Carboxylic Acid Analogues of Fosmidomycin

Thomas Kurz*, Detlef Geffken, and Claudia Wackendorff

Institute of Pharmacy, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany

Reprint request to Dr. T. Kurz. Fax: +49-(0)40-42838-6573

Z. Naturforsch. 58b, 457-461 (2003); received February 6, 2003

N-Alkylation of *N*-Boc-*O*-benzylhydroxylamine (1) with benzyl 4-bromobutyrate (2) in DMF gave *N*,*O*-bisprotected benzyl 4-hydroxyamino-butyrate (3), which was converted into 4-benzyloxyamino-butyric acid benzyl ester (4) with TFA in methylene chloride. Treatment of **4** with formic acid/acetic anhydride or various acid chlorides followed by catalytic hydrogenation led to 4-(N-acyl-N-hydroxyamino)-butyric acids**6**.

Key words: Non-mevalonate Isoprenoid Biosynthesis, Fosmidomycin, 4-(N-Acyl-N-hydroxy-amino)-butyric Acids

Introduction

Recently we reported on the synthesis of hydroxyurea analogues of Fosmidomycin (I) and FR-900098 (II) [1]. In continuation of our studies directed to the structural modification of Fosmidomycin we now describe the synthesis of carboxylic acid analogues of I and II. The bioisosteric replacement of a phosphonic acid function by a carboxylic acid group has been reported by several authors and constitutes an important tool in medicinal and agricultural chemistry [2, 3]. Compounds I and II are potent inhibitors of the nonmevalonate (DOXP/MEP) pathway of isoprenoid biosynthesis [4, 5]. Both compounds inhibit the 1-desoxy-D-xylulose-5-phosphate (DOXP) reductoisomerase which catalyses the NADPH dependent transformation of 1-desoxy-D-xylulose-5phosphate into 2-C-methyl-D-erythritol-4-phosphate [6]. The DOXP/MEP pathway is for instance present in higher plants, bacteria and the malaria parasite Plasmodium falciparum, but not in humans. Therefore, enzymes involved in the DOXP/MEP pathway are promising targets for the development of new herbicidal, antibacterial and antimalaria active compounds (Fig. 1).

Fig. 1. Fosmidomycin (I) and FR 900098 (II).

Results and Discussion

The starting materials, N-Boc-O-benzylhydroxylamine (1) and benzyl 4-bromobutyrate (2) were prepared according to literature procedures [7, 8]. N-Alkylation of 1 with 2 in presence of sodium hydride and catalytic amounts of sodium iodide in dry DMF provided N,O-bisprotected 4-hydroxyamino-butyrate 3 in 82% yield. Removal of the Boc group with TFA in methylene chloride at room temperature gave 4, which was isolated after a standard work-up procedure and column chromatography in 61% yield as a pale yellow oil. Formylation of 4 was accomplished with formic acid/ acetic anhydride to give 5a. Treatment of 4 with various acid chlorides afforded O-benzyl protected hydroxamic acids 5b-i. Catalytic hydrogenation of **5a-i** led to 4-(*N*-acyl-*N*-hydroxyamino)butyric acids 6a-i in good to excellent yields (Scheme 1). The structures of all novel compounds 3-6 were confirmed by ¹H, ¹³C NMR spectra, mass spectra and elemental analysis.

Experimental Section

General Methods: Melting points (uncorrected) were determined on a Mettler FP 62 apparatus. Elemental analyses were carried out with a Heraeus CHN-O-Rapid instrument. IR spectra were recorded on a Shimadzu FT-IR 8300. ¹H NMR (400.1 MHz) and ¹³C NMR (100.62 MHz) spectra were recorded on a Bruker AMX 400 spectrometer using tetramethylsilane as an internal standard and DMSO-d₆ and CDCl₃ as solvents. Mass spectra were recorded on a VG 70–250S (VG An-

0932-0776/03/0500-0457 \$06.00 © 2003 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

Table 1. 4-(N-Acyl-N-benzyloxyamino)-butyric acid benzyl esters **5a**-**i** and 4-(N-acyl-N-hydroxyamino-butyric acids **6a**-**i**.

5, 6	R	5 yield [%]	6 yield [%]
a	Н	89	98
b	CH ₃	91	83
с	$i-C_3H_7$	99	99
d	$t-C_4H_9$	97	74
e	C_6H_5	98	76
f	2-furyl	88	69
g	4-biphenylyl	48	54
ň	4-phenoxy-phenyl	93	86
i	1-naphthyl	96	69

alytical) instrument. Column chromatography was conducted on silica gel (ICN Silica 100-200, active, 60 Å).

4-(N-Benzyloxy-N-tert-butoxycarbonylamino)butyric acid benzyl ester (3)

To a stirred solution of 1 (5 mmol) in dry DMF (20 ml) was added portionwise sodium hydride (5.5 mmol) at 0-5 °C. After stirring for 30 minutes benzyl 4-bromobutyrate (2) and catalytic amounts of sodium iodide were added and the reaction mixture was heated at 50 °C for 1.5 h under nitrogen. The mixture was cooled to room temperature, poured into water and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and concentrated. The remaining residue was purified by silica gel column chromatography with CH_2Cl_2 /hexane (7/3) as an eluent to give 3 as colourless oil (84%). IR (film): $\nu = 1736, 1701$ (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 1.49$ (s, 9H, CH₃), 1.89–1.97 (m, 2H, CH₂), 2.39 (t, ${}^{3}J$ = 7.4 Hz, 2H, CH_2), 3.47 (t, ${}^{3}J = 6.9$ Hz, 2H, CH_2 N), 4.81 (s, 2H, NOCH₂Ph), 5.10 (s, 2H, OCH₂Ph), 7.30-7.40 (m, 10H, $H_{\text{arom.}}$). ¹³C NMR (CDCl₃): $\delta = 22.54$ (CH₂),

Scheme 1. Synthesis of 4-(*N*-acyl-*N*-hydroxyamino)-butyric acids **6a**–**i**.

28.31 (CH₃), 31.45 (CH₂), 48.79 (CH₂N), 66.23 (OCH₂Ph), 76.92 (NOCH₂Ph), 81.39 (C), 128.19, 128.43, 128.51, 128.55, 129.41, 135.55, 135.99 ($C_{arom.}$), 156.47, 172.83 (C=O). $C_{23}H_{29}NO_5$ (399.5): calcd.: C 69.15, H 7.32, N 3.51; found C 68.87, H 7.17, N 3.41.

4-Benzyloxyamino-butyric acid benzyl ester (4)

TFA (10 ml) was added to a solution of 3(10 mmol) in CH₂Cl₂ (10 ml) and the solution was stirred at room temperature for 1 h. After removal of the solvent aqueous K₂CO₃ solution was added to the residue and the resulting mixture was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, concentrated and the remaining oil was purified by column chromatography on silica gel with EtOAc/hexane (1/4) as an eluent to give 4 as colourless oil (80%). IR (film): $\nu = 3412$ (NH), 1736, 1701 (C=O) cm⁻¹. ¹H NMR $(CDCl_3): \delta = 1.83 - 1.91 \text{ (m, 2H, } CH_2), 2.42 \text{ (t, } {}^{3}J =$ 7.4 Hz, 2H, CH_2), 2.95 (t, ${}^{3}J = 6.9$ Hz, 2H, CH_2 N), 4.67 (s, 2H, NOCH₂Ph), 5.11 (s, 2H, OCH₂Ph), 5.55 (s, 1H, NH), 7.25–7.38 (m, 10H, $H_{\text{arom.}}$). ¹³C NMR (CDCl₃): δ = 22.83 (CH₂), 31.85 (CH_2) , 51.15 (CH_2N) , 66.18 (OCH_2Ph) , 76.29 (NOCH₂Ph), 127.80, 128.18, 128.36, 128.41, 128.54, 136.04, 137.93 (C_{arom.}), 173.22 (C=O). C₁₈H₂₁NO₃ (299.4): calcd.: C 72.22, H 7.07, N 4.68; found C 71.88, H 7.28, N 4.72.

4-(N-Benzyloxy-N-formylamino)-butyric acid benzyl ester (**5a**)

A mixture of formic acid (50 mmol) and acetic anhydride (5 mmol) was stirred for 30 min at room temperature. Afterwards a solution of **4** in formic acid (5 ml) was added at 0-5 °C and the reaction mixture was stirred for 2 h at room temperature. EtOAc (100 ml) was added to the reaction mixture and the solution was washed thrice with cold aque-

ous K_2CO_3 solution, water and 0.5 M HCl. The organic layer was dried over MgSO₄, filtrated and the solvent was evaporated to give **5a** as a pale yellow oil (89%). IR (film): $\nu = 1734$, 1676 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 1.96 - 1.99$ (m, 2H, CH_2), 2.40 (t, ${}^{3}J = 6.9$ Hz, 2H, CH_2), 3.63–3.65 (m, 2H, CH₂N), 4.80–4.93 (m, 2H, NOCH₂Ph), 5.11 (s, 2H, OCH₂Ph), 7.29–7.37 (m, 10H, H_{arom}), 7.90–8.19 (m, 1H, CHO). ¹³C NMR (CDCl₃): $\delta =$ 22.21 (CH₂), 31.20 (CH₂), 43.27 (CH₂N), 66.38 (OCH₂Ph), 77.70 (NOCH₂Ph), 128.27, 128.58, 128.76, 129.15, 129.47, 134.26, 135.85 (C_{arom.}), 163.14, 172.51 (C=O). C₁₉H₂₁NO₄ (327.38): calcd.: C 69.71, H 6.47, N 4.28; found C 69.34, H 6.47, N 4.34. HRMS (FAB): calcd. for $C_{19}H_{21}NO_4$: [M+H]+: 328.1550; found 328.1580.

4-(*N*-Acyl-*N*-benzyloxyamino)-butyric acid benzyl esters (**5b**-**i**)

To a stirred solution of **4** (5 mmol) and triethylamine (5.5 mmol) in dry THF (20 ml) was added the appropriate acid chloride (5.5 mmol) in THF (5 ml) dropwise at 0-5 °C. After stirring at ambient temperature for 2 h the solvent was evaporated and the remaining oil was dissolved in diethyl ether. The solution was subsequently washed with aqueous K₂CO₃ solution, 0.5 M HCl and water. The organic layer was dried over MgSO₄, the solvent removed under reduced pressure and the remaining oil purified by column chromatography on silica gel with EtOAc/hexane (3/7) as an eluent to give **5b-h**.

4-(*N*-Acetyl-*N*-benzyloxyamino)-butyric acid benzyl ester (**5b**): Pale yellow oil (91%). IR (film): $\nu =$ 1732, 1663 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta =$ 1.95–2.02 (m, 2H, CH₂), 2.08 (s, 2H, CH₃), 2.40 (t, ³J = 7.3 Hz, 2H, CH₂), 3.69 (t, ³J = 6.3 Hz, 2H, CH₂N), 4.78 (s, 2H, NOCH₂Ph), 5.10 (s, 2H, OCH₂Ph), 7.33–7.37 (m, 10H, H_{arom}). ¹³C NMR (CDCl₃): $\delta =$ 20.46 (CH₃), 22.30 (CH₂), 31.37 (CH₂), 44.45 (CH₂N), 66.29 (OCH₂Ph), 76.30 (NOCH₂Ph), 128.24, 128.55, 128.72, 128.98, 129.22, 134.40, 135.94 (C_{arom}), 172.29, 172.72 (C=O). C₂₀H₂₃NO₄ (341.4): calcd.: C 70.36, H 6.79, N 4.10; found C 70.00, H 6.64, N 4.46.

4-(*N*-Benzyloxy-*N*-isobutyrylamino)-butyric acid benzyl ester (**5c**): Colourless oil (99%). IR (film): $\nu = 1734$, 1661 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 1.08$ (d, ³*J* = 6.9 Hz, 6H, (CH₃), 1.94– 2.01 (m, 2H, CH₂), 2.39 (t, ³*J* = 7.4 Hz, 2H, CH₂), 2.91 (sept., ³*J* = 6.9 Hz, 1H, CH), 3.70 (t, ³*J* = 6.9 Hz, 2H, CH₂N), 4.79 (s, 2H, NOCH₂Ph), 5.10 (s, 2H, OCH₂Ph), 7.30–7.38 (m, 10H, H_{arom}). ¹³C

NMR (CDCl₃): δ = 19.05 (CH₃), 22.33 (CH₂), 30.22 (CH), 31.29 (CH₂), 44.37 (CH₂N), 66.28 (OCH₂Ph), 76.44 (NOCH₂Ph), 128.23, 128.55, 128.71, 128.89, 129.08, 134.52, 135.97 (C_{arom}), 172.79, 178.82 (C=O). C₂₂H₂₇NO₄ (369.5): calcd.: C 71.52, H 7.37, N 3.97; found C 71.28, H 7.65, N 4.10.

4-(N-Benzyloxy-N-2,2-dimethylpropionylamino)butyric acid benzyl ester (**5d**): Pale yellow oil (97%). IR (film): $\nu = 1736$, 1647 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 1.26$ (s, 9H, CH₃), 1.95–2.03 (m, 2H, CH₂), 2.41 (t, ³J = 7.3 Hz, 2H, CH₂), 3.76 (t, ³J = 7.0 Hz, 2H, CH₂N), 4.83 (s, 2H, NOCH₂Ph), 5.10 (s, 2H, OCH₂Ph), 7.25–7.36 (m, 10H, H_{arom}). ¹³C NMR (CDCl₃): $\delta = 22.03$ (CH₂), 27.16 (CH₃), 31.28 (CH₂), 39.52 (C(CH₃)₃), 44.45 (CH₂N), 66.27 (OCH₂Ph), 75.05 (NOCH₂Ph), 128.21, 128.42, 128.55, 128.57, 128.66, 134.62, 135.96 (C_{arom}), 172.84, 179.45 (C=O). C₂₃H₂₉NO₄ (383.5): calcd.: C 72.04, H 7.62, N 3.65; found C 71.87, H 7.66, N 3.35.

4-(N-Benzoyl-N-benzyloxyamino)-butyric acid benzyl ester (5e): Colourless crystals (98%). M.p. 36 °C (EtOAc/hexane). IR (KBr): $\nu = 1736, 1647$ (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 2.05 - 2.12$ (m, 2H, CH_2), 2.47 (t, ${}^{3}J$ = 7.3 Hz, 2H, CH_2), 3.81 (t, ${}^{3}J = 6.8 \text{ Hz}, 2\text{H}, CH_{2}\text{N}), 4.62 \text{ (s, 2H, NOC}H_{2}\text{Ph}),$ 5.09 (s, 2H, OCH₂Ph), 7.03-7.05 (m, 2H, H_{arom}), 7.23–7.47 (m, 11H, H_{arom}), 7.62–7.63 (m, 2H, H_{arom}). ¹³C NMR (CDCl₃): $\delta = 22.60$ (CH₂), 31.31 (CH₂), 46.02 (CH₂N), 66.34 (OCH₂Ph), 76.41 (NOCH₂Ph), 128.00, 128.25, 128.27, 128.49, 128.57, 128.83, 129,48, 130.51, 134.06, 134.43, 135.90 $(C_{\text{arom.}})$, 170.17, 172.67 (C=O). $C_{25}H_{25}NO_4$ (403.48): calcd.: C 74.42, H 6.25, N 3.47; found C 74.13, H 6.21, N 3.43. HRMS (FAB): calcd. for C₂₅H₂₅NO₄: [M+H]⁺: 404.1863, found 404.1867.

4-(N-Benzyloxy-N-2-furoylamino)-butyric acid benzyl ester (**5f**): Pale yellow oil (88%). IR (film): $\nu = 1732$, 1643 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 2.04-2.11$ (m, 2H, CH₂), 2.45 (t, ³J = 7.4 Hz, 2H, CH₂), 3.86 (t, ³J = 6.9 Hz, 2H, CH₂N), 4.87 (s, 2H, NOCH₂Ph), 5.10 (s, 2H, OCH₂Ph), 6.47 (dd, ³J= 1.8, 3.6 Hz, 1H, H_{arom}), 7.14 (dd, ³J = 3.6 Hz, ⁴J = 0.8 Hz, 1H, H_{arom}), 7.25-7.40 (m, 10H, H_{arom}), 7.57 (dd, ³J = 1.8 Hz, ⁴J = 0.8 Hz, 1H, OCHCH). ¹³C NMR (CDCl₃): $\delta = 22.37$ (CH₂), 31.32 (CH₂), 45.71 (CH₂N), 66.32 (OCH₂Ph), 76.70 (NOCH₂Ph), 111.57, 117.83, 128.23, 128.56, 128.74, 128.99, 129.23, 134.21, 135.91, 145.24, 145.81 (C_{arom}), 159.32, 172.72 (C=O). C₂₃H₂₃NO₅ (393.4): calcd.: C 70.22, H 5.89, N 3.56; found C 69.80, H 5.91, N 3.48. HRMS (FAB): calcd. for $C_{23}H_{23}NO_5$: [M+H]⁺: 394.1655; found 394.1640.

4-[N-Benzyloxy-N-(4-phenyl-benzoyl)amino]butyric acid benzyl ester (**5g**): Colourless crystals (48%). M. p. 38 °C (EtOAc/hexane). IR (KBr): $\nu =$ 1734, 1639 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta =$ 2.07–2.14 (m, 2H, CH₂), 2.49 (t, ³J = 7.4 Hz, 2H, CH₂), 3.85 (t, ³J = 6.7 Hz, 2H, CH₂N), 4.66 (s, 2H, NOCH₂Ph), 5.10 (s, 2H, OCH₂Ph), 7.07–7.73 (m, 19H, H_{arom}). ¹³C NMR (CDCl₃): $\delta =$ 22.64 (CH₂), 31.35 (CH₂), 46.05 (CH₂N), 66.36 (OCH₂Ph), 76.50 (NOCH₂Ph), 126.65, 127.20, 128.25, 128.50, 128.57, 128.86, 128.92, 128.97, 129.52, 133.07, 134.05, 135.90, 140.32, 143.38 (C_{arom}), 169.86, 172.70 (C=O). C₃₁H₂₉NO₄ (479.6): calcd.: C 77.64, H 6.10, N 2.92; found C 77.29, H 6.21, N 3.22.

4-[N-Benzyloxy-N-(4-phenoxy-benzoyl)amino]butyric acid benzyl ester (**5h**): Colourless oil (93%). IR (film): $\nu = 1736$, 1638 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 2.05-2.12$ (m, 2H, CH₂), 2.47 (t, ³J = 7.4 Hz, 2H, CH₂), 3.83 (t, ³J = 6.9 Hz, 2H, CH₂N), 4.64 (s, 2H, NOCH₂Ph), 5.09 (s, 2H, OCH₂Ph), 6.96-7.67 (m, 19H, H_{arom}). ¹³C NMR (CDCl₃): $\delta = 22.60$ (CH₂), 31.32 (CH₂), 45.98 (CH₂N), 66.35 (OCH₂Ph), 76.35 (NOCH₂Ph), 111.57, 119.54, 128.24, 128.52, 128.56, 128.88, 129.49, 129.93, 130.62, 134.06, 135.89, 156.28, 159.53 (C_{arom}), 169.38, 172.69 (C=O). C₃₁H₂₉NO₅ (495.6): calcd.: C 75.13, H 5.90, N 2.83; found C 74.85, H 6.30, N 3.09. HRMS (FAB): calcd. for C₃₁H₂₉NO₅: [M+H]⁺: 496.2125; found 496.2139.

4-(N-Benzyloxy-N-1-naphthoylamino)-butyric

acid benzyl ester ((5i): Colourless oil (96%). IR (film): $\nu = 1732$, 1651 (C=O) cm⁻¹. ¹H NMR $(CDCl_3): \delta = 1.93 - 2.25 \text{ (m, 2H, } CH_2\text{)}, 2.32 - 2.69$ (m, 2H, CH₂), 3.47–4.17 (m, 2H, CH₂N), 4.35– 4.86 (m, 2H, NOCH₂Ph), 5.07 (s, 2H, OCH₂Ph), 6.50-6.94 (m, 1H, $H_{\text{arom.}}$), 7.05-7.36 (m, 1H, H_{arom.}), 7.44–7.51 (m, 1H, H_{arom.}), 7.85–7.94 (m, 1H, $H_{\text{arom.}}$). ¹³C NMR (CDCl₃): $\delta = 22.75$ (CH₂), 31.37 (CH₂), 45.72 (CH₂N), 66.35 (OCH₂Ph), 76.72 (NOCH₂Ph), 124.73, 124.83, 125.01, 126.30, 127.00, 128.25, 128.32, 128.36, 128.56, 128.70, 129.70, 129.96, 133.05, 133.42, 135.26 (C_{arom.}), 164.26, 172.54 (C=O). $C_{29}H_{27}NO_4(453.5)$: calcd.: C 76.80, H 6.00, N 3.09; found C 75.83, H 5.87, N 3.08. HRMS (FAB): calcd. for $C_{29}H_{27}NO_4$: [M+H]⁺: 454.2019, found 454.2040.

4-(N-Acyl-N-hydroxyamino)-butyric acids (6a-i)

Benzyl esters 5a-h (2 mmol) were hydrogenated in MeOH using catalytic amounts of 10% Pd-C for 1 h. The suspension was filtrated and the solvent was evaporated to give **6a**-i.

4-(*N*-Formyl-*N*-hydroxyamino)-butyric acid (**6a**): Yellow oil (98%). IR (KBr): $\nu = 3142, 2941$ (OH), 1707, 1653 (C=O) cm⁻¹. ¹H NMR (DMSO-d₆): $\delta =$ 1.71–1.80 (m, 2H, CH₂), 2.22 (t, ³J = 7.4 Hz, 2H, CH₂), 3.40–3.48 (m, 2H, CH₂N), 7.88 (s, 0.5H, CHO), 8.25 (s, 0.5H, CHO), 10.90 (s, 2H, OH). ¹³C NMR (DMSO-d₆): $\delta = 21.48, 22.31$ (CH₂), 30.19, 30.53 (CH₂), 45.06, 48.30 (CH₂N), 157.06, 161.75, 173.85 (C=O). C₅H₉NO₄ (147.1): calcd.: C 40.82, H 6.17, N 9.52; found C 40.87, H 6.31, N 9.31.

4-(*N*-Acetyl-*N*-hydroxyamino)-butyric acid (**6b**): Colourless crystals (83%). M.p. 70 °C (EtOAc/ hexane). IR (KBr): $\nu = 3138, 2829$ (OH), 1711, 1670, 1616, 1589 (C=O) cm⁻¹. ¹H NMR (DMSOd₆): $\delta = 1.70-1.77$ (m, 2H, CH₂), 1.97 (s, 2H, CH₃), 2.21 (t, ³J = 7.4 Hz, 2H, CH₂), 3.69 (t, ³J = 6.9 Hz, 2H, CH₂N), 9.71 (s, 1H, OH), 12.01 (s, 1H, OH). ¹³C NMR (DMSO-d₆): $\delta = 20.66$ (CH₃), 22.26 (CH₂), 31.12 (CH₂), 44.70 (CH₂N), 170.75, 174.41 (C=O). C₆H₁₁NO₄ (161.2): calcd.: C 44.72, H 6.88, N 8.69; found C 44.89, H 6.81, N 8.52.

4-(*N*-Hydroxy-*N*-isobutyrylamino)-butyric acid (6c): Colourless crystals (99%). M.p. 69 °C (EtOAc/hexane). IR (KBr): $\nu = 3161, 2935, 2515$ (OH), 1709, 1585 (C=O) cm⁻¹. ¹H NMR (DMSOd₆): $\delta = 0.99$ (d, ³*J* = 6.9 Hz, 6H, CH₃), 1.70–1.77 (m, 2H, CH₂), 2.19 (t, ³*J* = 7.4 Hz, 2H, CH₂), 3.02 (sept., ³*J* = 6.9 Hz, 1H, CH), 3.50 (t, ³*J* = 6.9 Hz, 2H, CH₂N), 10.80 (s, 2H, OH). ¹³C NMR (DMSOd₆): $\delta = 18.75$ (CH₃), 21.79 (CH₂), 28.90 (CH), 30.66 (CH₂), 46.55 (CH₂N), 174.02, 176.37 (C=O). C₈H₁₅NO₄ (189.2): calcd.: C 50.78, H 7.99, N 7.40; found C 50.67, H 8.04, N 7.08. HRMS (FAB): calcd. for C₈H₁₅NO₄: [M+H]⁺: 190.1080; found 190.1090.

4-(*N*-2,2-*Dimethylpropionyl*-*N*-*hydropxyamino*)butyric acid (**6d**): Colourless crystals (74%). M. p. 95 °C (EtOAc/hexane). IR (KBr): $\nu = 3111$, 2955 (OH), 1707, 1593, 1572 (C=O) cm⁻¹. ¹H NMR (DMSO-d₆): $\delta = 1.18$ (s, 9H, CH₃), 1.71–1.78 (m, 2H, CH₂), 2.19 (t, ³J = 7.4 Hz, 2H, CH₂), 3.50 (t, ³J = 6.9 Hz, 2H, CH₂N), 9.42 (s, 1H, OH), 11.99 (s, 1H, OH). ¹³C NMR (DMSO-d₆): $\delta = 22.03$ (CH₂), 27.38 (CH₃), 31.11 (CH₂), 38.70 (C(CH₃)₃), 48.64 (CH₂N), 174.46, 176.78 (C=O). C₉H₁₇NO₄ (203.2): calcd.: C 53.19, H 8.43, N 6.89; found C 53.10, H 8.30, N 6.99.

4-(N-Benzoyl-N-hydroxyamino)-butyric acid (6e): Colourless crystals (76%). M.p. 89 °C (EtOAc/ hexane) IR (KBr): $\nu = 3140, 3055, 2914$ (OH), 1709, 1595 (C=O) cm^{-1.} ¹H NMR (DMSO-d₆): δ = 1.81–1.89 (m, 2H, CH₂), 2.29 (t, ³J = 7.3 Hz, 2H, CH₂), 3.65 (t, ³J = 6.7 Hz, 2H, CH₂N), 7.38–7.47 (m, 3H, H_{arom.}), 7.58–7.60 (m, 2H, H_{arom.}), 9.84 (s, 1H, OH), 12.03 (s, 1H, OH). ¹³C NMR (DMSO-d₆): δ = 21.76 (CH₂), 30.65 (CH₂), 47.96 (CH₂N), 127.63, 128.03, 129.80, 135.01 (C_{arom.}), 168.54, 173.93 (C=O). C₁₁H₁₃NO₄ (223.2): calcd.: C 59.19, H 5.87, N 6.27; found C 59.03, H 5.86, N 6.21. HRMS (FAB): calcd. for C₁₁H₁₃NO₄: [M+H]⁺: 224.0924; found 224.0920.

4-(*N*-2-Furoyl-*N*-hydroxyamino)-butyric acid (**6f**): Colourless crystals (69%). M. p. 113 °C (EtOAc/ hexane). IR (KBr): $\nu = 3134$, 2887 (OH), 1715, 1597 (C=O) cm⁻¹. ¹H NMR (DMSO-d₆): $\delta =$ 1.79–1.78 (m, 2H, CH₂), 2.26 (t, ³*J* = 7.4 Hz, 2H, CH₂), 3.66 (t, ³*J* = 6.9 Hz, 2H, CH₂N), 6.62 (dd, ³*J* = 1.8, 3.6, 1H, H_{arom}), 7.18 (dd, ³*J* = 3.6 Hz, ⁴*J* = 0.8 Hz, 1H, H_{arom}), 7.86 (dd, ³*J* = 1.8 Hz, ⁴*J* = 0.8 Hz, 1H, H_{arom}), 10.21 (s, 1H, OH), 11.93 (s, 1H, OH). ¹³C NMR (DMSO-d₆): $\delta = 22.14$ (CH₂), 31.10 (CH₂), 47.99 (CH₂N), 111.86, 117.56, 145.65, 146.00 (C_{arom}), 158.53, 174.36 (C=O). C₉H₁₁NO₅ (213.2): calcd.: C 50.71, H 5.20, N 6.57; found C 50.60, H 5.25, N 6.21.

4-[N-Hydroxy-N-(4-phenyl-benzoyl)amino]-butyric acid (**6g**): Pale pink crystals (54%). M. p. 158 °C (EtOAc/hexane). IR (KBr): ν = 3188 (OH), 1699, 1601 (C=O) cm⁻¹. ¹H NMR (DMSO-d₆): δ = 1.58–1.92 (m, 2H, CH₂), 2.32 (t, ³J = 7.4 Hz, 2H, CH₂), 3.69 (t, ³J = 6.9 Hz, 2H, CH₂N), 7.38–7.42 (m, 1H, H_{arom}), 7.47–7.51 (m, 2H, H_{arom}), 7.66–7.75 (m, 6H, H_{arom}), 10.36 (s, 1H, OH), 11.51 (s, 1H, OH). ¹³C NMR (DMSO-d₆): δ = 22.25 (CH₂), 31.17 (CH₂), 48.46 (CH₂N), 126.34, 126.81, 127.16, 128.20, 128.26, 129.32, 129.37, 134.29, 139.75, 141.98 (C_{arom}), 168.71, 174.43 (*C*=O). C₁₇H₁₇NO₄ (299.3): calcd.: C 68.22, H 5.72, N 4.68; found C 68.13, H 5.77, N 4.38.

4-[N-Hydroxy-N-(4-phenoxy-benzoyl)amino]butyric acid (**6h**): Colourless crystals (86%). M. p. 125 °C (EtOAc/hexane). IR (KBr): ν = 3240, 3170, 2939 (OH), 1701, 1603 (C=O) cm⁻¹. ¹H NMR (DMSO-d₆): δ = 1.82–1.89 (m, 2H, CH₂), 2.29 (t, ³J = 7.4 Hz, 2H, CH₂), 3.66 (t, ³J = 6.9 Hz, 2H, CH₂N), 6.96–7.01 (m, 2H, H_{arom}), 7.06–7.09 (m, 2H, H_{arom}), 7.18–7.22 (m, 1H, H_{arom}), 7.41–7.46 (m, 2H, H_{arom}), 7.66–7.70 (m, 2H, H_{arom}), 10.07 (s, 1H, OH), 11.85 (s, 1H, OH). ¹³C NMR (DMSO-d₆): δ = 22.22 (CH₂), 31.16 (CH₂), 48.51 (CH₂N), 117.38, 119.71, 124.49, 129.91, 130.56, 131.01, 156.14, 158.71 (C_{arom}), 168.26, 174.42 (C= O). C₁₇H₁₇NO₅ (315.3): calcd.: C 64.75, H 5.43, N 4.44; found C 64.60, H 5.58, N 4.71.

4-(N-Hydroxy-N-1-naphthoylamino)-butyric acid (6i): Pale yellow crystals (69%) M.p. 122 °C (EtOAc/hexane). IR (film): $\nu = 3111, 3060, 2871$ (OH), 1711, 1618 (C=O) cm⁻¹. ¹H NMR (DMSO d_6): $\delta = 1.68 - 2.01$ (m, 2H, CH₂), 2.08 - 2.45 (m, 2H, CH₂), 6.60-3.92 (m, 2H, CH₂N), 7.45-7.47 (m, 1H, $H_{\text{arom.}}$), 7.51–7.56 (m, 3H, $H_{\text{arom.}}$), 7.80– 7.82 (m, 1H, H_{arom.}), 7.95–7.96 (m, 2H, H_{arom.}), 10.76 (s, 2H, OH). ¹³C NMR (DMSO-d₆): δ = 22.32 (CH₂), 31.22 (CH₂), 47.40 (CH₂N), 124.69, 125.35, 126.47, 126.87, 128.54, 128.96, 129.66, 133.24, 134.72 ($C_{\text{arom.}}$), 169.26, 174.42 (C=O). C₁₅H₁₅NO₄ (273.3): calcd.: C 65.93, H 5.53, N 5.13; found C 65.74, H 5.73, N 5.24. HRMS (FAB): calcd. for C₁₅H₁₅NO₄: [M+H]⁺: 274.1080; found 274.1081.

Acknowledgements

Financial support of BMBF, Germany and Jomaa Pharmaka, Germany, is gratefully acknowledged.

- T. Kurz, D. Geffken, C. Wackendorff, Z. Naturforsch. 58b, 106 (2003).
- [2] M. J. Wyvratt, A. A. Patchet, Med. Res. Rev. 5, 483 (1985).
- [3] G. A. Flynn, E. L. Giroux, Tetrahedron Lett. 27, 1757 (1986).
- [4] C. Mueller, J. Schwender, J. Zeidler, H. K. Lichtenthaler, Biochem. Soc. Trans. 28, 792 (2000).
- [5] J. Zeidler, J. Schwender, C. Mueller, H. K. Lichtenthaler, Biochem. Soc. Trans. 28, 796 (2000).
- [6] H. Jomaa, J. Wiesner, S. Sanderbrand, B. Altincicek, C. Weidemeyer, M. Hintz, I. Turbachova, M. Eberl, J. Zeidler, H. K. Lichtenthaler, D. Soldati, E. Beck, Science 285, 1573 (1999).
- [7] A. Bongini, G. Cardillo, L. Gentilucci, C. Tomasini, J. Org. Chem., 62, 9148 (1997).
- [8] B. Atsuo, K. Noriaki, M. Haruhiko, O. Yoshikazu, T. Shigehisa, J. Med. Chem. **39**, 5176 (1996).