FROM PENICILLIN TO PENEM AND CARBAPENEM. II¹⁾ SYNTHESIS OF 3,4-DISUBSTITUTED AZETIDINONE DERIVATIVES FROM 6,6-BIS(PHENYL-SELENYL)PENICILLANATE

Kolchi Hiral*, Yuji Iwano, and Katsumi Fujimoto Chemical Research Laboratories, Sankyo Co., Ltd. 1-2-58, Hiromachi Shinagawa-ku, Tokyo 140, Japan

Summary 6,6-Bis(phenylselenyl)penicillanate $\underline{2}a$ was converted into 6-1'-(R)-hydroxyethyl substituted penicillanate $\underline{5}$ in high yield. Compound $\underline{5}$ was deselenylated to $\underline{10}$. Oxidation, and then the basic epimerization of the <u>cis</u> sulfone <u>11</u> gave trans sulfone derivative <u>12</u>. The trans sulfone <u>12</u> was degraded to the monocyclic β -lactams <u>14</u>, <u>15</u> which are important precursors for the carbapenem synthesis.

After the discovery of thienamycin the intense study about the synthesis and the structure-activity relationship of this and the related compounds revealed that a part of their potent antibacterial properties is concerned with the presence of the l'-(R)-hydroxyethyl substituent in the 6-position of the rolecule²⁾.

Our interest in the synthesis of the so-called carbapener derivatives from penicillin prompted us to elaborate the method for the synthesis of the monocyclic β -lactam such as <u>15</u> which has the (R)-hydroxyethyl group and the suitable leaving group at 3 and 4 positions in the azetidinone molecule.

During the course of our study of the degradation of the penicillin molecule we have already reported the efficient method for the construction of such a molecule like $\underline{15} (X=OAc)^{1}$, but our continuing interest in developing new method prompted us to seek another road to the compound of the general formula depicted $\underline{15}$ utilizing benzyl 6,6-bis(phenylselenyl)penicillanate 2a.

The starting materials $\underline{2}a$, $\underline{3}a$ and $\underline{4}a$ which have phenylseleno substituents were prepared from the known diazo compound $\underline{1}^{(3)}$ by the reported method⁴⁾ as shown in scheme 1. $\underline{2}a$ NMR (CDCl₃) δ 1.31 (Me,s) and 1.70 (Me,s). $\underline{3}a \delta$: 1.40 (Me,s) and 1.70 (Me,s). $\underline{4}a \delta$ 1.33 (Me,s) and 1.57 (Me,s).

The corresponding phenylthic derivatives $\underline{2}b$, $\underline{4}b$ were prepared analogously, but the 6α -phenylthic derivative corresponded to $\underline{3}b$ could not be obtained by the procedure b in scheme 1. $\underline{2}b$, mp 100-103°C, $\underline{4}b$, mp 84-86°C.

a :
$$X = C_{c}H_{c}Se$$
 b : $X = C_{c}H_{c}S$

a, $(C_6H_5Se)_2$ or $(C_6H_5S)_2$ -BF₃etherate/CH₂Cl₂; b, ⁿBu₃SnH-AIBN/THF; c, C_6H_5SeH or C_6H_5SH -BF₃etherate/CH₂Cl₂ Scheme 1

It is well known that the selenoacetal generates carbanion by releasing one of the seleno part as a cation on base treatment, but this is not the case in the thioacetal⁵⁾. So at first 2a was treated with MeMgBr in THF, and then was reacted with excess of acetcaldehyde to yield 5 (oily) and 6 (mp 195°C) in 78 % isolated yield in a ratio of 30 : 1. When n-Buli was used instead of MeMgBr the ratio changed to 2 : 3⁶⁾. The NMR signals of the dimethyl group in 5 appeared at 8 1.28 and 1.55, and in the case of 6 they appeared at δ 1.45 and 1.78. These data strongly suggested that compound 5 has α -orientated phenylseleno group at C-6 (<u>4</u>a type) and <u>6</u> has β -orientated phenylseleno group (3a type) and furthermore the structure were confirmed by the comparison of a standard sample (vide infra). By treating with n-BuLi and CH_zCHO <u>4a</u> gave <u>5</u> and <u>6</u> in a ratio of 1 : 2⁶⁾, but <u>3a</u> did not give any of 5 or 6, but gave phenylselenol (hence diphenyl diselenide). These results show cleanly that the enolate (7) is involved in this aldol condensation.

In the case of bis(phenylthio) derivative $\underline{2}b$ no products corresponded to $\underline{5}$ or $\underline{6}$ were formed as anticipated, but the reaction of $\underline{4}b$ with n-BuLi and CH₃CHO gave the 1'-(S)-hydroxylated product $\underline{8}$ as crystal, mp 179°C.

Now the desired product 5 in hand new convertion method from 5 into 3,4trans disubstituted azetidinone derivative was strongly elaborated. By tin hydride reduction the phenylselenyl part in 5 was removed to give $6\beta-1'-(R)$ hydroxyethylated product <u>10</u>a in 95 % isolated yield⁷⁾. The coupling constant between the protons on the β -lactam ring is 4.4 Hz and the structure was confirmed as 10a by the comparison of the authentic sample prepared from the known benzyl 6α -bromo, 6β -l'-(R)-hydroxyethyl penicillanate¹⁾by the tin hydride reduction. After the protection of the hydroxy group the product was oxidized with 2.5 eq. of m-Cl perbenzoic acid to afford the cis sulfone derivative <u>ll</u>a, mp ll8°C. NMR (CDCl_z) & 0.1 (3H,s), 0.15 (3H,s), 0.91 (9H,s), 1.26 (3H,s), 1.52 (3H,s), 1.28 (3H,d, J=7 Hz), 3.80 (1H, dd, J= 10 and 5.5 Hz), 4.46 (1H,s), 4.59 (1H,d, J=5.5 Hz), 4.85 (1H, m), 5.20 (2H, br.s), IR (Nujol) $v \text{ cm}^{-1}$ 1810, 1750. The crucial step for the 7.40 (5H,s). isomerization of cis (11a) to trans (12a) was satisfactorily achieved by adding a catalytic amount of DBN to a solution of <u>lla</u> in CH₂Cl₂ at r.t.. The isomerization occured within 30 min to yield the trans product 12a, NMR (CDCl₃) δ 0.1 (6H,s), 0.91 (9H,s), 1.26 (3H,d, J=7 Hz), 1.31 (3H,s), 1.55 (3H,s), 3.66 (1H,dd, J=3.8 and 2.0 Hz), 4.2-4.55 (1H,m), 4.39 (1H,s), 4.61 (1H,d, J=2 Hz), 5.22 (2H,s), 7.42 (5H,s). The ring opening of the trans sulfone <u>12</u>a was smoothly achieved by excess CH_{zI} and $KO^{t}Bu$ (2.5 eq.) in THF . DMF (1 2) to yield the monocyclic β -lactam 13a. In this ring opening reaction NaH was not effective. The N-substituent in 13 was oxidatively removed by KMnO_{μ} or ozonolysis to give the desired monocyclic β -lactam <u>14</u>, mp

e, ^tBuMe₂SiCl, imidazole ; f, 2.5 eq. mClPBA ; g, cat. DBN / CH_2Cl_2 h, CH_3I , KO^tBu / DMF:THF(l:2) ; i, $KMnO_4$ or O_3 , J,C_6H_5SNa ; k, mClPBA Scheme 3 100°C, $[\alpha]_D^{20}$ -12.8 (c=1, CHCl₃), NMR (CDCl₃) δ : 0.09 (6H,s), 0.88 (9H,s), 1.28 (3H,d, J=6 Hz), 2.94 (3H,s), 3.54 (1H, t, J=2 Hz), 4.1-4.5 (1H, m), 4.7 (1H, d, J=2 Hz), 6.95 (NH). IR (Nujol) ν cm⁻¹ : 3350, 1795, 1780, 1737. The sequence of the reactions in scheme 3 was successfully applicable to methyl 6 α -bromo-6 β -1'-(R)-hydroxyethyl penicillanate 9¹ to afford the same monocyclic β -lactam 14. The methylsulfonyl part in 14 was transformed into phenylthio derivative 15, which was oxidized to the phenylsulfone derivative 16 by the reported procedure⁸.

The utility of the monocyclic β -lactams, <u>14</u> and <u>16</u> as versatile starting materials for the synthesis of the carbapenem derivative will be described in the following communication.

REFERENCES AND FOOTNOTE

- 1) Part I, K. Hirai, Y. Iwano, and K. Fujimoto, Heterocycles 17 201 (1982).
- 2) W.J. Leanza, K.J. Wildonger, J. Hannah, D.H. Shih, R.W. Ratcliffe, L. Barash, E. Walton, R.A. Firestone, G.F. Patel, F.M. Kahan, J.S. Kahan, and B.G. Christensen, "Recent Advances in the Chemistry of β-lactam Antibiotics" second international symposium (1980, London). Abst. Paper p. 240.
- 3) J.C. Sheehan, Y.S. Lo, J. Lölinger, and C.C. Podewell, <u>J. Org. Chem.</u> 39 1444 (1974).
- 4) P.J. Giddings, D.I. John, and E.J. Thomas, <u>Tetrahedron Lett.</u> 995 (1978). Idem, ibid, 399 (1980).
- 5) D. Seebach, and N. Peleties, <u>Chem. Ber. 105</u> 511 (1972). P. Bayet, and A. Krief, <u>Angew. Chem. (Int. Ed.)</u> 13, 804 (1974).
- 6) Actually $6\alpha-1'-(R)$ -hydroxyethylated product corresponded to <u>6</u> was obtained in a ratio of 2 (in the case of <u>2</u>a) and 1 (in the case of <u>4</u>a) respectively.
- 7) J.A. Aimetti, E.S. Hamanaka, D.A. Johnson, and M.S. Kellog, <u>Tetrahedron</u> <u>Lett</u>. 4631 (1979).
- 8) K. Clau β , D. Grimm, and G. Prossel, Liebig's Ann. Chem. 539 (1974).

(Received in Japan 7 June 1982)