
Table I---Temperatures of Initial Plasticity, Maximum Pressure, and Coke Formation for Fresh and Oxidized Coals

INITIAL Plasticity	Max. Pres- sure	Temp. Max. Pressure	Coke Forma- tion	Coke Quality	TIME OF OXIDATION ^a
° C.	Mm.	° C.	° C.		Hours
	TAY	LOR-ENGLISH,	VERMILIO	N COUNTY, ILL	
375	504	390	445	Poor	Fresh coal
382	430	432	480	Weak	1.5
383	324	418	470	Very weak	2
395	90	415	470	Powder	3
399	13	414	452	Powder	4
		ZIEGLER, FRA	NELIN CO	OUNTY, ILL.	
378	998	465	512	Poor	Fresh coal
404	350	467	512	Weak	1.75
396	230	438	482	Very poor	3.5
376	74	426	477	Powder	7
		PC	CAHONTAS	6	
418	1244	518	600	Strong	Fresh coal
432	1385	545	495	Denser	42
438	240	431	576	Weak	56
436	174	495	535	Very poor	90
	VINTO	ON COLLIERY,	MINE NO	. 6, VINTON, P.	Α.
403	1800	513	595	Good	Fresh coal
418	1289	535	590	Denser	56
405	1172	530	584	Very dense	90
453	473	556	600	Medium	104
417	246	478	540	Very poor	140
		ELKHORN, L	ATCHER CO	DUNTY, KY.	
385	755	431	480	Very porous	Fresh coal
388	510	434	490	Denser	15
395	324	438	483	Weak	20
398	23	430	453	Powder	300
	VERMI	LION COUNTY	, ILL., FR	OM STORAGE PI	LE
373	219	413	481	Weak	Outside of pile;
375	86	417	469	Powder	Inside of pile; local heating
4 Temp	oerature o	of oxidation.	110° C.		

detrimental to its coking properties, while preheating may be carried on to higher temperatures in an inert atmosphere without affecting the nature of coke formed. In some cases preheating coal is beneficial to its coking properties. This should be indicative of the extent to which heating should be allowed to progress in storage.

Table II—Temperatures of Initial Plasticity, Maximum Pressure, and Coke Formation for Fresh and Preheated Coals						
	MAX.	TEMP.	Coke		Pre	HEAT-
INITIAL	Pres-	MAX.	FORMA-	Coke	ING TRI	EATMENT
PLASTICITY	SURE	Pressure	TION	QUALITY	Temp.	Medium
° C.	Mm.	° C.	° C.		° C.	
		JELLI	co coun	TY, KY.		
372	754	420	491	Good	Fresh coal	
374	550	424	474	Better than	150	Air
011	000			original		
361	104	410	444	Poor	200	Air
368	94	390	420	Very poor	250	Nitrogen
377	780	439	473	Good	300	Nitrogen
375	480	452	490	Fair	350	Nitrogen
	0'G/	ARA COAL	CO., SALI	NE COUNTY,	ILL.	
350	780	480	497	Fair	Fresh coal	
380	560	420	466	Fair	150	Air
380	386	407	470	Weak	200	Air
350	206	402	488	Powder	250	Air
367	12	394	510	Powder	350	Air
383	40	400	445	Fair	250	Nitrogen
396	40	415	458	Powder	350	Nitrogen
U	NITED EI	ECTRIC CO.	AL CO., V	ERMILION C	OUNTY, ILL.	
349	911	442	491	Fair	Fresh coal	
349	530	404	451	Good	250	Nitrogen
390	17	413	434	Powder	350	Nitrogen
	HIC	KORY HILL,	GALLAT	IN COUNTY,	ILL.	
356	504	404	491	Fair	Fresh coal	
350	454	410	434	Fair	300	Nitrogen
345	314	396	435	Poor	350	Nitrogen

Preparation and Properties of Diethyleneglycol **Dinitrate**^{1,2}

By Wm. H. Rinkenbach

PITTSBURGH EXPERIMENT STATION, U. S. BUREAU OF MINES, PITTSBURGH, PA.

IETHYLENEGLY-COL dinitrate, CH₂- (NO_3) . CH_2 . O. CH_2 . - $CH_2(NO_3)$, not having as yet been described in the literature, a study of its synthesis and properties was undertaken as a part of a program dealing with the glycols and their nitric esters.

Preparation

Wurtz³ found that nitrie acid reacts with diethyleneglycol to yield glycolic, oxalic, and another unnamed acid but did not try the effect of a mixture of nitric and sulfuric acids.

Nitrating mixtures containing varying percentages of water and of nitric and sulfuric acids were made up in the usual way. A measured quantity was cooled, and to this was added a weighed quantity of diethylene glycol, which was purified as described in a previous paper.⁴ It was added in small portions with continuous agitation of the mixture, care being taken to maintain the temperature between 5° and 10° C. The time required to complete the nitration was usually 30 minutes.

The results varied considerably with the strength of the acid employed. With the most concentrated acids the dini-

- ² Published with approval of the Director, U. S. Bureau of Mines.
- ⁸ Ann. chim., [3], 69, 317 (1863).

Diethyleneglycol dinitrate may be obtained by the nitration of diethylene glycol with mixtures of nitric and sulfuric acids. Yields, emulsification, and safety of the operation depend upon the type of nitrating mixture used.

The principal properties of the compound have been studied and recorded. Although comparatively insensitive, the compound is explosive when mixed with similar compounds. For this reason it will probably be of some interest in explosives practice, particularly because several of the other properties found add to the value of the compound from this viewpoint.

> sion of the oily product in the spent acid which would not separate within 1.5 hours. In this case it was necessary to pour the mixture into ice and water and separate the dinitrate, which then settled out. Nitrating acids of composition intermediate between these extremes gave emulsions which separated into two layers within 1.5 hours.

trate separated as an oily,

upper layer, which decom-

posed vigorously when al-

lowed to stand in contact with

the spent acid at the same

temperature for a short time,

or when the temperature of

the liquid was allowed to rise

slightly during the course of

separation. With the least

concentrated nitrating acids

no separation took place or

there was formed an emul-

In either case the volume of the crude product was measured immediately after separation or precipitation. It was then washed one or more times with ice water, twice with a 2 per cent solution of potassium carbonate, and three more times with ice water; each washing was carried out in a separatory funnel and accompanied by agitation. The purified material was then placed in a sulfuric acid desiccator to remove traces of moisture and the weight of pure product determined. Table I summarizes the experiments.

The results indicate that the nitration should be carried out at a temperature not above 10° C., that the product is unstable in contact with spent acid containing free nitric

¹ Received March 30, 1927.

⁴ Rinkenbach, THIS JOURNAL, 19, 474 (1927).

acid, and that the best yields are obtained by using no excess of a nitrating acid containing 25 per cent nitric acid and from 5 to 10 per cent of water. It would appear that the best procedure is to add the glycol to such a nitrating acid, keep the temperature at or below 10° C., pour the resulting emulsion into three times its weight of ice and water and purify the oily precipitate in the manner previously described.

NITRA H2O	TING MIX HNO3	HI CI CI CI CI CI CI CI CI CI CI CI CI CI	NO3 Ex sss ove: Theo- reti- cal	- CRUDE R PER 100 GRAMS GLYCOL	Washed Oil per 100 Grams Glycol	Y: Crude	ELD Washed
%	%	%	%	Cc.	Grams	%	%
1.3	38.7	60.0	20	78	a	59	
1.3	38.7	60.0	10	ь	ь		
8.0	30.0	62.0	0	34 +	c	26 +	
15.5	27.8	56.7	10	90	98.5	68	53
15.5	27.8	56.7	5	93	104	70	56
25.0	25.0	50.0	10	d	18		10
10.7	25.0	64.3	0	e	113		61
8.0	25.0	67.0	0	ſ	116.5		63
5.0	25.0	70.0	31.5	929	84.6	69	46
5.0	25.0	70.0	0	92h	112.6	69	61

^a During transference to funnel temperature rose slightly and violent decomposition ensued; complete separation had taken place. ^b Carried out at 22° C.; violent decomposition took place before all the glycol could be added. ^c Standing at 5° C., decomposition took place 15 minutes after com-pletion of nitration, when some product had separated. ^d Emulsion formed; poured into ice and water after 2 hours' standing at 5° C.

Emulsion formed; only partial separation; poured into ice and water. *Emulsion formed*; no separation; poured into ice and water. *Emulsion formed*; no separation; poured into ice and water; volume 1 00 ar

of oil, 92 cc. ^h Emulsion formed; no separation; poured into ice and water; volume of oil, 92 cc.

Properties

The diethyleneglycol dinitrate prepared by this method was allowed to stand in a sulfuric acid desiccator for 2 months to remove all trace of moisture or other volatile impurities. During part of this period the pressure was reduced to 1 cm. of mercury. Analysis by means of the nitrometer at the end of this time showed a nitrogen content of 14.12 per cent as compared with a theoretical content of 14.29 per cent. This material was used for the purpose of studying the properties of the compound.

Diethyleneglycol dinitrate is a clear, colorless liquid that has no apparent odor.

SPECIFIC GRAVITY-Nineteen determinations of the specific gravity of diethyleneglycol dinitrate at temperatures ranging from 1.1° to 29.7° C. were made by means of the Westphal balance, using a calibrated thermometer and immersing the container in a water bath. The values obtained, when plotted, gave a straight line, and from this the values in Table II were read off at regular temperature intervals.

Temperature	SP. GR.	TEMPERATURE	Sp. Gr.
° C.	x°/15° C.	° C.	x°/15° C.
0.0	1.4092	20.0	1.3846
5.0	1.4030	25.0	1.3785
10.0	1.3969	30.0	1.3724
15.0	1.3908		

FREEZING POINT-By means of a calibrated mercury thermometer, a transparent Dewar flask of 50 cc. capacity and having a long neck, an acetone bath chilled to from -40° to -20° C., and using about 20 grams of material, it was found that when stirred during cooling, diethyleneglycol dinitrate freezes after some supercooling. In one case the liquid supercooled to -35° C. Freezing point values of -11.4° , -11.2°, -11.2°, and -11.4° C. (average -11.3° C.) were obtained in this way. On warming, the crystals melt at about this temperature, but the liquid-solid mixture does not maintain an absolutely constant temperature until all the solid has melted; a slow rise is apparent in spite of vigorous stirring.

Calibration of the thermometer used makes possible a correction of the value given⁵ for the freezing point of the homologous compound, ethyleneglycol dinitrate. On applying the necessary correction, this is found to be -22.75° C. instead of the given value (average) of -22.3° C.

VISCOSITY-The viscosities of diethyleneglycol dinitrate and nitroglycerin were determined by means of a viscometer of the pipet type, which was calibrated at definite temperatures by means of liquids having known viscosities. (Table III)

	Table III—V	liscosity De	eterminations	
TEMPER-	DIETHYLEN DINIT	EGLYCOL RATE	NITROGLY	YCERIN
ATURE	Time of flow	Viscosity	Time of flow	Viscosity
° C.	Seconds	Poises	Seconds	Poises
15.0	50.3	0.099	105.9	0.511
17.5	48.9	0.085	93.0	0.423
20.0	47.8	0.078	84.0	0.355
22.5	46.8	0.073	77.0	0.303
25.0	45.9	0.070	71.8	0.283
27.0	45.1	0.066	68.0	0.258

REFRACTIVE INDEX—The refractive index of diethyleneglycol dinitrate was observed at twenty-one points between 2.55° and 43.2° C. by means of a Zeiss refractometer equipped with a water jacket and a calibrated thermometer and employing sodium light. The values were plotted against temperature readings and found to represent a straight-line function. From this the values in Table IV were read off at regular temperature intervals.

Table IV-D	eterminatio	ns of Refracti	lve Index
-			-

TEMPERATURE	REFRACTIVE INDEX	TEMPERATURE	Refractive Index
° C.		° C.	
0.0	1.4593	20.0	1.4517
5.0	1.4574	25.0	1.4498
10.0	1.4555	30.0	1.4479
15.0	1.4536	35.0	1,4460

HEAT OF COMBUSTION-Calorimetric determinations of the heat of combustion of diethyleneglycol dinitrate gave the values in Table V.

Table V—Determinations	of	Heat	of	Combustion
------------------------	----	------	----	------------

	AT CONSTANT	AT CONSTANT
HEAT OF COMBUSTION	VOLUME	Pressure
Calories per gram	2798	2792
Kilogram calories per gram molecule	548.7	547.5

HEAT OF FORMATION-Using the values 94,400 and 67,-500 calories per gram molecule as the heats of formation of carbon dioxide and liquid water, respectively, the data (Table V) for heat of combustion gave the values in Table VI.

Table VI—Hea	t of Formation	
	At Constant	AT CONSTANT
HEAT OF FORMATION	VOLUME	PRESSURE
Calories per gram	505.35	510.25
Calories per gram molecule	99,100	100,060

SOLUBILITY EFFECTS—At ordinary temperatures diethyleneglycol dinitrate is completely miscible with nitroglycerin, ethyleneglycol dinitrate, ether, acetone, methanol, chloroform, benzene, toluene, aniline, nitrobenzene, glacial acetic acid, and glycol diacetate. It is immiscible or slightly soluble in ethanol, carbon tetrachloride, and carbon disulfide. Its solubility in water was found to be 4.1 grams per liter of water at 24° C.

HYGROSCOPICITY-Diethyleneglycol dinitrate is slightly hygroscopic. Samples kept in air spaces saturated with water vapor at room temperature (20° to 30° C.) and weighed regularly during periods of from 7 to 15 days showed maximum gains in weight within 48 hours. These were 0.34 and 0.44 per cent of the weight of the samples.

VAPOR PRESSURE-Using the air-bubbling method, in

⁵ Rinkenbach, THIS JOURNAL, 18, 1195 (1926).

which 19 liters of thoroughly dried air were passed through pure material at a fixed temperature and the loss in weight was determined, the vapor pressure of diethyleneglycol dinitrate at 22.4° C. was found to be 0.0098, 0.0079, and 0.0044 (average 0.007) mm. of mercury.

When a drop of the material, contained in a melting point tube, was heated in an oil bath, ebullition began at 161° C. No decomposition was apparent, so this may be taken as the boiling point of the compound.

An effort to determine the boiling point at reduced pressure showed that when a larger quantity was slowly heated to the boiling point the compound underwent a partial decomposition that resulted in variable values and sometimes culminated in the explosion of the material. It was therefore impracticable to derive a vapor-pressure curve for the pure substance.

INFLAMMABILITY—Diethyleneglycol dinitrate could be ignited only with difficulty; it was necessary to heat it to a point above that of the temperature of the air. When ignited it burned quietly with a yellow, luminous flame.

When small quantities held in the tip of capillary tubes were thrust into a gas flame, no explosion took place in five trials. Some of the material was ejected as a vapor which burned readily and quietly at the mouth of the tube.

EXPLOSIBILITY—The constitution of diethyleneglycol dinitrate would lead to the assumption that, like similar compounds, it is of an explosive nature. Calculation of explosives constants for this substance and for nitroglycerin and glycol dinitrate for purposes of comparison are given in Table VII. For this purpose the equation of decomposition $C_4H_8N_2O_7 = N_2 + 0.5474 CO_2 + 3.4526 CO + 1.5474 H_2 + 2.4526 H_2O$

was derived by the use of data for the water-gas equilibrium. Extrapolated values of those given by Partington and Shilling⁶ for the specific heats of the various products of explosion were used for calculating the heat capacities of the mixture at various temperatures. From these the temperature of explosion was found by the diagrammatic method.

Table VII	Comparison	of Explos	ives Constants	8
	OOUTD0110011	OI DADIOG		-

Table VII-Comparison of Explosives Constants						
		GA	s	Pressure	Energy	
	TEMP.	PRODUCE	D FROM	WHEN 1 KG.	DEVELOPED	
_	OF	1 KG. AT 70	60 мм.	Is Exploded	on Exploding	
_ Ex	PLOSION	(1)AND;		IN 1	1 kg. Ma-	
COMPOUND	°C.	0° C.	t	LITER	TERIAL	
		Liters	Liters	Kg./sq. cm.	Meter-kg.	
Diethylene-				• •		
glycol dinitrate	2810	1,028.58	11,615	11,999	410.7×10^{6}	
Glycol dinitrate	4209	736.93	12,099	12,498	695.7 × 10•	
Nitroglycerin	4177	715.53	11,663	12,048	647.8×10^{4}	

Table VIII—Sand Bomb Tests SAND CRUSHED BY 0.300 GRAM MERCURY FULMI-

						· · · · · · · · · · · · · · · · · · ·	
				NAT	'E AND:		
					50% Nitro-	50% Giveol	
CHARGE	EXPLOSIV	e Di-			glycerin	dinitrate	
OF	IN	ethylene-		ā	0% diethyl	• 50% di-	
MIXTURE	Charge	glyco!	Nitro-	Glycol	eneglycol	ethyleneglycol	
		dinitrate	glycerin	dinitrate	dinitrate	dinitrate	
Gram	Gram	Grams	Grams	Grams	Grams	Grams	
0.150	0.090	14.6	20.15	20.1	19.6	19.0	
0.250	0.150	17.80	26.85	27.7	25.35	26 15	
0.333	0.200	2.94	33.9	34 9	31 1	30 8	
0.500	0.300	2.24	44 25	47 3	43 0	41 6	
0.833	0.500	ĩ.9ª	68.0	70.3	60.3	62.9	
4 Tma	omolata de	tonation					

^a Incomplete detonation.

In order to test the actual explosibility of diethyleneglycol dinitrate and give a direct comparison, the following procedure was carried out:

Mixtures of exactly 40 per cent of kieselguhr and 60 per cent of liquid explosive by weight were made up, diluted with ether, and stirred until all the ether had been evaporated and an even mixture remained. Weighed charges of each of these mixtures were pressed into No. 8 detonator shells (0.300 gram of mercury fulminate was added in each case), the whole was surmounted by a reënforcing cap, and after being subjected to a pressure of 50 pounds (91,700 grams per sq. cm.) the detonator so constructed was fired in the No. 2 standard sand test bomb.⁷ The amount of sand crushed was found by sieving and weighing. Table VIII gives the results.

These results indicate that diethyleneglycol dinitrate is so insensitive that its explosive is not sufficiently strong to produce continuous propagation under conditions which permit nitroglycerin or glycol dinitrate to produce this effect. In admixture with either of these other compounds, however, diethyleneglycol dinitrate can be completely detonated and shows an explosive effect but little less than that of either of the other compounds. From the values given, by taking into account the amount of crushing due to the fulminate, it is possible to calculate the crushing effects of different weights of diethyleneglycol dinitrate when completely detonated, as well as those of the other compounds (Table IX). For purposes of comparison, the values found for mercury fulminate are added.

Table IX—Crushing Effects of Diethyleneglycol Dinitrate

	SAND CRUSHED BY:						
Explosive	Diethylene- glycol dinitrate	Glycol dinitrate	Nitro- glycerin	Mercury fulminate			
Gram	Grams	Grams	Grams	Grams			
0.05	5.5	6.7	7.4				
0.10	9,9	13.4	13.3				
0.20	18.7	27.1	25.0	4.0			
0.30	27.6	39.5	36.8	7.8			
0.50	45.0	62.5	60.2	16.5			

These comparative values agree quite well with those calculated from theoretical considerations.

SENSITIVITY TO IMPACT—From the foregoing facts concerning inflammability and propagation of detonation, it would appear that diethyleneglycol dinitrate is a comparatively insensitive compound. Tests made on the small impact machine⁸ on drops of the pure substance showed that it would not detonate when subjected to the blow of a 500gram weight falling a distance of 110 cm., whereas glycol dinitrate and nitroglycerin detonated when the weight fell distances of 110 cm. and 70 cm., respectively.

SAPONIFICATION—Diethyleneglycol dinitrate is not easily saponified. No decomposition ensued when dissolved in 3 per cent alcoholic potash; the unchanged ester was recovered on evaporation of the solution at air temperature. This indicates a high degree of stability at ordinary temperatures.

TOXICITY AND ANIMAL POISONING—A dilute solution of diethyleneglycol dinitrate in water was injected intramuscularly into guinea pigs. A dosage of 0.0000006 gram of the ester per 100 grams of the animal weight is proportional to the standard dosage prescribed for the injection of nitroglycerin with human beings. Although in some cases double this dosage was used, none of the guinea pigs showed untoward symptoms. It is probable, therefore, that diethyleneglycol dinitrate is no more toxic than nitroglycerin.

In order to determine if diethyleneglycol dinitrate would, when absorbed through the skin, cause increase in the blood pressure and consequent headache, a drop of the pure substance was placed on the forearm of each of three subjects, spread, and allowed to absorb. In one case this was expedited by the addition of several drops of ether. In no case were any unusual symptoms apparent, although each of the three persons was definitely sensitive to nitroglycerin poisoning and similar applications of pure nitroglycerin produced violent headaches. It is to be concluded that if diethyleneglycol dinitrate has any of the effects of nitroglycerin on the human system, these are much less marked than are those of the latter.

⁷ Storm and Cope, Bur. Mines, Tech. Paper 125 (1916).

^{• &}quot;The Specific Heats of Gases," Ernest Benn, Ltd., 1924.

⁸ Hall, Snelling, and Howell, Bur. Mines, Bull. 15, p. 101.