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ABSTRACT

A novel near-infrared-emitting cyclometalated platinum (II) complex of (TPA-BT-Q)Ptpic with a donor
—acceptor—acceptor (D—A—A) chromophores was synthesized and characterized, in which the TPA-BT-Q
unit is a cyclometalated ligand of N,N-di(4-octyloxyphenyl)-4-(7-(quinolin-2-yl)-benzo[c][1,2,5]thiadia-
zol-4-yl)-phenylamine and pic is picolinate anion. Its optophysical, electrochemical and electrolumi-
nescent characteristics were primarily studied. An intense UV—vis absorption peak at 540 nm and a
strong near-infrared emission peak at 759 nm were observed for (TPA-BT-Q)Ptpic in dichloromethane.
Using (TPA-BT-Q)Ptpic as a single dopant and a blend of poly(vinylcarbazole) and 2-tert-butylphenyl-5-
biphenyl-1,3,4-oxadiazole as a host matrix, the single-emissive-layer polymer light-emitting devices
exhibited a near-infrared emission peaked at 760 nm with the maximum external quantum efficiency of
0.12% at 16.6 mA cm 2 and a radiance intensity of 112 pW cm 2 at 1.7 mA cm 2 at the doping con-
centrations of 2.0 wt%. This work provides an efficient approach to realize near-infrared electro-
phosphorescent emission with high radiance intensity by employing platinum (II) complex with the D—A
—A structure.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the research on near-infrared (NIR) organic lumi-
nescent materials has gained great attentions due to their diverse
potential applications in night-vision displays, sensors, optical
communication, and offering superior biocompatibility for med-
ical systems [1]. The developed NIR-emitting materials mostly
contain lanthanide complexes [2], fluorescent materials with a
donor—acceptor (D—A) structure [3], boron dipyrromethene dyes
[4] and transition-metal complexes [5]. Among these materials,
transition-metal complexes are available to exhibit higher emis-
sion efficiency due to their strong spin-orbit coupling in the
presence of heavy metals, which leads to an internal quantum
efficiency as high as 100% [6]. Metalloporphyrin is the most
typical class in the reported transition-metal complexes and has
recorded an external quantum efficiency (EQE) maximum of
2.49% for polymer light-emitting devices (PLEDs) and 9.2% for

* Corresponding authors. Tel.: +86 731 58298280; fax: +86 731 58292251.
E-mail addresses: zhuwg18@126.com (W. Zhu), hbwu@scut.edu.cn (H. Wu).

http://dx.doi.org/10.1016/j.dyepig.2014.03.040
0143-7208/© 2014 Elsevier Ltd. All rights reserved.

organic light-emitting devices (OLEDs) with NIR emission in the
760—780 nm range. However, these EQE levels were typically
obtained at very low current densities [7]. It is well known that
squareplanar platinum (II) complexes have rapidly developed in
OLEDs with high-efficiency red, green, blue and even white
emission by tuning their molecular structures [8]. But, few plat-
inum (II) complexes besides Pt-porphyrin complexes have dis-
played satisfactory EQE level in NIR emission. In order to develop
new NIR-emitting platinum (II) complexes, Gao et al. reported a
platinum complex of ppyPtq, which displayed an EL emission
peaked at 730 nm without EQE datum [5b]. Che et al. reported a
series of neutral platinum complexes containing substituted 8-
hydroxyquinoline, which gave a deep-red emission peak from
650 to 695 nm with another weak NIR emission peak from 705 to
755 nm in the device with an EQE of 1.7% [5e]. Recently, some
NIR-emitting organic and polymeric fluorescent materials with
donor (D) and acceptor (A) chromophores were developed
because the band gap levels and photoelectronic properties can
be readily tuned through a systematic variation between the D
and A units [1,9]. For example, Wang et al. reported a class of
fluorescent materials with D—m—A—n—D type chromophore,
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which displayed emission exclusively at 1080 nm with an EQE of
0.28% in the OLEDs [10]. Reynolds et al. reported a family of
conjugated oligomers with a multi-heterocycle D—A—D structure,
which displayed emission ranging from 651 to 1088 nm with an
EQE of 0.87% in the PLEDs [3a].

As phosphorescent materials have exhibited higher external
quantum efficiency than fluorescent materials in OLEDs, it was al-
ways interesting in developing NIR-emitting platinum complexes.
In order to study effect of molecular structure of platinum com-
plexes on NIR-emitting property, a type of platinum complexes of
(Piq-G)Pt(acac) with D—A chromophores was obtained in our pre-
vious work, which exhibited an emission with a peak at 640 nm and
a shoulder at 700 nm [11]. There was about 40—60 nm red-shift
compared to that from the non-functionalized platinum (II) com-
plex of (Piq)Pt(acac). Based on this findings, we here designed
another novel platinum (II) complex of (TPA-BT-Q)Ptpic with D—A—
A type chromophores, in which a triphenylamine (TPA) was used as
an electron donor unit, a benzothiadiazole (BT) and a quinoline (Q)
were simultaneously employed as strong electron acceptor units. In
this (TPA-BT-Q)Ptpic, the non-planar TPA unit is available to
improve carrier-transporting properties and suppress aggregations,
the BT unit is a good class of luminescence units in OLEDs and
acceptor units in organic solar cells (OSCs) reported in recent years
[12], two alkoxy groups are benefit to improve solubility. Therefore,
the (TPA-BT-Q)Ptpic with D—A—A units should provide low-energy
near-infrared emission more easily than those counterparts with
D—A units. The synthetic route of (TPA-BT-Q)Ptpic is shown in
Scheme 1. For comparison, the counterpart of PQPtpic was made.
Using (TPA-BT-Q)Ptpic as a single dopant and a blend of poly-
(vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-
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oxadiazole (PBD) as the host matrix, we fabricated the single-
emissive-layer (SEL) PLEDs by solution process and studied the
device performances. A NIR emission peaked at 760 nm with a
maximum EQE of 0.12% at 16.6 mA cm~2 and an irradiance intensity
of 112 pW cm™2 (obtained at an applied current density of
11.7 mA cm~2) were observed in the device at 2.0 wt% dopant
concentration. This work indicates that introducing D—A—A struc-
ture is an efficient approach to constructure NIR-emitting platinum
(1) complex and obtained high-efficiency NIR-emitting PLEDs with
high radiance intensity.

2. Experimental
2.1. General information

The solvents were carefully dried and distilled by standard
procedures before use. All chemicals, unless otherwise stated were
obtained from commercial sources and used as received. The
Suzuki coupling and cyclometalated reactions were carried out in
inert gas atmosphere and monitored by thin-layer chromatography
(TLC). 'H NMR spectra was recorded with a Bruker Dex-400 NMR
instrument using CDCl3 as a solvent. Elemental analysis was carried
out with a Harrios elemental analysis instrument. Mass spectrum
was recorded on a Voyager Depro MALDI-TOF spectrometer. UV—
vis absorption and photoluminescent spectra were recorded with a
Shimadzu UV-265 spectrophotometer and a Perkin—Elmer LS-50
luminescence spectrometer, respectively. Thermogravimetric
analysis (TGA) was conducted under a dry nitrogen gas flow at a
heating rate of 20 °C min~! on a Perkin—Elmer TGA 7 instruments.
Surface morphologies were recorded by AFM on a Veeco, DI
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(a) KoCO3, Pd(PPh3),, toluene,methanol (b) KOAc, Pd(dppf)Cl,,bis(pinacolato)diboron,
anhydrous THF (c) K;PtCly, 2-ethoxyethanol, H,0 (d) picolinic acid, 2-ethoxyethanol, Na,CO3

Scheme 1. Synthetic route of (TPA-BT-Q)Ptpic and PQPtpic.
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Multimode NS-3D apparatus in a trapping mode under normal air
condition at room temperature (RT). Cyclic voltammetry was per-
formed on a CHIGOO0E electrochemical work station with a scan rate
of 100 mV s~ ! at room temperature under argon, in which a Pt disk,
Pt plate, and Ag/AgCl electrode were used as working electrode,
counter electrode, and reference electrode in n-BusNPFg (0.1 M)
acetonitrile solution, respectively. For calibration, the redox po-
tential of ferrocene/ferrocenium (Fc/Fc™) was measured under the
same conditions.

The cyclometalated platinum (II) complexes were also synthe-
sized according to the literature procedures [13]. A mixture of
K,PtCly, CN-chelate ligand of TPA-BT-Q (or PQ) (1.2 equiv.), 2-
ethoxyethanol and distilled water (3:1, V/V) was stirred under ni-
trogen atmosphere at 80 °C for 24 h. After cooled to RT, the pre-
cipitate was formed, then collected by filtration and washed
successively with water, ethanol and hexane, respectively. The
chloro-bridged dimer was obtained. This dimer was mixed with
picolinic acid (2.5 equiv.) and anhydrous Na;COs3 (6 equiv.) in 2-
ethoxyethanol. The resulting mixture was stirred under nitrogen
atmosphere at 100 °C for 16 h. After cooled to RT, the resulting
precipitate was collected by filtration and washed successively with
water, ethanol and hexane, respectively. The residue was purified
by flash chromatography on silica gel using DCM/ethyl acetate (V/
V = 5/1) as eluent to provide the cyclometalated platinum (II)
complexes.

2.2. PLEDs fabrication

The single-emissive-layer (SEL) PLEDs using (TPA-BT-Q)Ptpic as
dopant was fabricated by spin-coating and vacuum thermal evap-
oration. The device configuration is ITO/PEDOT:PSS, 40 nm/PVK-
30 wt% PBD:dopant, 80 nm/CsF, 1.5 nm/Al, 100 nm, where indium
tin oxide (ITO) acts as the anode, poly(3,4-ethylenedioxy
thiophene):poly(styrenesulfonate) (PEDOT:PSS) is used as an
anode buffer layer at the interface of ITO, LiF and Al are employed as
electron injection layer and cathode layer, respectively. The light-
emitting layer consists of PVK, PBD and dopant, where PVK acts
as the host material due to its excellent film-forming and hole-
transporting properties. To facilitate electron transport in the
light-emitting layer, PBD is simultaneously mixed with PVK. The
weight ratio of PVK and PBD is 70:30 (W/W). The dopant concen-
trations vary from 0.5 wt% to 8.0 wt%. The irradiance intensity of the
NIR PLEDs is measured by an integrating spheres coupled with UDT
A370 spectrometer.

2.3. Syntheses

2.3.1. N,N-di(4-octyloxyphenyl)-4-(7-bromobenzo|c][1,2,5]
thiadiazol-4-yl)benzenamine (2)

A mixture of compound 1 (1.00 g, 159 mmol), 4,7-
dibromobenzo[c][1,2,5]thiadiazole (0.56 g, 191 mmol), KyCO3
(8 mL, 2 M) and tetrakis(triphenylphosphine) palladium (60 mg,
0.05 mmol) in toluene (50 mL) and methanol (8 mL) was heated at
80 °C under nitrogen atmosphere for 12 h. After cooled to RT, the
mixture was poured into water (150 mlL), extracted with DCM
(3 x 30 mL). The combined organic layer was dried over MgSO4 and
then concentrated under reduced pressure. The residue was puri-
fied by silica gel column chromatography using DCM/petroleum
ether (V/V = 1/5) as eluent to gain red viscous compound 2 (0.85 g,
60.7%). "H NMR (400 MHz, CDCl3, ppm): 7.88 (d, ] = 7.6 Hz, 1H), 7.74
(d,J = 8.4Hz, 2H), 7.51 (d, ] = 7.6 Hz, 1H), 7.13 (d, ] = 8.6 Hz, 4H), 7.03
(d,J = 8.4 Hz, 2H), 6.86 (d, ] = 8.6 Hz, 4H), 3.96—3.93 (t, ] = 6.4 Hz,
4H), 1.85—1.75 (m, 4H), 1.45—1.26 (br, 20H), 0.89—0.88 (t,] = 3.2 Hz,
6H).

2.3.2. N,N-di(4-octyloxyphenyl)-4-(7-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)benzenamine (3)

A mixture of compound 2 (0.60 g, 0.84 mmol), bis(pinacolato)
diboron (1.71 g, 6.72 mmol), potassium acetate (0.82 g, 8.40 mmol)
and Pd(dppf)Cl-CH,Cl, adduct (30 mg, 0.04 mmol) in anhydrous
tetrahydrofuran (50 mL) was heated at 60 °C at nitrogen atmo-
sphere for 12 h. After cooled to RT, the mixture was poured into
water (150 mL) and extracted with DCM (3 x 30 mL). The combined
organic layer was dried over MgSO4 and then concentrated under
reduced pressure. The residue was purified by silica gel column
chromatography using DCM/petroleum ether (V/V = 1/1) as eluent
to gain red viscous compound 3 (0.40 g, 62.9%). 'H NMR (400 MHz,
CDCl3, ppm): 8.26 (d,] = 6.8 Hz, 1H), 7.84 (d, ] = 8.4 Hz, 2H), 7.72 (d,
J = 6.8 Hz, 1H), 7.14 (d, ] = 8.6 Hz, 4H), 7.05 (d, ] = 8.6 Hz, 2H), 6.87
(d,J = 8.6 Hz, 4H), 3.96—3.93 (t, ] = 6.0 Hz, 4H), 1.80—1.77 (m, 4H),
1.45—1.25 (br, 32H), 0.89—0.88 (t, ] = 3.2 Hz, 6H). MALDI-TOF MS
(m/z) for C46HgoBN304S, Calcd: 761.440; Found, 761.396.

2.3.3. N,N-di(4-octyloxyphenyl)-4-(7-(quinolin-2-yl)benzo[c][1,2,5]
thiadiazol-4-yl)benzenamine (TPA-BT-Q, 4)

A mixture of compound 3 (0.30 g, 0.39 mmol), 2-
bromoquinoline (97 mg, 0.47 mmol), K;CO3 (6 mL, 2 M) and
Pd(PPhs)4 (20 mg, 0.02 mmol) in toluene (35 mL) and methanol
(6 mL) was heated at 80 °C at nitrogen atmosphere for 12 h. After
cooled to RT, the mixture was poured into water (100 mL) and
extracted with DCM (3 x 30 mL). The combined organic layer was
dried over MgSO4 and then concentrated under reduced pressure.
The residue was purified by silica gel column chromatography us-
ing DCM/petroleum ether (V/V = 1/2) as eluent to gain red viscous
compound 4 (0.24 g, 79.7%). 'H NMR (400 MHz, CDCl3, ppm): 8.75
(d,J = 8.2 Hz, 1H), 8.65 (d, J = 7.0 Hz, 1H), 8.36 (d, ] = 8.4 Hz, 1H),
8.23 (d, J = 8.0 Hz, 1H), 7.91-7.86 (br, 4H), 7.79—7.75 (t, ] = 7.2 Hz,
1H), 7.60—7.57 (t, ] = 6.6 Hz, 1H), 7.15 (d, ] = 7.6 Hz, 4H), 7.08 (d,
J=7.8Hz, 2H), 6.87 (d,] = 7.8 Hz, 4H), 3.96—3.93 (t, ] = 6.4 Hz, 4H),
1.80—1.78 (m, 4H), 1.47—1.26 (br, 20H), 0.91—-0.89 (t, ] = 3.8 Hz, 6H).
MALDI-TOF MS (m/z) for C49Hs54N40,S, Calcd: 762.397; Found,
762.376.

2.3.4. (TPA-BT-Q)Ptpic (5)

(TPA-BT-Q)Ptpic was synthesized by the common method
described above for the general synthesis of the platinum complex
and obtained as violet black powder in a yield of 43.4%. '"H NMR
(400 MHz, CDCl3, ppm): 9.41 (d, ] = 8.8 Hz, 1H), 9.33 (d, ] = 8.8 Hz,
1H), 9.17-9.15 (t,] = 4.6 Hz, 1H), 8.33 (d, ] = 8.8 Hz, 1H), 8.22—8.19
(t,J] = 6.8 Hz, 1H), 8.16—8.13 (t, ] = 7.4 Hz, 1H), 7.87—7.81 (br, 3H),
7.74—7.72 (t, ] = 4.0 Hz, 1H), 7.67 (d, ] = 6.4 Hz, 2H), 7.54—7.51 (t,
J=74Hz,1H),7.16 (d,] = 8.8 Hz, 4H), 7.03 (d,] = 7.8 Hz, 2H), 6.88 (d,
J = 8.8 Hz, 4H), 3.97-3.94 (t, ] = 6.4 Hz, 4H), 1.81-1.78 (m, 4H),
1.48—1.28 (br, 20H), 0.91-0.88 (t, ] = 3.4 Hz, 6H). MALDI-TOF MS
(m/z) for Cs5H57N504PtS, Caled: 1078.378; Found, 1078.375. Anal.
Calc. for Cs5H57N504PtS: C 61.21, H 5.32, N 6.49, S 2.97% Found: C
61.51, H 5.22, N 6.11, S 2.90%.

2.3.5. 2-phenylquinoline (PQ, 6)

2-phenylquinoline was synthesized according to the above
procedure of compound 4 and obtained as white solid in a yield of
82.4%. TH NMR (400 MHz, CDCls, ppm): 8.24 (d, J = 8.6 Hz, 1H),
8.19—8.16 (br, 3H), 7.90 (d, ] = 8.4 Hz, 1H), 7.85 (d, ] = 8.0 Hz, 1H),
7.75-771 (t, ] = 74 Hz, 1H), 7.55—7.52 (br, 3H), 7.47-745 (t,
J = 7.2 Hz, 1H).

2.3.6. PQPtpic (7)

PQPtpic was synthesized according to the above general pro-
cedure of platinum complex and obtained as an orange powder in a
yield of 45.9%. TH NMR (400 MHz, CDCls, ppm): 9.47 (d, J = 8.8 Hz,
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1H), 9.23 (d, J = 5.4 Hz, 1H), 8.33 (d, ] = 8.4 Hz, 1H), 8.25 (d,
J=74Hz, 1H), 8.16—8.14 (t,] = 4.2 Hz, 1H), 8.00—7.89 (t,] = 3.4 Hz,
1H), 7.84—7.82 (t,] = 4.4 Hz, 1H), 7.80—7.78 (t,] = 4.0 Hz, 1H), 7.63—
7.60 (br, 3H), 7.34—7.26 (t, ] = 5.4 Hz, 1H), 7.24 (d, ] = 3.4 Hz, 2H).
MALDI-TOF MS (m/z) for C,1H14N20,Pt, Calcd: 521.070; Found,
521.110.

3. Results and discussion
3.1. Synthesis and characterization

Compound 1 was prepared according to the literature pro-
cedures [14]. Compound 2, TPA-BT-Q and PQ were synthesized
through Suzuki couplings. The (TPA-BT-Q)Ptpic and PQPtpic were
synthesized using the previous method with two-step procedures,
which contain a cyclometalation of TPA-BT-Q, PQ and a cleavage of
the chloride groups in the corresponding dimers with picolinic
acid. The made (TPA-BT-Q)Ptpic and PQPtpic were characterized by
'H NMR, MALDI-TOF mass spectra and element analysis to confirm
their well-defined chemical structures.

3.2. Photophysical properties

Fig. 1 shows the normalized UV—vis spectrum of (TPA-BT-Q)
Ptpic in dichloromethane (DCM). For comparison, the normalized
UV—vis spectra of the TPA-BT-Q free ligand and the parent plat-
inum (II) complex of PQPtpic in DCM were insetted in Fig. 1. Three
typical absorption peaks at 314 nm, 371 nm and 540 nm were
observed for (TPA-BT-Q)Ptpic. The intense high-lying absorption
peak is ascribed to the spin-allowed ligand-central (LC) m—m*
transitions of TPA-BT-Q, the moderate-lying one from 371 nm to
450 nm is mainly attributed to the mixed spin-allowed and spin-
forbidden singlet metal-to-ligand charge transfer ('MLCT and
3MLCT) transitions. The intense and broad low-lying one around
540 nm with an extinction coefficient (¢) of 1.5 x 10° L mol~! cm™!
is assigned to the intramolecular charge transfer (ICT) transition
from TPA unit to the BT and PQPtpic chromophores. Compared to
the TPA-BT-Q free ligand, (TPA-BT-Q)Ptpic exhibited a significant
red-shift low-lying absorption peak (ca. 65 nm), which is due to the
additional MLCT transition and enhanced electron acceptor effect
of the PQPtpic chromophore. The red-shift low-lying absorption
peak implies that (TPA-BT-Q)Ptpic with D—A—A architecture has an
extensional conjugated system and more intense ICT effect than the

—a— (TPA-BT-Q)Ptpic
—e— TPA-BT-Q ligand
—a— PQPtpic
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Fig. 1. Normalized UV—vis absorption spectra of TPA-BT-Q, (TPA-BT-Q)Ptpic and
PQPtpic in DCM at RT.

TPA-BT-Q free ligand due to incorporation of the substituent
PQPtpic acceptor unit.

The PL spectra of (TPA-BT-Q)Ptpic, TPA-BT-Q and PQtpic in dilute
DCM are displayed at RT in Fig. 2. The corresponding data are
summarized in Table 1. Under photo-excitation at 390 nm, the
parent complex of PQPtpic displayed two intrinsic structured
emission peaks at 555 nm and 590 nm, as well as the slightly
structureless excimer emission at 705 nm. This inherent emission is
attributed to a mixed emission from MLCT and LC state [13a].
However, TPA-BT-Q and (TPA-BT-Q)Ptpic exhibited a wide red and
NIR emission profiles with a peak at 580 nm and 760 nm under
photo-excitation at 400 nm and 540 nm, respectively. Compared to
PQPtpic and TPA-BT-Q, (TPA-BT-Q)Ptpic presented a bathochromic
PL spectrum by 170 nm due to the additional D—A and stronger D—
A—A interactions, respectively. This indicates that the intra-
molecular D—A effect is available to make its platinum complexes
exhibit red-shifted PL spectra.

3.3. Thermal properties and dispersibility

Thermal properties of (TPA-BT-Q)Ptpic and PQPtpic were char-
acterized by thermal gravimetric analysis (TGA) under a nitrogen
atmosphere with a scanning rate of 20 °C min~ The recorded TGA
curves are shown in Fig. S1 (see Supporting Information, SI). The
onset decomposition temperatures for 5% weight loss (Tq) were
287 °C and 202 °C for (TPA-BT-Q)Ptpic and PQPtpic, respectively. It
indicates that (TPA-BT-Q)Ptpic has higher thermal stability.

To clarify the dispersibility of this platinum complex in the
polymer matrix, the (TPA-BT-Q)Ptpic-doped PVK-PBD films at
different doping concentrations from 0.5 wt% to 8.0 wt% were
made. The surface morphology was recorded by atomic force mi-
croscopy (AFM) and is shown in Fig. S2 (see the SI). Roughness
value of R; = 0.287 nm, 0.274 nm, 0.262 nm, 0.264 nm and
0.321 nm were observed at doping concentrations of 0.5 wt%, 1.0 wt
%, 2.0 wt%, 4.0 wt% and 8.0 wt¥%, respectively. This result means that
the D—A—A type platinum (II) complexes exhibited a good dis-
persibility in the PVK-PBD matrix at these given doping
concentrations.

3.4. Electrochemical properties

The redox properties of (TPA-BT-Q)Ptpic was characterized by
cyclic voltammetry (CV) method using ferrocene as an internal

124 —=— (TPA-BT-Q)Ptpic
. —e— PQPtpic
10 1 —a— TPA-BT-Q ligand

0.8—-
0.6—-
0.4—-
0.2:

0.0+

Normalized PL Intensity (a.u.)

450 500 550 600 650 700 750 800 850 900
Wavelength (nm)

Fig. 2. Normalized PL spectra of TPA-BT-Q, (TPA-BT-Q)Ptpic and PQPtpic in DCM at RT.
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Table 1

Photophysical, thermal and electrochemical properties of (TPA-BT-Q)Ptpic.
UV—vis A/nm? PL A/nm? T4 (°C)° Enomo/eV® Erumo/eV!
(emax/L mol~! cm~1)°
314 (310,526), 759 287 —4.88 -2.91

371 (144,737),
540 (152,632)

3 Measured in DCM at 298 K at a concentration of 10~¢ mol L.

b Molar extinction coefficient.

¢ Temperature at 5% weight loss measured by TGA at a heating rate of 20 °C min~
under nitrogen.

4 Enomo = —(4.40 + Eoy) eV, Erumo = —(4.40 + Epeq) V.

1

standard. An irreversible oxidation wave (E.x) at 0.48 eV and a
reversible reduction wave (Ereq) at —1.49 eV were observed versus
Fc/Fc" (see supporting information, Fig. S3). According to the re-
ported literature, the oxidation originates from the metal center
[13a]. On the basis of Eqx and Eieq values, we can calculate the
highest occupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO) energy levels (Eqomo and Erymo)
of (TPA-BT-Q)Ptpic based on the empirical formula [15]. The
resulting CV data are summarized in Table 1. As the LUMO and
HOMO energy levels were -220 eV/-5.80 eV for PVK
and —2.46 eV/-6.20 eV for PBD [8b], (TPA-BT-Q)Ptpic exhibited a
matched energy level with the PVK-PBD blend, which is available
for (TPA-BT-Q)Ptpic to play a carrier trap role in the PVK-PBD-
hosted PLEDs. In order to conveniently analyze the energy trans-
fer of the guest and host in the PLEDs, the HOMO—LUMO energy
levels of all materials used and the device configuration are shown
in Fig. S4 (see the SI).

3.5. Electroluminescence properties

Fig. 3 shows the electroluminescent (EL) spectra of the (TPA-BT-
Q)Ptpic-doped devices at different dopant concentrations from
0.5 wt% to 8.0 wt%. Three distinct EL peaks at about 429 nm, 630 nm
and 764 nm were observed, which are assigned to the PVK-PBD, the
(TPA-BT-Q) ligand center (LC) and (TPA-BT-Q)Ptpic emissions
compared to the EL spectra of the (TPA-BT-Q)-doped devices in
Fig. S5, as well as the corresponding PL spectra of the (TPA-BT-Q)-
based DCM solution at an excitation wavelength of 400 nm in Fig. 2
and at different excitation wavelengths in Fig. S6, respectively [16].
At low doping concentration of 0.5 wt¥%, the EL was dominated by
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Fig. 3. EL spectra of the (TPA-BT-Q)Ptpic-doped PLEDs at dopant concentrations from
0.5 to 8.0 wt%.

the PVK-PBD. With further increasing dopant concentrations, the
PVK-PBD emission was gradually decreased, but the (TPA-BT-Q)-
based LC and (TPA-BT-Q)Ptpic emissions were gradually enhanced.
When the dopant concentration reached to 2.0 wt%—8.0 wt%, the
PVK-PBD emission was quickly quenched and strong NIR emission
from (TPA-BT-Q)Ptpic at 764 nm was observed with a shoulder at
630 nm.

The EQE versus current density characteristic of the (TPA-BT-Q)
Ptpic-doped devices is shown in Fig. 4 at different dopant con-
centrations from 0.5 wt% to 8.0 wt%. The corresponding device
performance data are summarized in Table 2. The EQEs values were
decreased with increasing dopant concentrations. The maximum
EQEs of 0.06% at current density of 24.4 mA cm 2 and 0.12% at
16.6 mA cm~2 were observed in the device at the dopant concen-
trations of 4.0 wt% and 2.0 wt%, respectively. In order to understand
why the roll-off of EQEs was occurred with increasing dopant
concentrations, we measured the PL efficiency (®pt ) of the (TPA-BT-
Q)Ptpic-doped PVK-PBD blend films at the different dopant con-
centrations from 0.5 wt% to 8.0 wt%. The ®p values of 8.1%, 4.6% and
1.4% were obtained at the dopant concentrations of 0.5 wt%, 1.0 wt%
and 2.0 wt%, respectively. However, the ®p; values at 4.0 wt% and
8.0 wt% dopant concentrations were not detected by the instru-
ment. It is sure that the ®p; values are also decreased in the blend
films with increasing dopant concentrations. Therefore, the
decreasing EQEs with increasing dopant concentrations here is
related to the concentration quenching of (TPA-BT-Q)Ptpic. How-
ever, the EQE level displayed small roll-off at high current densities,
which is favorable for practical applications of OLEDs [17]. We
noted that the Pt-metalloporphyrin complexes-based devices
usually gave the same phenomenon because this class of planar
platinum (II) complexes has relatively long lifetimes which easily
result in the dominant exciton decay channel by triplet—triplet
annihilation [7,18]. In this case, the (TPA-BT-Q)Ptpic with the D—A—
A structure containing the bulky non-planar TPA unit effectively
exhibited a suppressed triplet—triplet annihilation at high current
densities. The TPA group with alkoxy chain may exert a positive
effect for the sluggish roll-off of the EQEs due to reducing -
stacking of dopants and improving dispersibility at the same times.

The current densities (J)—voltage (V) characteristics of the (TPA-
BT-Q)Ptpic-doped PVK-PBD devices are shown in Fig. 5 and the EL
data are summarized in Table 2. The turn-on voltage of the devices
increased from 7.3 V to 14.2 V with increasing doping levels from
0.5 wt% to 8.0 wt%. It indicates that the devices are mainly operated
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Fig. 4. The external quantum efficiency versus current density characteristics of the
(TPA-BT-Q)Ptpic-doped PLEDs.
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Table 2
The EL parameters of the (TPA-BT-Q)Ptpic-doped PLEDs.
Dopant (wt%) 0.5 1.0 2.0 4.0 8.0
Von (V) 73 8.8 10.7 14.2 14.2
JgL (nm)° 432,625,759 429,633,760 427,637,760 422,637,762 655,766
EQEmax (%)° 0.16 0.14 0.12 0.06 0.03
J (mA cm~2)¢ 11.36 12.41 16.61 24.42 47.62
R (UW cm2)° 153 141 112 53 29

3 Von: turn-on voltage at 1 cd cm™2.
b JeL: the maximum EL emission peak.
€ EQEmax: the maximum external quantum efficiency.
d Current density at maximum EQE.
2

€ Radiant intensity obtained at an applied current density of 11.7 mA cm =,
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Fig. 5. The current density—voltage (J—V) curves of the (TPA-BT-Q)Ptpic-doped devices
at different concentrations from 0.5 to 8.0 wt%.

by the carrier-trapping mechanism based on the identical phe-
nomenon observed previously by Chang et al. [19]. On the other
hand, the light outputs of 53 pyW cm2 and 112 pW cm™2 at
11.7 mA cm~2 were obtained in the device at 4.0 wt% and 2.0 wt%
doping concentrations, respectively. These radiant emittances are
comparable to those levels of the reported metallo-porphyrins.

4. Conclusions

In summary, a novel D—A—A platinum (II) complex of (TPA-BT-
Q)Ptpic with NIR emission at 760 nm was obtained. Employing it as
a dopant, the NIR-emitting PLEDs showed a suppressed efficiency
roll-off with increasing operating current density. The best device
performances were presented in the device at 2.0 wt% dopant
concentration. The maximum EQE of 0.12% at 16.6 mA cm 2 and an
irradiance intensity of 112 pW cm™2 at 11.7 mA cm™2 were
observed.
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