A Flexible Approach for the Asymmetric Synthesis of N-Protected (*R*)-5-Alkyl Tetramates and (*R*)-5-Alkyl Tetramic Acid Derivatives

Pei-Qiang Huang,* Jun Deng

Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China

Fax +86(592)2186400; E-mail: pqhuang@xmu.edu.cn

Received 27 October 2003

Dedicated to Professor Dr. Khi-Rui TSAI on the occasion of his 90th birthday.

Abstract: A flexible two-step asymmetric approach to N-protected (R)-5-alkyl tetramates and (R)-5-alkyl tetramic acid derivatives is described. The method is based on the diastereoselective alkylation of (R)-phenylglycinol derived tetramates **7** and **8**, which are the first synthetic equivalents to chiral nonracemic tetramate 5-carbanionic synthons **A**.

Key words: asymmetric synthesis, alkylations, chiral auxiliaries, tetramates, tetramic acids

5-Alkyl tetramic acids 1 are sub-structures found in a number of bioactive natural products.¹ Some of them exist as 'methyl ester', namely, methyl 5-alkyl tetramates 2^{1} For example, methyl 5-methyl tetramate 2a is found both in mirabimide E (3, Figure 1)² a solid tumor selective cytotoxin isolated from the terrestrial blue green alga Scytonema mirabile UH strain BY-8-1, and in dysideapyrrolidone,³ a compound isolated from the tropical marine sponge Dysidea herbacea (Dictyoceratida) of specimen *D. herbacea* from Palau; dolapyrrolidone (Dpy) 2b is a component of antineoplastic dolastatin 15, isolated in minus amount (1600 kg of mollusk yielded 6.2 mg!) from the Indian Ocean sea hare Dolabella auricularia.⁴ In addition, the multiple functionalities and reactivities possessed by 1 and 2 render them versatile building blocks for the synthesis of other classes of bioactive natural products, which include indocarbazole natural product K252a,⁵ β -hydroxy- γ -amino acids such as statine and AHPPA,^{6,7} and pyrrolidine alkaloids.^{7,8}

Since methods have been developed for the introduction of both C-3 and N-1 substituents starting from 5-alkyl tetramates,⁹ the key to the asymmetric synthesis of C-3, C-5 and N-1 substituted tetramic acid-related natural products depends on the synthesis of 5-alkyl tetramic acids **1** or 5alkyl tetramates **2**. Up to date, α -amino acid-based methods ^{6,10} remain the main entrance to optically active 5alkyl tetramic acid-related natural products.¹¹ However, partial racemization has been observed in such approach.¹² Moreover, it was reported that the conversion of 5-alkyl tetramic acids to methyl 5-alkyl tetramates, by treatment of 5-alkyl tetramic acids either with dimethylsulfate or diazomethane^{2,13} or with methanol under

Mitsunobu conditions,¹⁴ could not proceed without racemization. Thus the development of direct entrances¹⁵ to chiral nonracemic tetramates is highly desirable. Very recently, we have reported a flexible approach to (S)-5-alkyl tetramic acid derivatives,⁷ we now wish to report the first direct asymmetric approach to N-protected alkyl (R)-5alkyl tetramates, which is based on the use of (R)-phenylglycinol as a N-chiral auxiliary.

The use of (R)-phenylglycinol as a chiral auxiliary for the asymmetric synthesis of N-containing compounds has enjoyed great success, which is due largely to Husson and co-workers' efforts in developing CN(R,S) methodology.¹⁶ The alkylation of the (R)-phenylglycinol derived vinylogous enolates 4 (Figure 2) has also been studied, which was shown to occur exclusively at the C-3 position.¹⁷ Only the corresponding silyl dienolethers (2-silyloxypyrrole) 5^{18} and 6,¹⁹ or the vinylogous enolates of Nprotected 4-alkyl-3-pyrrolin-2-one²⁰ can react regioselec-tively with electrophiles at the C-5 position. However, such methods can neither be used for the synthesis of tetramates, nor allow the introduction of simple alkyl group at the C-5 position. Gratefully, it was reported that the reaction of achiral tetramate lithium dienolates with alkylating agents occurred regioselectively at the C-5 position.²¹ On the basis of these considerations, we reasoned that the (R)-phenylglycinol derived chiral tetramates 7/8 would serve as suitable chiral building blocks for the asymmetric synthesis of 5-alkyl tetramates 9/10 (Scheme 1).

SYNLETT 2004, No. 2, pp 0247–0250 Advanced online publication: 16.12.2003 DOI: 10.1055/s-2003-44968; Art ID: U22303ST.pdf © Georg Thieme Verlag Stuttgart · New York

Scheme 1

Several methods are available for the preparation of 5-unsubstituted tetramates.²² The required chiral tetramate 7 was synthesized by heating a acetonitrile solution of known ethyl (E)-4-chloro-3-ethoxy-2-butenoate $(11)^{22b,c}$ and (R)-phenylglycinol in the presence of triethylamine, which gave the desired N-protected ethyl tetramate 7 (white crystals, mp 114–115 °C) in 50% yield. Attempts to improve the yield of the condensation reaction by using pyridine or K₂CO₃ instead of triethylamine or by using O-TBDMS protected phenylglycinol were not rewarding. Although the yield of 7 is only 50%, its ready availability in just one step makes this approach attractive. Similar treatment of (R)-phenylglycinol with 12 afforded the corresponding N-protected methyl tetramate 8 in 55% yield (Scheme 2).

With quantities of synthon equivalents 7 and 8 available, the generation of the dianions A(R' = Et, Me) and subsequent reaction with electrophiles (Scheme 3) were investigated. As a first investigation, compound 7 was deprotonated with 2.4 molar equivalents of tert-butyllithium in THF at -78 °C, the anion generated in situ was quenched with deuteriomethanol (MeOD, -78 °C, 20 min), which yielded the C-5 deuterio product 9a and the recovered starting material 7 in a ratio of 84:16 (yield 85%, Table 1, entry 1) as indicated by ¹H NMR spectral analysis. The deuterio product 9a and the starting material 7 can be easily distinguished by ¹H NMR: the C-5 proton signal for **9a** appears at $\delta = 3.65$ ppm as a broad singlet, LETTER

Scheme 3

Encouraged by this result, the alkylation of the dianionic intermediate A (R' = Et) was pursued. Thus successive treatment of 7 with 2.4 equivalents of t-BuLi and methyl iodide in a mixed solvent system (THF-HMPA 20:1) at -78 °C for 6 hours afforded readily separable 9b and its diastereomer in a ratio of 90:10 (combined yield 63%). Besides, 7% of recovered starting material 7 and 15% of dimethylated products were also isolated as an un-separable mixture (Table 1, entry 2).²³ Because we were unable to obtain the dimethylated side products in pure form, their structure and ratio could not be determined. Methylation of 8 proceeded similarly, which afforded 10b in 90:10 diastereoselectivity (combined yield 72%, Table 1, entry 3). Alkylation of the dianion A (R' = Et) in situ generated from 7 with other electrophiles gave the corresponding C-5 alkylated products in similar diastereoselectivities and chemical yields (Table 1, entries 4-6). When benzyl bromide was used as an alkylating agent, a slightly lower diastereoselectivity was obtained (Table 1, entries 7, 8). It is important to note that, only in the case showed in entry 7 (Table 1), did a small amount (8.6%) of the C-3 alkylated product was obtained.

The recovering of a small amount of starting 7 or 8 in all cases might implicate that the deprotonation of the C-5 proton was uncompleted. It is important to note that the use of tert-butyllithium as the base is crucial for the reaction. Other bases such as sec-butyllithium or lithium hexamethyldisilazide gave poorer yields (Table 1, entries 9, 10).

To determine the stereochemistry of the alkylated products 9/10, the transformation of methyl 5-benzyl tetramate 10f into known 2-benzylpyrrolidin-3-ol (16)²⁴ was undertaken (Scheme 4). Thus treatment of 10f with concentrated HCl solution for 12 hours gave tetramic acid 13, which without further purification, was treated with sodium borohydride in a mixed solvent system (HOAc:CH₂Cl₂ = 1:10) at low temperature (-15 to 0 $^{\circ}$ C),^{24a} to provide *cis*-14 as the only observable product. The yield over two steps was 67%. The cis stereochemistry of compound 14 was assigned on the basis of observed vicinal coupling constants $(J_{4.5} = 5.2 \text{ Hz}).^{25}$

 Table 1
 Results for the Reaction between Lithiated Compounds 7/

 8 and Electrophiles
 1

En- try	Base/starting tetramates	Electro- philes	Products	Stereomer- ic ratio ^a	Yield (%)
1	t-BuLi/7	MeOD	9a:7 (86:14) ^b	_ ^c	(85) ^e
2	<i>t</i> -BuLi/ 7	MeI	9b	90:10 ^d	63 (68) ^e
3	t-BuLi/8	MeI	10b	90:10 ^d	72 (77) ^e
4	t-BuLi/7	EtI	9c	87:13 ^d	68 (77) ^e
5	t-BuLi/7	<i>n</i> -BuI	9d	93:7 ^d	61 (67) ^e
6	t-BuLi/7	n-C ₆ H ₁₃ I	9e	92:8 ^d	63 (76) ^e
7	t-BuLi/7	BnBr	9f	84:16 ^d	71 (83) ^e
8	t-BuLi/8	BnBr	10f	85:15 ^d	58 (73) ^e
9	s-BuLi/7	n-C ₆ H ₁₁ I	9e	93:7 ^d	49 (74) ^e
10	LHMDS/7	n-C ₆ H ₁₃ I	9e	87:13 ^d	18 (49) ^e

^a The stereochemistry of the major diastereomer was showed in **9/10** (Scheme 3), which was determined by chemical correlation (vide infra).

^b Ratio determined by ¹H NMR.

^c Ratio can not be determined by ¹H NMR.

^d Ratio determined by chromatographical separation.

^e Yields based on the recovered starting material.

Scheme 4

The reduction of amide **14** with borane dimethylsulfide complex (H₃B·SMe₂) gave pyrrolidine **15**. Without further purification, **15** was subjected to hydrogenolysis conditions (H₂, 1 atm, 10% Pd/C, EtOH) in the presence of di(*tert*-butyl) dicarbonate to afford, in one-pot, the *N*-debenzylation–butoxycarbonylation product **16** {mp 78–79 °C; lit.^{24a} mp 71 °C; $[\alpha]_D^{20}$ +5.8 (*c* 1.0, CHCl₃); lit.^{24a} $[\alpha]_D^{23}$ +6.00 (*c* 1.0, CHCl₃) for 2*R*,3*R*-enantiomer; $[\alpha]_D^{23}$ –6.00 (*c* 1.0, CHCl₃) for 2*S*,3*S*-enantiomer}. The overall yield from **14** to **16** was 40%. The dextrorotary property of thus synthesized **16** clearly indicates its 2*R*,3*R* absolute configuration. Moreover, the present work provides a new approach to compounds **17–20**, which are novel potential HIV protease inhibitors.^{24a}

All the products 9/10 show the same ¹H NMR and ¹³C NMR spectral characteristics. This allows us to assume that they share the same stereochemistry as depicted in structure 9/10 (Scheme 3). With the stereochemistry ascertained, it is possible to have an insight into the stereochemical course of the alkylation reaction. It is reasonable to assume that the reaction passed through the chelating intermediate **B** or vinylogous enolate **C** (Figure 3). The reaction of **B** with electrophiles then proceeded with inversion of configuration²⁶ at the C-5 position, which would establish the R-configuration at the C-5. On the other hand, if the intermediate C was involved, then the electrophiles would approach from the re-face of the vinylogous enolate to avoid the unfavorable interaction with the phenyl group, which would establish R-configuration as well.

In summary, starting from (R)-phenylglycinol, we have developed a simple, versatile and direct two-step asymmetric approach to N-protected (R)-5-alkyl-tetramates and (R)-5-alkyl-tetramic acid derivatives. Among thus synthesized (R)-5-alkyl tetramate derivatives, methyl (R)-5-methyl-tetramate and methyl (R)-5-benzyl-tetramate are antipodes of the tetramate sub-units found respectively in mirabimide E (**3**), dysideapyrrolidone, and antineoplastic dolastatin 15. The transformation of the major diastereomer **10f** into known N-Boc-(2R,3R)-2-benzylpyrrolidin-3-ol (**16**) both confirms the stereochemistry of the reaction and provides an approach to some novel potential HIV protease inhibitors. Work is in progress for the asymmetric synthesis of naturally occurring tetramates.

Acknowledgment

The authors are grateful to the National Science Fund for Distinguished Young Investigators, the NNSF of China (29832020; 20072031; 20272048; 203900505), and the Specialized Research Fund for the Doctoral Program of Higher Education for financial support.

References

- (1) For a review, see: Royles, B. J. L. *Chem. Rev.* **1995**, *95*, 1981.
- (2) Palk, S.; Carmeli, S.; Cullingham, J.; Moore, R. E.; Patterson, G. M. L.; Tius, M. A. J. Am. Chem. Soc. 1994, 116, 8116.

Synlett 2004, No. 2, 247-250 © Thieme Stuttgart · New York

- (3) Unson, M. D.; Rose, C. B.; Faulkner, D. J. J. Org. Chem. 1993, 58, 6336.
- (4) Pettit, G. R.; Camano, Y.; Dufresne, C.; Cerny, R. L.; Herald, C. L.; Schmidt, J. M. J. Org. Chem. 1989, 54, 6005.
- (5) Wood, J. L.; Petsch, D. T.; Stoltz, B. M.; Hawkins, E. M.; Elbaum, D.; Stover, D. R. *Synthesis* 1999, 1529.
- (6) (a) Fehrentz, J. A.; Bourdel, E.; Califano, J. C.; Chaloin, O.; Devin, C.; Garrouste, P.; Lima-Leite, A. C.; Llinares, M.; Rieunier, F.; Vizavonna, J.; Winternitz, F.; Loffet, A.; Martinez, J. *Tetrahedron Lett.* **1994**, *35*, 1557. (b) Schmidt, U.; Ridel, B.; Haas, G.; Griesser, H.; Vetter, A.; Weinbrenner, S. *Synthesis* **1993**, 216. (c) Klutchko, S.; O'Brien, P.; Hodges, J. C. *Synth. Commun.* **1989**, *19*, 2573.
- (7) Huang, P.-Q.; Wu, T.-J.; Ruan, Y.-P. Org. Lett. **2003**, *5*, 4341.
- (8) Hunter, R.; Richards, P. Synlett 2003, 271.
- (9) (a) Detsi, A.; Micha-Screttas, M.; Igglessi-Markopoulou, O. J. Chem. Soc., Perkin Trans. 1 1998, 2443. (b) Jones, R. C. F.; Begley, M. J.; Peterson, G. E.; Sumaria, S. J. Chem. Soc., Perkin Trans. 1 1990, 1959. (c) Hori, K.; Arai, M.; Nomura, K.; Yoshii, E. Chem. Pharm. Bull. 1987, 33, 4368.
 (d) Jones, R. C. F.; Peterson, G. E. Tetrahedron Lett. 1983, 24, 4751. (e) Jones, R. C. F.; Peterson, G. E. Tetrahedron Lett. 1983, 24, 4755. (f) Jones, R. C. F.; Peterson, G. E. Tetrahedron Lett. 1983, 24, 4757. (g) Jones, R. C. F.; Sumaria, S. Tetrahedron Lett. 1978, 3173.
- (10) (a) Jouin, P.; Castro, B. J. Chem. Soc., Perkin Trans. 1 1987, 1177. (b) Liu, Z. X.; Ruan, X. X.; Huang, X. Bioorg. Med. Chem. Lett. 2003, 13, 2505.
- (11) For other approaches to optically active tetramic acids and derivatives, see: (a) ref. 7. (b) Fustero, S.; Torre, M. G.; Danz-Cervera, J. F.; Arellano, C. R.; Piera, J.; Simon, A. *Org. Lett.* **2002**, *4*, 3651. (c) Banziger, M.; McGarrity, J. F.; Meul, T. J. Org. Chem. **1993**, *58*, 4010.
- (12) Poncet, J.; Jouin, P.; Castro, B. J. Chem. Soc., Perkin Trans. *I* **1990**, 611.
- (13) (a) Pettic, G. R.; Thornton, T. J.; Mullaney, J. T.; Boyd, M. R.; Herald, D. L.; Singh, S.-B.; Flahive, E. J. *Tetrahedron* **1994**, *50*, 12097. (b) Pettit, G. R.; Herald, D. L.; Singh, S.-B.; Thornton, T. J.; Mullaney, J. T. *J. Am. Chem. Soc.* **1991**, *113*, 6692.
- (14) Akaji, K.; Hayashi, Y.; Kiso, Y.; Kuriyama, N. J. Org. Chem. 1999, 64, 405.
- (15) For a direct racemic approach to methyl 5-iso-propyl tetramate, see: Williard, P. G.; de Laszlo, S. E. J. Org. Chem. 1984, 49, 3489.
- (16) For reviews on the use of (*R*)-phenylglycinol and other β-amino alcohols as chiral auxiliaries, see: (a) Husson, H.-P.; Royer, J. *Chem. Soc. Rev.* **1999**, *28*, 383. (b) Groaning, M. D.; Meyers, A. I. *Tetrahedron* **2000**, *56*, 9843. (c) Ager, D. J.; Prakash, I.; Schaad, D. R. *Chem. Rev.* **1996**, *96*, 835. (d) Sardina, F. J.; Rapoport, H. *Chem. Rev.* **1996**, *96*, 1825.
- (17) Baussanne, I.; Chiaroni, A.; Husson, H. P.; Riche, C.; Royer, J. *Tetrahedron Lett.* **1994**, *35*, 3931.
- (18) (a) Dudot, B.; Chiaroni, A.; Royer, J. *Tetrahedron Lett.*2000, 41, 6355. (b) Dudot, B.; Royer, J.; Sevrin, M.; George, P. *Tetrahedron Lett.* 2000, 41, 4367. (c) Dudot, B.; Micouin, L.; Baussanne, I.; Royer, J. *Synthesis* 1999, 688.
 (d) Poli, G.; Baffoni, S. C.; Giambastiani, G.; Reginato, G. *Tetrahedron* 1998, 54, 10403. (e) Baussanne, I.; Schwardt, O.; Royer, J. *Tetrahedron Lett.* 1997, 38, 2259.
 (f) Baussanne, I.; Royer, J. *Tetrahedron Lett.* 1996, 37, 1213.
- (1) Badassanie, I., Royel, S. Felvanderon Etn. 1996, 57, 1215.
 (19) For reviews, see: (a) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. *Chem. Soc. Rev.* 2000, 29, 109. (b) Casiraghi, G.; Zanardi, F. *Chem. Rev.* 1995, 95, 1677. (c) Casiraghi, G.; Rassu, G. *Synthesis* 1995, 607.

- (20) Lautens, M.; Han, W.; Liu, J. H. C. J. Am. Chem. Soc. 2003, 125, 4028.
- (21) (a) Paintner, F. F.; Metz, M.; Bauschke, G. Synlett 2003, 627. (b) James, G. D.; Mills, S. D.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1993, 2567. (c) Jones, R. C. F.; Patience, J. M. J. Chem. Soc., Perkin Trans. 1 1990, 2350. (d) Jones, R. C. F.; Bates, A. D. Tetrahedron Lett. 1986, 27, 5285.
- (22) (a) Paintner, F. F.; Metz, M.; Baoschke, G. Synthesis 2003, 869. (b) Duc, L.; McGarrity, J. F.; Meul, T.; Warm, A. Synthesis 1992, 391. (c) Laffan, D. D. P.; Panziger, M.; Duc, L.; Evans, A. R.; McGarrity, J. F.; Meul, T. *Helv. Chim. Acta* 1992, 75, 892. (d) Kochhar, K. S.; Carson, H. J.; Clouser, K. A.; Elling, J. W.; Gramens, L. A.; Parry, J. L.; Sherman, H. L.; Braat, K.; Pinnick, H. W. *Tetrahedron Lett.* 1984, 25, 1871.
- (23) Representative Procedure for the Alkylation of (R)-7/8: To a solution of (*R*)-7 (104 mg, 0.42 mmol) in THF (8.4 mL, containing 0.37 mL of HMPA as a co-solvent) was added dropwise t-BuLi (0.67 mL, 1.5 M in pentane) at -78 °C. After being stirred for 1 h, MeI (0.08 mL, 1.26 mmol) was added and the stirring continued for an additional 6 h at the same temperature. The reaction was quenched by sat. NH₄Cl. The resulting mixture was extracted with Et₂O, and the organic layers were washed with brine, dried over MgSO4 and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel to give 9b (62 mg, colorless oil), its diastereomer (7 mg, pale yellow oil) (combined yield, 63%) and recovered 7 (7 mg, yield based on the recovered starting material, 68%). Compound **9b**: [α]_D²⁰+19.4 (*c* 1.1, CHCl₃). IR (KBr): 3374, 2981, 2934, 1657, 1625, 1340, 1221, 1029 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.40–7.20 (m, 5 H, Ar*H*), 5.18 (dd, *J* = 6.4, 7.7 Hz, 1 H, D₂O exchangeable, OH), 5.01 (s, 1 H, O=CCH=), 4.51 (dd, J = 3.1, 7.7 Hz, 1 H, PhCHN), 4.27 (ddd, J = 7.7, 7.7, 12.3 Hz, 1 H, HOCH₂), 4.00 (m, 3 H, CH₃CH₂O and HOC H_2), 3.73 (q, J = 6.8 Hz, 1 H, CH₃CHN), 1.37 (t, J = 7.1 Hz, 3 H, CH₃CH₂O), 1.28 (d, J = 6.8 Hz, 3 H, CH₃CHN) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 176.42$, 173.18, 138.34, 128.80 (2 C), 127.77, 127.05 (2 C), 93.35, 67.10, 64.91, 61.90, 57.17, 15.83, 14.06 ppm. MS (ESI): m/z (%) = 262 (13) [M + H⁺], 244 (5) [M + H⁺ - H₂O], 142 (100). HRMS calcd for $[C_{15}H_{19}NO_3 + H]^+$: 262.1438. Found: 262.1440. Minor diastereomer of **9b**: $[\alpha]_{D}^{20} + 17.1$ (*c* 1.1, CHCl₃). IR (KBr): 3367, 2981, 2932, 1659, 1625, 1340, 1222, 1029 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.40$ – 7.20 (m, 5 H, ArH), 5.02 (s, 1 H, =CHC=O), 4.82 (dd, J = 3.8, 7.5 Hz, PhCHN), 4.21 (m, 1 H, HOCH₂N), 4.09 (m, 2 H, HOCH₂ and OH), 3.98 (m, 2 H, CH₃CH₂O), 3.88 (q, J = 6.8 Hz, 1 H, CH₃CHN), 1.37 (t, J = 7.1 Hz, 3 H, CH₃CH₂O), 1.14 (d, *J* = 6.8 Hz, 3 H, CH₃CHN). MS (ESI): m/z (%) = 262 (100) [M + H⁺]. HRMS calcd for [C₁₅H₁₉NO₃ + H]+: 262.1438. Found: 262.1432.
- (24) (a) Courcambeck, J.; Bihel, F.; Michelis, C.; Quelever, G.; Kraus, J. L. *J. Chem. Soc., Perkin Trans. 1* 2001, 1421.
 (b) Bach, T.; Brummerhop, H.; Harms, K. *Chem.–Eur. J.* 2000, *6*, 3838.
- (25) (a) Huang, P. Q.; Wang, S. L.; Ye, J. L.; Ruan, Y. P.; Huang, Y. Q.; Zheng, H.; Gao, J. X. *Tetrahedron* **1998**, *54*, 12547.
 (b) Bernardi, A.; Micheli, F.; Potenza, D.; Scolastico, C.; Villa, R. *Tetrahedron Lett.* **1990**, *31*, 4949.
- (26) (a) Collum, D. B.; Kahne, D.; Gut, S. A.; DePue, R. T.; Mohamadi, F.; Wanat, R. A.; Clardy, J.; VanDuyne, G. J. *Am. Chem. Soc.* **1984**, *106*, 4865. (b) Castonguay, L. A.; Guiles, J. W.; Rappe, A. K.; Meyers, A. I. J. Org. Chem. **1992**, *57*, 3819. (c) Haeffner, F.; Brandt, P. R.; Gawley, E. Org. Lett. **2002**, *4*, 2101.

LETTER

Synlett 2004, No. 2, 247–250 © Thieme Stuttgart · New York