD₅₀ was greater than 10 times the LD_{50} by the parenteral route. This prompted the suggestion that since the compounds were evidently not well absorbed from the intestinal tract, they might possibly have some utility against intestinal parasites. Accordingly, they were screened against Sypha*cia obrelata* infestations in mice, and it was found that at oral dosages of 300 mg. kg. day for 3 days, over 90%of the worms were cleared, with no apparent adverse effects on the mice. Foley¹⁵ had demonstrated that there was a direct relation between increasing steric hindrance and decrease in activity as microbiological inhibitors. It became of interest then to see whether this pattern was followed with regard to intestinal parasites. Accordingly, the chlorguanide metabolite was screened against Syphacia obvelata, and surprisingly. it was found to be practically devoid of activity. These results led to the synthesis of a series of ortho-substituted phenyldihydrotriazines. A number of meta- and parasubstituted derivatives were prepared for comparison. The substituents in the 2-position of the triazine ring were varied also to include some of a bulky nature. All compounds were screened routinely for microbiological activity against Lactobacillus casei, as well as against intestinal parasites.

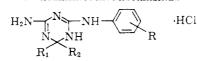
Initially all compounds were screened *vs. Syphacia*


(18) S. Farber, I. Diamond, G. Foley, and E. J. Modest, Am. J. Pathol., 28, 559 (1952).

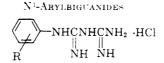
(19) S. Farber, G. Foley, V. Downing, R. Appleton, and J. King, Proc. Am. Assor, Cancer Res., 1, 15 (1953).

(20) W. D. Winter, Jr., and G. E. Foley, Autiliot, Chemotherapy, 6, 444 (1956).

⁽¹⁵⁾ G. E. Foley, Thesis, Universiteit von Amsterdam, Nederland, June, 1954.


TABLE I 1-Aryldihydrotriazines

Compd. No.	$2,2$ -Substituents (R_1R_2)				uents(R)-		Empirical	М.р.,	Carbo	on, %		gen, % Found		gen, % Found
I Ito.	H, CH ₃	2 C₂H₅	3	4	5	6	formula C12H17N5 · HCl	°C. 277–279		54.17	6.77	6.89	Carcu.	round
ĨI	(CH3)2	C_2H_5					C13H19Ns · HCl	209-211		55.26	7.15	7.04	24.86	24.70
III	(CH ₃) ₂	$C_{3}H_{7}-n$					C14H21N6 · HCl	210	56.85	57.04	7.50	7.36	23.68	23.45
IV	(CH ₃) ₂	$C_4H_{9}-n$					$C_{15}H_{23}N_5 \cdot HCl$	191	58.14	57.95	7.81	7.70	00.00	00.07
V VI	(CH ₃) ₂ (CH ₃) ₂	OCH3	OII				$C_{12}H_{17}N_6O$	226-229	58.28	58.38	6.93	7.18 6.65	28.32	28.27
VII	(CH ₃) ₂	CH₃	CH3 CH3				C12H17N5 · HCl C13H19N5 · HCl	212 220	53.82 55.41	$53.81 \\ 55.34$	$\begin{array}{c} 6.77 \\ 7.15 \end{array}$	7.19		
VIII	(CH ₃) ₂	CH ₈	CI				C12H16ClN6 HCl	218-220	47.69	48.13	5.67	5.59	23.18	22.92
IX	$(CH_{3})_{2}$	CH₃		CH_{s}			C13H19N5 HCl	211-212	55.41	55.22	7.15	7.10		
x	(CH ₈) ₂	CH_3		C1			$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{ClN}_{\pmb{b}}\cdot\mathrm{HCl}$	219 - 220	47.69	47.97	. 67	5.78		05 00
XI	$(CH_3)_2$	OCH₃ CU		NO_2	C 11		C12H16N6O3 HCl	220-222	43.84	44.22	5.21	5.35 7.12	25.56 24.85	25.29 24.42
XII XIII	(CH3)2 (CH3)2	CH_{3} CH_{3}			CH3 Cl		$C_{13}H_{19}N_5 \cdot HCl$ $C_{12}H_{16}ClN_5 \cdot HCl$	228 220~223	$\begin{array}{c} 55.41 \\ 47.69 \end{array}$	$55.89 \\ 48.04$	$7.15 \\ 5.67$	5.61		23.58
XIV	(CH ₈) ₂	CH3			C3H7- <i>i</i>		$C_{15}H_{23}N_5 \cdot HCl$	211	58.14	58.23	7.81	7.79		
xv	(CH ₃) ₂	OCH3			Cl		C12H16ClN5O · HCl	218-220	45.29	45.14	5.39	4.83		21.99
XVI	(CH ₃) ₂	CH_3				CH_3	$C_{18}H_{19}N_{b} \cdot HCl$	220	55.41	55.55	7.15	7.20	24.86	24.71
XVII	$(CH_3)_2$	OUT.	CH_3		CH_3		C13H19N5 · HCl	212	55.41	55.13	7.15	6.84	92 68	23.32
XVIII XIX	$(CH_{\delta})_2$ CH ₃ , C ₂ H ₅	CH₂ C₂H₅		CH_3	CH_3		C14H21N5 HCl	$223 \\ 195 - 196$	56.85 56.85	57.28 56.54	7.50 7.50	$7.43 \\ 6.83$	23.08	20.02
xx	$CH_{8}, C_{2}H_{5}$	CH ₈				CH	$\begin{array}{c} C_{14}H_{21}N_5 \cdot HCl \\ C_{14}H_{21}N_5 \cdot HCl \end{array}$	210	56.85 56.85	56.74	7.50	7.39		
XXI	CH3, C3H7-n	C₂H₅				0110	C15H23N5 · HCl	200-201			7.80	7.84		
XXII	H, C6H13-n	C_2H_{δ}					$\mathrm{C}_{17}\mathrm{H}_{27}\mathrm{N}_{5}\cdot\mathrm{HCl}$	222	60.41	60.21	8.36	8.16	20.72	20.31
XXIII	H, C ₉ H ₁₉	C₂H₅					$C_{20}H_{33}N_5 \cdot HCl$	243 - 244		63.30	9.11	9.15		
XXIV XXV	$-(CH_2)_4-(CH_2)_5-$	C₂H₃ C₂H₅					C15H21N5 HCl	224	58.52	58.82	7.20 7.51	6.77 7.30		
XXVI	-(CH ₂)5-	Br					$C_{16}H_{28}N_5 \cdot HCl$ $C_{14}H_{18}BrN_5 \cdot HCl$	$224 \\ 235$	$\begin{array}{c} 59.70 \\ 45.11 \end{array}$	$\frac{59.50}{45.39}$	5.14	4.98	18.79	18.38
XXVII	(CH ₂) ₅	CH3				CH_3	C16H23N5 · HCl	295	59.70	59.50	7.51	6.67		21.63
XXVIII	$-CH_2CH(CH_2)_3$	\mathbf{Br}					C15H20BrN5 · HCl	199	46.58	46.90	5.47	5.76	18.11	17.92
XXIX	CH_3 CH ₂ CH(CH ₂) ₃			Cl			C15H20ClN5 · HCl	210					20.46	20.42
XXX	CH ₃ —CH ₂ CH ₂ CHCH ₂ CH ₂ —						C15H21N5 · HCl	229	58 59	58.46	7.21	7.26		
							0.61121103-1101	440	00.02	55.40		1.20		
	CH_3													
XXXI		CH_3					$C_{16}H_{23}N_{5}\cdot HCl$	217 - 218	59.70	59.50	7.51	6.67	21.76	21.63
	CH3													
XXXII	CH2CH2CHCH2CH2	C2H6					C17H25N5 HCl	217	60.78	61.24	8.00	7.87	20.85	20.54
		02210					C 1/1428148 11C1	2.11	00.10	01.21	0.00	••••		
	CH_3													
XXXIII		\mathbf{Br}					$C_{1b}H_{20}BrN_b \cdot HCl$	226	46.58	46.50	5.47	5.28	18.11	18.17
	CH_3													
XXXIV	-CH2CH2CHCH2CH2-	CI					C15H20ClN6 · HCl	209	52.63	52.60	6.18	5.88	20.46	19.81
							0,000,000,000,000	200	02100	02.00	0.10			
	CH3													
XXXV	CH2CH2CH2H2H2CH2-			CH₃			C16H23N5 · HCl	215	59.70	59.44	7.51	7.42	21.76	21.36
	CH_{3}													
XXXVI	CH2CH2CHCH2CH2-			Cl			C15H20ClNs·HCl	229	52.63	52.55	6.18	6.07		
									02100					
~~~~	CH3													
XXXVII	$-CH_2CH_2CH_2CH_2-$			Br			C15H20BrN5 · HCl	210	46.58	46.66	5.47	5.10	18.11	18.28
	CH3													
XXXVIII	CH2CH2CHCH2CH2	$CH_3$				CH:	C17H25N5 HCl	222 - 224	60. <b>78</b>	60.55	8.00	7.43	20.85	20.62
VVVIV	CH3 - CH-CH-CHCH-CH	CI						200				<u> </u>		
XXXIX	$-CH_2CH_2CH_2CH_2-$	CI.			Cl		$C_{15}H_{19}Cl_2N_5 \cdot HCl$	200	47.82	47.52	5.35	5.41		
	$CH_3$													
$\mathbf{XL}$	$-CH_2CH_2CHCH_2CH_2-$		Cl	Cl			$\mathrm{C}_{1\delta}\mathrm{H}_{19}\mathrm{Cl}_{2}\mathrm{N}_{\delta}\cdot\mathrm{H}\mathrm{Cl}$	186-187	47.82	48.24	5.35	4.97	18.59	18.52
	$CH_3$													


obvelata in a 3-day test, starting at a dosage of 300 mg./ kg. The results of this test are shown in Table VI, in which the compounds are listed roughly in decreasing order of activity. It will be seen at a glance that in almost every instance the compounds with the greatest anthelmintic activity are those with bulky sub-

stituents in the 2-position of the dihydrotriazine ring, or else bulky *ortho*-substituents in the benzene ring. Conversely, Table IX, which lists microbiological inhibition in increasing order of activity, shows that *ortho*substituted phenyl derivatives, and the derivatives with bulky 2-substituents, have the least inhibitory



					_	•1	- • 4								
Compd. no,	$2,2$ -Substituents $(R_1, R_2)$	Benze 2	ene su 3		uent 5	s(R) 6	Empirical formula	М.р., °С.	Carb Caled.	on, % Found	-	gen, % Found		gen, % Found	
XLI	$-CH_2CH_2CHCH_2CH_2-$						$C_{15}H_{21}N_5\cdot HCl$	230	58.52	58.44	7.21	7.02	22.75	22.58	
XLII	CH ₃ —CH ₂ CH ₂ CHCH ₂ CH ₂ —	C₂H₅					$C_{17}H_{26}N_b \cdot HCl$	246~247	60.78	60.76	8.00	7.94			
XLIII	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	Br					$\mathrm{C}_{15}\mathrm{H}_{20}\mathrm{Br}\mathbf{N}_5\cdot\mathrm{HCl}$	226	46.58	46.71	5.47	5.50	18.11	17.76	
XLIV	$\begin{array}{c} CH_3 \\CH_2CH_2CH_2CH_2CH_2 \\   \end{array}$			Cl			$\mathrm{C}_{1\delta}\mathrm{H}_{2c}\mathrm{ClN}_{\delta}\cdot\mathrm{HCl}$	262	52.63	52.87	6.18	6.18	20.46	19.99	
XLV	$-CH_{3}$ CH ₂ CH ₂ CHCH ₂ CH ₂ +	CH:				$\mathrm{CH}_3$	$\mathrm{C}_{17}\mathrm{H}_{25}\mathrm{N}_{6}\cdot\mathrm{HCl}$	266	60. <b>78</b>	60.31	8.00	7.69			

### TABLE III



					Anal	yses	
	Benzene	Empirical		Carb	on, %	←Hydroge	en, %
Compd. No.	substituents(R)	formula	М.р., °С,	Caled.	Found	Caled.	Found
XLVI	$2-C_2H_5$	$C_{10}H_{15}N_5 \cdot HCl$	204	49.73	49.60	6.67	6.55
XLVII	$2,6-(CH_3)_2$	$C_{10}H_{15}N_5 \cdot HCl$	218 - 219	49.73	49.72	6.67	6.43
XLVIII	$2,4,5-(\mathrm{CH}_3)_3$	$\mathrm{C}_{11}\mathrm{H}_{17}\mathrm{N}_{5}\cdot\mathrm{HCl}$	228	51.65	51.77	7.09	6.81

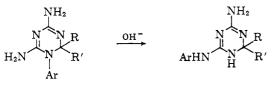
activity, in confirmation of the earlier data of Foley¹⁵ and the I.C.I. group. Thus, from a biological point of view, the anthelmintic dihydrotriazines may be considered to form a different class of compounds from the antimalarial dihydrotriazines. This difference is qualitative in character, and can probably be explained best by increasing steric hindrance associated with more bulky ortho substitution. This would gradually impose a nearly perpendicular and increasingly rigid arrangement of the two rings about their common axis. Such a change in conformation might well block the action at enzyme sites which normally causes the antifolic activity, and by the same token might create some new type of interference associated with the anthelmintic action.

ĊH3

The mechanism by which the dihydrotriazines exert their effect against the pinworms is not known. However, these compounds have the advantage over some other anthelmintic agents that they are active against immature, as well as mature, forms of the parasite. Detailed studies which illustrate this effect were carried out on one of the more active derivatives (XXXVI), and are described by Burrows and Hunt.²¹

In seeking the more active compounds of this series, it was considered advisable to determine whether the dihydrotriazines would be useful in a single dose treatment. The activity against immature forms of the parasite indicated that this might well be the case. Table V lists the results of these tests, which show that several members of this series of compounds are indeed sufficiently active to clear all parasites in a single dose. It was difficult to choose among these closely related compounds on the basis of the anthelmintic screen alone. However, an investigation of the acute toxicities of these compounds left no doubt as to which was the compound of choice. Selected toxicity data are shown in Table X. Although the toxicities obtained by parenteral administration are quite similar, this is not true of oral administration. One compound [XXXVI, 1-(p-chlorophenyl)-4,6-diamino-1,2-dihydro-2,2-(3-methylpentamethylene)-s-triazine hydrochloride] stands out as being unique in its lack of toxicity. It was found physically impossible to administer sufficient drug to mice to kill them (except by suffocation). This substance has a solubility of approximately 0.2%in water at room temperature, so, although it is less soluble than some of the other derivatives, it is ununlikely that insolubility is an adequate explanation of its lack of toxicity.

The dihydrotriazines were screened against a wide variety of intestinal parasites in addition to Syphacia obvelata. Although they were found active against the related pinworm Aspiculuris tetraptera in mice, they were relatively inactive against hookworms (Ancylostoma caninum), ascarids (Ascaris lumbricoides, Toxocara cati, Toxascaris leonina), whipworms (Trichuris vulpis), trichostrongyles (Nippostrongylus muris, Nematospiroides dubius), and nodular worms (Oesophagostomum sp.), and were inactive against four species of tapeworms.


Carrington⁴ and Modest⁷ have described the irreversible rearrangement of the aryldihydrotriazines in alkali to yield arylaminodihydrotriazines. The products were found devoid of microbiological activity. We were interested in preparing the anilino isomers of a few of the more active derivatives described here, to determine whether anthelmintic activity might be

Compd.		Dihydrotriazine substituen		Solvent		iolet absorpt	ion spectra	<b></b>
no.	1	2,2	6	or pH	$\lambda_{max}, m\mu$	ε × 10-1		
XXX	$\mathrm{C}_{6}\mathrm{H}_{5}$	$-CH_2CH_2CHCH_2CH_2-$   $CH_3$	$ m NH_2$	$7.02^{b}$	242	9.41	229	7.55
XLI	H	$-CH_2CH_2CHCH_2CH_2-$	$C_6H_5NH$	7.02	256	15.3	229	7.84
XXXIII	Br	$CH_3$ -CH ₂ CH ₂ CHCH ₂ CH ₂	$\mathrm{NH}_2$	7.02	240	9.75	235	9.70
XLIII	H	$CH_3$ CH ₂ CH ₂ CHCH ₂ CH ₂	Br Br	7.02	246.5	12.9	233	11.3
XXXII	$C_2H_5$	$CH_3$ CH ₂ CH ₂ CHCH ₂ CH ₂	NH ₂	7.02	241	9.70	229	8.23
XLII	Н	$CH_3$ CH ₂ CH ₂ CHCH ₂ CH ₂		7.02	245	13.1	229	10.4
XXXVIII		$-CH_2CH_2CHCH_2CH_2-$	NH2	7.02	236	12.0	230	11.7
XLV	CH₃ H	$\dot{\mathrm{CH}}_{3}$ 	$\overset{CH_3}{\underset{CH_3}{\longleftarrow}} H-$	7.02	241	12.3	230	11.0
XXXVI	Cl-	$\begin{array}{c} -\mathrm{CH_2CH_2CH_2CH_2-}\\  \\ \mathrm{CH_3} \end{array}$	NH₂	0.1 <i>N</i> HCl 7.02 0.1 <i>N</i> NaOH	${ m Sh}\ { m 242}\ { m 241}\ { m c}$	$\frac{7.25}{11.2}$	234	10.8
XLIV	Η	$\begin{array}{c}\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2-\\ \\ \\ \\ \text{CH}_3 \end{array}$	Cl-NH-	0.1 N HCl 7.02 0.1 N NaOH	$259 \\ 261 \\ 222.5 \\ 261$	$15.0 \\ 17.5 \\ 8.74 \\ 17.8$	230 229 230	8.38 7.95 8.38
Ref. 7	Cl-	$(CH_3)_2$	$\mathrm{NH}_2$	7.02	201 241	17.8 13.4	232	12.3
Ref. 7	H	$(CH_3)_2$	Cl-	7.02	256	18.2	227	9.36

TABLE IV Ultraviolet Absorption Spectra of Some 1-Aryldihydrotriazines and their 6-Arylamino Isomers^a

^a Spectra were determined at a concentration of 10 mg./l., with a Beckman DU spectrophotometer. ^b Sørensen phosphate buffer. ^c Slow isomerization at room temperature; initial reading (30°) shows no maximum; sloping curve has slight shoulder with mid-point 250 m $\mu$  ( $\epsilon \times 10^{-3} = 5.7$ ).

retained on isomerization, and also to determine whether or not there might be a difference in ease of isomerization between the different types of derivatives. The new compounds which were characterized are described in Table II. Table VII lists their anthelmintic activities, which were found to be negligible.



Thus, the 4,6-diamino configuration appears to be required for both microbiological and anthelmintic activity. A few of the intermediate biguanides (Table III) were also tested for anthelmintic activity and found lacking in interest (Table VIII).

Carrington⁴ and Modest⁷ also described the change in ultraviolet absorption spectra which occurs on isomerization of the dihydrotriazines, using 1-(*p*-chlorophenyl)-4,6-diamino-1,2-dihydro-2,2-dimethyl-s-triazine as an example. In this case,  $\lambda_{max}$  changes from 241 to 256 mµ at pH 7, and the molecular extinction coefficient is also markedly increased (see Table IV), so that it is easy to follow the course of the isomerization. It was found that when bulky groups were introduced into the 2-position of the dihydrotriazine ring, as with XXXVI, the change in spectrum was even more marked;  $\lambda_{max}$ shifted from 241 to 261 m $\mu$ , with a correspondingly large hyperchromic shift. Compound XXXVI was also found to isomerize at almost 3 times the rate of the 2,2-dimethyl analog, reflecting decreased stability of the original diamino configuration when the bulky groups are present.

When the diaminodihydrotriazines contained ortho substituents in the benzene ring, the change in spectrum upon treatment with alkali was found to be much less marked. The shift in  $\lambda_{max}$  was only about 5 mµ, and the increase in extinction coefficient was correspondingly lessened. The data of Table IV illustrate these changes. Whereas practically all of the diaminodihydrotriazines with meta or para substitution had  $\lambda_{max}$ = 241-242 mµ, some of the ortho-substituted compounds had only slight maxima or shoulders at about 235 mµ. After treatment of the compounds with alkali, the maxima shifted only to about 241 mµ, so that an

Compd.	ACTIVITY OF 1-ARYLDIHYDROT	MAZINES V8. Dyphatta Ob	Dose, ^a	. DINGLE DOSE I.	Av. %
No. or ref.	2,2-Substituents	Benzene substituents	mg./kg.	Cured/treated	eliminat
XXXVI	$(CH_2)_2CH(CH_2)_2$	4-C1	1000	3/3	100
		1	750	3/3	100
	$\dot{\mathrm{CH}}_{3}$		600	$\frac{3}{23}$	97
	~ × × 3		500	$\frac{20}{19}$	99
			400	$\frac{13}{24}$ 23/30	89 89
			300	$\frac{25}{30}$	
			200	7/25	49
			100	2/26	27
Ref. 7	(CH ₂ ) ₆	4-Cl	600	6/6	100
1001. 1	(0112)6	4-01	500	5/6	98
			400	6/6	100
			300	5/6	
			200	3/6	
XXXVIII	$-(CH_2)_2CH(CH_2)_2-$	$2,6-(CH_3)_2$	600	6/6	100
212121 111	(CI12)2CI1(CI12)2-	$2,0-(C11_3)_2$	500 500	6/6	100
	$^{1}_{\mathrm{CH}_{3}}$				
	$C\Pi_3$		-400	8/9	93
			300	$\frac{4}{6}$	93
VVIV	CHCHCH	6 C1	200	$\frac{2}{6}$	67
XXIX	$-CH_2CH(CH_2)_3-$	4-Cl	500	1/5	96
			400	1/6	79
37.1	CH ₃		300	1/3	66
XL	$-(CH_2)_2CH(CH_2)_2-$	3,4-Cl ₂	-400	6/6	100
			300	1/6	68
	$\dot{\mathrm{CH}}_{2}$		200	0/6	35
			100	0/6	13
XXXIII	$-(CH_2)_2CH(CH_2)_2-$	2-Br	400	2/3	99
XXVIII	$CH_3$ CH ₂ CH(CH ₂ ) ₃	2-Br	400	5/6	90
		2-131	300	1/3	40
XXXV	$\begin{array}{c} CH_3 \\(CH_2)_2 CH(CH_2)_2 \\   \end{array}$	4-CH ₃	400	2/3	93
	ĊH ₃				
XXXII	$-(CH_2)_2CH(CH_2)_2-$	$2-C_2H_b$	500	0/3	98
			-400	0/3	63
	CH3		300	2/5	82
Ref. 5, and 7	$-(CH_2)_{\bullet}$	4-Cl	500	2/5	71
			400	1/6	78
			300	0/6	55
XXXIX	$-(CH_2)_2CH(CH_2)_2-$	$2,5$ - $\mathrm{Cl}_2$	400	0/6	73
	 CH₃		300	2/6	82
XXXI	$-(CH_2)_2CH(CH_2)_2-$	$2-CH_3$	500	1/3	67
	()()		400	$\frac{2}{3}$	82
	$\dot{\mathrm{CH}}_{3}$		300	0/6	36
XXX	$(CH_2)_2CH(CH_2)_2$	_	400	$\frac{0}{2}/6$	66
	1		300	1/6	70
XXXVII	$CH_3$ (CH ₂ ) ₂ CH(CH ₂ ) ₂	4-Br	400	0/6	39
			300	1/6	38
XXVI	$CH_3$ ( $CH_2$ ),	2-Br	400	0/6	19
			300	0/6	15
XXXIV	$-(CH_2)_2CH(CH_2)_2$	2-Cl	400	3/6	63
	CH3		:300	0/6	29
Ref. 7	(CH ₃ ) ₂	2-Br	400	0/3	13
hydrochloride salt.					

TABLE V

arylamino derivative could easily be mistaken for a diaminodihydrotriazine. All the *ortho* substituted derivatives were therefore examined for identity by heating in 0.1 N sodium hydroxide on the steam bath and observing whether or not a spectral shift occurred. In a few instances of doubt, biological activity was also used as a criterion for structure. This was use-

ful with XXVII, for example, where even the melting point did not change on isomerization, and the spectrum changed from a slight indistinct peak at 236 m $\mu$ to another slight indistinct peak at 241 m $\mu$  ( $\epsilon$  changed from 9700 to 13,200). In this case the alkali-treated material was completely inactive against pinworms, whereas the original material was quite active.

# TABLE VI

ANTHELMINTIC ACTIVITY OF 1-ARYLDIHYDROTRIAZINES V3. Syphacia obvelata in Mice. Three Dose Tests

Compd. no. or ref.	2.2-Substituents Benz	ene substituents	Dose, ^a mg./kg./day	Cured/ treated	Av. % eliminated
XXXVI	$(CH_2)_2CH(CH_2)_2$	4-Cl	300	2/2	100
				_, _	
	$CH_3$				h
XXIX	$-CH_2CH(CH_2)_3$	4-Cl	500	6/6	$100^{b}$
	$ _{\mathbf{CH}_3}$		400	$\frac{12}{12}$	100
VVVII		асц	300	$\frac{4}{6}$	99
XXXII	$-(CH_2)_2CH(CH_2)_2$	$2-C_2H_5$	500 400	$\frac{2/3}{2/3}$	98 97
	$\operatorname{CH}_{\mathtt{a}}$		400 300	$\frac{2}{3}$	97 97
XXV	$-(CH_2)_{s}$	$2-C_2H_5$	300	$\frac{3}{4}$	100
AAV	$-((11_2)_{5})$	2-02115	200	1/4	95
			100	$1/10^{1/10}$	73
XXIV	$-(CH_2)_4$	$2-C_2H_5$	300	$\frac{1}{10}$ $\frac{2}{4}$	83
22224 1	(0112)4	- 02115	200	$\frac{2}{4}$	84
			100	0/4	76
Ref. 7	(CH ₂ ) ₅	4-Cl	300	2/4	97
			200	0/2	95
			100	0/2	58
XXVII	$-(CH_2)_{b}$	$2,6-(CH_3)_2$	300	1/6	66
			200	1/2	97
			100	1/2	98
XXI	$CH_3$ , $C_3H_7$ - $n$	$2-C_2H_5$	300	2/2	100
			200	2/2	100
			100	0/2	21
IV	$(CH_3)_2$	$2\text{-}\mathrm{C}_{4}\mathrm{H}_{9}\text{-}n$	300	2/4	99
			200	1/6	66
			100	0/6	41
XX	$CH_3$ , $C_2H_5$	$2,6-(CH_3)_2$	300	0/2	98
			200	0/4	25
3737371		0.011	100	$\frac{0}{2}$	52
XXXI	$(CH_2)_2CH(CH_2)_2$	$2\text{-CH}_{3}$	500 400	3/3	100
	$CH_3$		$\frac{400}{300}$	$\frac{3}{3}$ $\frac{3}{9}$	$\frac{100}{81}$
II	$(CH_3)_2$	2-C₂H₅	300	$\frac{3}{5}$ $\frac{2}{6}$	90
11	$(O11_3)_2$	2-02115	200	0/4	71
			100	0/6	61
XVI	$(CH_3)_2$	$2,6-(CH_3)_2$	300	0/4	93
****	( ) 113/4	-,(	200	0/2	97
			100	0/2	19
XIX	$CH_3$ , $C_2H_5$	$2-C_2H_5$	300	2/4	90
	•,		200	0/2	45
			100	0/2	17
XXII	H, $C_{\mathfrak{6}}H_{13}$ -n	$2-C_2H_5$	300	0/2	93
			200	0/2	<b>46</b>
VII	$(CH_3)_2$	$2,3-(CH_3)_2$	300	0/2	80
XIV	$(CH_3)_2$	2-CH3-5-C3H7-iso	300	1/4	78
			200	0/2	20
3/3/TT			100	0/2	4
XXIII	$H, C_{\theta}H_{1\theta}$	$2-C_2H_5$	300	0/2	78
Ref. 7	$(CH_3)_2$	2-Cl	300	0/2	77
XXVII Ref. 5. 7	$(CH_3)_2$	$3,5-(CH_3)_2$	300	0/2	75°
Ref. 5, 7	$(CH_2)_4$	4-Cl	$\frac{500}{400}$	10/10	100
			300	9/9 3/9	100 61
XVIII	$(CH_{3})_{2}$	$2,4,5-(CH_3)_3$	300	$\frac{3}{9}$ 0/4	73 ^d
VIII	$(CH_3)_2$ $(CH_3)_2$	$2,4,5-(0,113)_3$ $2-CH_3-3-Cl$	300	$\frac{0}{4}$ 2/4	73 67
Ref. 8	H, $C_{6}H_{13}$ -n	4-Cl	300	$\frac{2}{0/2}$	70
IX	(CH ₃ ) ₂	$2,4-(CH_3)_2$	300	$\frac{0}{2}$	67
XV	$(CH_3)_2$	2-OCH ₃ -5-Cl	300	0/2	66
			200	1/2	66
Ref. 7	$(CH_3)_2$	2, 4-Cl ₂	300	0/4	65
			200	0/2	34
VI	$(CH_3)_2$	3-CH ₃	300	0/2	62°
V	$(CH_3)_2$	2-OCH3	300	0/2	61
VIII			200	0/2	54
XIII	$(CH_3)_2$	$2\text{-}CH_{3}\text{-}5\text{-}Cl$	300	0/4	52

### TABLE VI (Continued)

Compd. no. or ref.	2,2-Substituents	Benzene substituents	Dose," mg./kg./ day	Cured/ treated	Av. % elimi <b>na</b> ted
Ref. 5	$(CH_3)_2$	$4-OCH_3$	300	0/2	45
Ref. 7	$(\mathbf{CH}_3)_2$	$2,5-Cl_2$	300	0/2	41
III	$(CH_3)_2$	$2-C_3H_7-n$	300	0/2	40
Ref. 5, 7	$(\mathbf{CH_3})_2$	$4-CH_3$	300	0/2	40
XI	$(\mathbf{CH}_3)_2$	$2\text{-OCH}_3\text{-}4\text{-}NO_2$	300	0/2	22
			200	0/2	54
Ref. $7$	$(\mathbf{CH_3})_2$	$2-CH_3$	300	0/2	34
XII	$(CH_3)_2$	$2,5-(CH_3)_2$	300	0/2	29
Ι	$H, CH_3$	$2-C_2H_5$	300	0/2	26
Ref. 3, 4, 5, 7	$(\mathbf{CH}_3)_2$	4-Cl	300	0/2	21
X	$(CH_3)_2$	$2-CH_3-4-Cl$	300	0/2	19
Ref. 5, 7	$(\mathbf{CH}_3)_2$	3-Cl	300		e
Ref. 5	$(CH_3)_2$	$3,4-(CH_3)_2$	300	_	
Ref. 3, 5, 7	$(CH_3)_2$	3,4-Cl ₂	300	_	ø
Ag hydrochloride gelt	h One douth & Weight loss	d Manu warma disintegrated	Diambon / W	aight logg di	makes 1 death

^a As hydrochloride salt. ^b One death. ^c Weight loss. ^d Many worms disintegrated. ^e Diarrhea. ^f Weight loss, diarrhea, 1 death. ^g Weight loss, diarrhea.

TABLE VII

ANTHELMINTIC ACTIVITY OF 6-ARYLAMINODIHYDROTRIAZINES vs. Syphacia Obvelata in Mice. Single Dose Tests.

Compd. no.	2.2-Substituents	Benzene substituents	Dose, mg./kg. ^a	Cured/ treated	Av. % eliminated
XLI	$-CH_2CH_2CHCH_2CH_2-$		400	0/6	34
	CH ₃		300	0/6	20
XLII	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	$2-C_2H_5$	400	0/6	32
	CH ₃		300	0/6	44
XLIII	$-CH_2CH_2CH_2CH_2$	2-Br	400	0/3	3
XLIV	$\begin{array}{c} CH_3 \\ -CH_2CH_2CH_2CH_2CH_2 \\   \\ CH_3 \end{array}$	4-Cl	400	0/3	3
XLV	$\begin{array}{c} \text{CH}_3^{\text{CH}_3}\\ \text{CH}_2\text{CH}_2\text{CHCH}_2\text{CH}_2\\  \\ \text{CH}_3\end{array}$	$2,6-(CH_3)_2$	400 300	1/6 0/6	57 3

" As hydrochloride salt.

Compound XXXVI has been subjected to extensive anthelmintic and pharmacological investigation. It has been found active against the pinworm of man, *Enterobius vermicularis*, and has undergone extensive clinical testing. The results of these tests will be published elsewhere.

#### Experimental²²

1-Aryl-2.2-dialkyl-4.6-diamino-1.2-dihydrotriazines.-These compounds were prepared by the method of Modest⁷ from the corresponding anilines, plus a ketone or aldehyde, and dicyandiamide, in the presence of slightly more than one equivalent of HCl. New derivatives are characterized in Table I. Results followed the pattern of Modest's description very closely. The products normally precipitated from the reaction mixture in 30 to 90% yields in the form of their hydrochloride salts. When no precipitate was formed, ether was added to precipitate the product. No attempts was made to determine absolute yields by investigation of the mother liquors. Products were normally recrystallized from ethanol, water, or mixtures of the two solvents. In a number of instances, the reactions were unsuccessful with hindered ketones or amines under a variety of conditions. This was the case, for example, with 2-methylcyclohexanone when reacted with dicyandiamide and p-chloroaniline. Other ketones which did not react satisfactorily, either in the 3 component synthesis or with the intermediate biguanide, included diethyl ketone with o-ethylaniline or 2,6-dimethylaniline, heptaldehyde

with 2,6-dimethylaniline, undecylaldehyde with o-ethylaniline, methyl propyl ketone with 2,6-dimethylaniline, ethyl butyl ketone and methyl hexyl ketone with p-chloroaniline, and 3-methylcyclopentanone (identity not verified) with several anilines. 2,6-Diethylaniline proved to be too hindered to form a dihydrotriazine using acetone as the ketone.

There 4

The decomposition points of the dihydrotriazine hydrochlorides were normally in the vicinity of 200-220°. In two or three instances, the melting points were abnormally high, suggesting that the compounds might actually be the isomeric 6-anilinodihydrotriazines. However, an investigation of the ultraviolet spectra indicated that this was not the case; treatment with warm 0.1 N sodium hydroxide resulted in the bathochromic and hyperchromic shift which is characteristic of this type of isomerization.⁷ The spectrum of an anilinodihydrotriazine would not be expected to undergo a change with such relatively mild treatment.

In most cases the anilines used as the starting materials were commercially available. *o*-**Propylaniline** was prepared by the nitration of propiophenone,²³ followed by separation of the *ortho* isomer. The nitro group was reduced with Raney nickel in methanol, and the ketone reduced by the Wolff-Kishner method, following directions of Baker²⁴ for *m*-propylaniline. The *o*-propylaniline boiled at 114-116° (15 mm.).²⁵ o-**Butylaniline** was prepared by the method of Read and Mullin,²⁶ which involves nitration of butylbenzene, followed by careful fractional distillation and catalytic reduction with platinum.

⁽²²⁾ Melting points are corrected, but represent decomposition points and are not always completely reproducible. See ref. 7.

⁽²³⁾ B. L. Zenitz and W. H. Hartung, J. Org. Chem., 11, 444 (1946).
(24) B. R. Baker, R. E. Schaub, J. P. Joseph, F. J. McEvoy, and J. H.

Williams, *ibid.*, **17**, 164 (1952).

⁽²⁵⁾ J. von Braun and M. Rawicz, Ber., 49, 799 (1916).

⁽²⁶⁾ R. R. Read and D. B. Mullin, J. Am. Chem. Soc., 50, 1763 (1928).

### TABLE VIII ANTHELMINTIC ACTIVITY OF N¹-Arylbiguanides vs.

Syphacia Obvelata in Mice

	Syphacta	00000000 11	1141014		
Compd. no.	Benzene substituents	Days treated	Dose, mg./kg. ^a	Cured/ treated	Av. % elimin- ated
XLVI	$2-C_2H_6$	3	300	0/2	38
XLVII	$2,6-(CH_8)_2$	2	300	0/2	12
XLVIII	$2,4,5-(CH_3)_2$	3	300	0/2	61
ь	$2-CH_{3}-5-(C_{3}H_{7})-i$	3	300	0/2	29
a As h	vdrochloride selt	5 5 L SI	aniro V	A Par	rino E

^a As hydrochloride salt. ^b S. L. Shapiro, V. A. Parrino, E. Rogow, and L. Freedman, J. Am. Chem. Soc., 81, 3725 (1959).

4-Amino-6-arylamino-2,2-dialkyl-1,2-dihydrotriazines.—A few of the 1-aryldihydrotriazines were isomerized by the method of Modest.⁷ New derivatives are characterized in Table II. The relative rates of isomerization of 1-(p-chlorophenyl)-4,6diamino-1,2- dihydro-2,2- (3- methylpentamethylene)- s-triazine (XXXVI) and the corresponding 2,2-dimethyl derivative (chloroguanide metabolite)^{8,4} were determined in 0.1 N sodium hydroxide in sealed ampoules at concentrations of 100 mg./liter. Solutions were diluted tenfold into acid buffers for spectral determinations. At 70.0-70.1°, the isomerization of the first substance was half-completed in 8 min., whereas the second required 21 min. Details of this and further kinetic experiments will be published elsewhere.

 $N^1$ -Arylbiguanides.—These were prepared by heating equimolar mixtures of the aniline hydrochloride and dicyandiamide in ethanol, propanol, or water for 18 hr.⁷ Upon chilling, the hydrochloride salts of the products normally precipitated, and were recrystallized from ethanol. New derivatives are found in Table III.

**Procedure for Screening Compounds** vs. Syphacia obvelata **Infestations in Mice.**—The mice used in these experiments were kept in individual cages. Each cage contained a feeding rack, designed to prevent food particles from falling through the wire mesh bottom of the cage, and a water bottle. Beneath each cage was a pan of water to collect the feces and worms passed by the mouse.

The weighed amount of compound was placed in a mortar, 1 to 3 drops of Tween 80 added to the mortar and the two ground together. Then water was added, a little at a time, while grinding, until the desired concentration was obtained. The resulting emulsion was used for dosing the mice. Each mouse was weighed, the required amount of the emulsion drawn up into a 1 ml. syringe, graduated in hundredths, the blunt needle inserted into the stomach through the mouth, and the contents discharged into the stomach. Then the mouse was placed in its individual cage.

Mice dosed for 3 successive days were autopsied 72 hr. after the initial dose, whereas those given a single dose were autopsied at the end of 48 hr. After 24 hr. the pan of water was removed from under the cage and a new pan of water put in its place. This procedure was repeated every 24 hr. for the duration of the experiment. The contents of a pan were poured, a little at a time, into a petri dish under a dissecting microscope and all worms counted. At the end of the experiment the mouse was killed in a chloroform jar, the cecum and large intestine removed and opened. The worms remaining were counted. Then the worms from the last 24-hr. pan were counted. For each mouse the percentage of elimination of worms was determined by dividing the number of worms passed by the total number of worms harbored. The average percentage of elimination for a group (all animals given the same dosage level of the same compound) was obtained by adding all the percentages and dividing by the number of mice in the group.

Mice were not checked for infection prior to treatment, as the majority are generally positive. Occasionally a mouse passed no worms after treatment and none was found at autopsy. These mice were not considered in the tabulations, which dealt only with mice positive for *Syphacia*. A normal worm burden found in the mice is roughly 75 to 100 pinworms. As untreated mice may pass from 0 to 28% of *Syphacia* during a 48 to 72-hr. period, these percentages are considered as normal elimination. A compound causing about 50% loss of worms would be slightly active. However, only those compounds which resulted in over 75% elimination of mouse pinworms at a dose of 300 mg./kg. were considered for further investigation. The intermediate range percentages are not at all absolute, particularly in small groups,

### TABLE IX

#### GROWTH INHIBITORY ACTIVITY OF 1-ARYLDIHYDROTRIAZINES vs. L. casei

	vs. L. c	casei		
Compd. no. or ref. Ref. 7 Ref. 7 IX XII XVI XVI XVI XVI XVI XVI XXV XXV	2,2-Substituents $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_3$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$ $(CH_3)_3$	Benzene substituents 2-Cl 2,5-Cls 2,4-(CHs): 2,6-(CHs): 2,4.5-(CHs): 2-CHs-5-Pr-i 2,6-(CHs): 2-CHs-5-Pr-i 2,6-(CHs): 2-C2Hs 2-C2Hs 2,6-(CHs):	Concen- tration, $\gamma/ml.^a$ 100 100 100 100 100 100 100 100 100 10	% Growth inhibi- tion in <i>L.</i> <i>casei^b</i> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XXXI	$-(CH_2)_2CH(CH_2)_2-$	2,0-(CH3)2 2-CH3	100	-11
	 CH3		5	0
XIII	$(CH_3)_2$	2-CH3-5-Cl	100 5	-13 0
Х	$(CH_{3})_{2}$	2-CH3-4-Cl	100 5	- 19 0
V	$(CH_3)_2$	2-OCH3	100	
xv	(CH3)2	2-OCH ₃ -5-Cl	5 100	-18
I	H, CH3	$2-C_2H_b$	5  100	-10 - 21
XXXVIII	(CH ₂ ) ₂ CH(CH ₂ ) ₂	2,6-(CH ₃ ) ₂	5 100 5	-11 - 22 0
VIII	CH3 (CH8)2	2-CH₃-3-Cl	100	-31
XI	(CH ₃ ) ₂	2-0CH3-4-NO2	5 100	0 - 32
Ref. 7	(CH3)2	2-CH3	5 100	0 - 34
Ref. 7	(CH ₃ ) ₂	2,4-Cl ₂	5 100	0 - 39
II	(CH3)2	$2-C_2H_6$	5 100	0 
XIX	CH3, C2H5	$2-C_2H_\delta$	$\frac{5}{100}$	0 - 51
IV	$(CH_3)_2$	2-C4H9-n	5 100	-16 -53
XXI	CH3, C3H7-n	$2-C_2H_5$	5 100	-20 - 57
VII	(CH3)2	2,3-(CH ₃ ) ₂	5 100	-19 -72
XXII	H, C6H13-n	$2-C_2H_b$	5 100 5	-12 - 87 0
Ref. 7	$(CH_2)s$	4-Cl	100	- 95 0
XXXII	$-(CH_2)_2CH(CH_2)_2-$	$2-C_2H_b$	5 100 5	- 95 0
XXIX	$ \begin{array}{c} CH_3 \\CH_2CH(CH_2)_{3} \\   \\ CH_2CH(CH_2)_{3} \\   \\ CH_2CH(CH_2)_{3$	4-Cl	100 5	-96 0
Ref. 5,7	CH3 (CH2)4	4-Cl	100	94 14
XXXVI	$-(CH_2)_2CH(CH_2)_2-$	4-Cl	5 100 5	-96 -20
Ref. 5, 7	CH3 (CH3)2	4-CH3	100	-88 - 64
Ref. 5	(CH3)2	$3,4-(CH_3)_2$	5 100 5	-93 -72
Ref. 3, 4, 5, 7	(CH ₃ ) ₂	4-Cl	100	- 90
Ref. 8	H. $C_{\delta}H_{13}$ -n	4-Cl	5 100 5 1	79 93 78 20
III	(CH ₃ ) ₂	2-C3H7-n	0.1 100	0 -91
VI	(CH ₃ ) ₂	3-CH₃	5 100	-79 -90
XXIII	H. C. H.9	2-C2H6	5 100 5 1	-85 -96 -96 +25
Ref. 5	(CH3)2	4-OCH3	0.1 100	+2.0 0 -94

Compd. no. or ref.	2.2-Substituents	Benzene substitue <b>nts</b>	Concen- tration, γ/ml. ^a	Growth inhibi- tion in L. casel ^b
			5	-86
			1	55
			0.1	0
Ref. 5, 7	$(CH_{3})_{2}$	3-C1	100	
			5	90
Ref. 3, 5, 7	$(CH_{3})_{2}$	$3,4-C1_2$	100	90
			5	
			ŧ	- 51
			1.0	0
XVII	(CH ₃ ) ₂	3,5-(CH ₃ ) ₂	100	9.5
			5	9-4
			1	66
			0.1	0

^{*a*} As hydrochloride salt. ^{*b*} In OFA medium which contains 0.046 mµg, of folic acid per ml.²⁷ A negative sign indicates growth inhibition, whereas a + sign indicates that the substance promotes growth.

and are only useful in showing a trend, when considered over the range of a large number of compounds.

Testing results are shown in Tables V-VIII.

The L. casei Screen.—Details of this screening procedure, which was designed for the preliminary screening of substances for activity as antagonists of nucleic acid synthesis, are described by Hitchings and co-workers.²⁷ Results are shown in Table IX.

Acknowledgments.—We are indebted to Eva Hart Gold and Linda Wright Sheehan for technical assistance in the preparation of many of the compounds described here, and for determination of their ultraviolet absorption spectra, to George R. Hunt, William

(27) G. H. Hitchings, G. B. Elion, E. A. Falco, P. B. Russell, M. B. Sherwood, and H. Vanderwerff, J. Biol. Chem., 183, 1 (1950).

TABLE	Х

Acute Toxicity of Selected Aryldihydrotriazines

acer	N TOXICITY OF GELECIE.	o ARTEDITI	JROTRIA.	LINES
Compound			LD5c, mg. kg."	
no.	2.2-Substituents	substituents	1. P.	P.O.
NXXVI	$-CH_2CH_2CHCH_2CH_2-$	1-C1	120	>20,000
XXXIII	$-CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_$	2-Br	70	5,000
XXXVII	$\stackrel{1}{\leftarrow} CH_5 \\ \rightarrow CH_2 CH_2 CH_2 CH_2 CH_2 \rightarrow$	4-Br	ca. 95	>4,000
XXX	$\stackrel{\rm CH_3}{\longrightarrow} {\rm CH_2CH_2CH_2CH_2} $	_	64	ea. 4.,000
XXV	(C112)a—	2-C∘H₅	47	1,500
XVIII		2.4.5-(CH ₃ ) ₈	90	
XXXVIII	-CH ₂ CH ₂ CHCH ₂ CH ₂ -		56	
XXIX	$\begin{array}{c} \mathrm{CH}_{3}\\ -\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \vdots\\ \mathrm{CH}_{3}\end{array}$	4-C1	48	1,100
Ref. 7		4-01	56	1,058
XXXII	-CH2CH2CH2CH2CH2	$2-C_2H_b$	_	ca. 1,000
	$CH_3$			
Ref. 5,7	(CH2)4	4-C1	—	870
IV	(CH ₂ )?	2-C4H9-n	72	800
XXI		2-C2H5	78	70)
XXVII		2,6~(CH3)2	3.5	612
XXIV	$-(CH_2)_4$	$2-C_2H_5$	43	436
₄ As hyd	rochloride salt.			

G. Lillis, Allan A. Hunter, Dorothy Searle, and Robert deSanto for assistance in the anthelmintic screening, to Samuel Singer and his staff for the microbiological data, and to P. R. W. Baker and his group at the Wellcome Research Laboratories, Beckenham, Kent, for many of the microanalyses, as well as to Samuel Blackman and his staff for microanalyses.

# The Synthesis and Pharmacological Activity of Some Chloro-α-alkyltryptamines¹

B. A. WHITTLE AND E. H. P. YOUNG

Research Department, Imperial Chemical Industries Ltd., Pharmaceuticals Division,

Alderley Park, Macclesfield, Cheshire, England

Received December 14, 1962

The synthesis of eight new monochloro analogs of  $\alpha$ -methyl- and  $\alpha$ -ethyltryptamines are described. These compounds were prepared by condensations of 4-, 5-, 6-, and 7-chloroindole-3-aldehydes with either nitroethane or nitropropane and subsequent reduction of the condensation products with lithium aluminum hydride. The tryptamines have been found to possess stimulant and anticonvulsant properties in rodents and to produce behavioral changes in cats.

Included in a program of work,² which involved the synthesis of a series of tryptamine derivatives related to the physiologically active substance 5-hydroxy-tryptamine and their examination for biological activity on the cardiovascular and central nervous systems, were the two compounds,  $\alpha$ -methyl- and  $\alpha$ -ethyltryptamine. Earlier, Govier, *et al.*,³ had shown that  $\alpha$ -ethyltryptamine was an inhibitor of tyramine oxidation and its activity as an inhibitor of the enzyme monoamine-

oxidase was confirmed in our Laboratories.  $\alpha$ -Methyltryptamine was also found to be a more potent monoamine oxidase inhibitor than the  $\alpha$ -ethyl homolog. Both compounds caused reversal of reserpine ptosis in mice but  $\alpha$ -methyltryptamine evoked a striking change in the behavior of the animals.⁴ An account of the pharmacology of these tryptamines has been given by Greig, *et al.*,⁵ and the efficacy of  $\alpha$ -ethyltryptamine as an antidepressant drug in man has been

⁽¹⁾ U. K. Patent Application, 20171/61.

⁽²⁾ E. H. P. Young, J. Chem. Soc., 3493 (1958).

⁽³⁾ W. M. Govier, B. G. Howes, and A. J. Gibbons, *Science*, **118**, 596 (1953).

⁽⁴⁾ Personal communication from Dr. A. Spinks of these Laboratories who is thanked for permission to quote unpublished results.

⁽⁵⁾ M. E. Greig, R. A. Walk, and A. J. Gibbons, J. Phaemacol. Exptl. Therap., 127, 110 (1959).