

Bioorganic & Medicinal Chemistry Letters 11 (2001) 3123-3127

4-Aminopiperidine Ureas as Potent Selective Agonists of the Human β₃-Adrenergic Receptor

Mark A. Ashwell,^{a,*} William R. Solvibile, Jr.,^a Stella Han,^b Elwood Largis,^b Ruth Mulvey^b and Jeffrey Tillet^b

^aChemical Sciences, Wyeth-Ayerst Research, PO Box CN-8000, USA ^bCardiovascular/Metabolic Diseases Research, Wyeth-Ayerst Research, PO Box CN-8000, USA

Received 2 July 2001; accepted 21 September 2001

Abstract—The preparation and structure–activity relationships (SARs) of potent agonists of the human β_3 -adrenergic receptor (AR) derived from a 4-aminopiperidine scaffold are described. Examples combine human β_3 -AR potency with selectivity over human β_1 -AR and/or human β_2 -AR agonism. Compound **29s** was identified as a potent (EC₅₀ = 1 nM) and selective (greater than 400-fold over β_1 - with no β_2 -AR agonism) full β_3 -AR agonist with in vivo activity in a transgenic mouse model of thermogenesis. © 2001 Elsevier Science Ltd. All rights reserved.

 β -Adrenoceptors (β -ARs) were subclassified as β_1 -AR and β_2 -AR in 1967. Increased heart rate is the primary consequence of β_1 -AR stimulation, while bronchodilation and smooth muscle relaxation typically result from β_2 -AR stimulation. Adipocyte lipolysis (breakdown of fat) was initially thought to be solely a β_1 -AR mediated process. However, results from the early 1980s indicated that the receptor mediating lipolysis was atypical in nature. These atypical receptors were designated β_3 -ARs and are found on the cell surface of both white and brown adipocytes where their stimulation promotes both lipolysis and energy expenditure.¹ More recently the β_3 -AR has been shown to play a role in the relaxation of human urinary bladder detrusor tissue.² Early compounds with greater agonist activity for the stimulation of lipolysis (β_3 -AR) than for the stimulation of atrial rate (β_1 -AR) and tracheal relaxation (β_2 -AR) showed potential as anti-obesity and anti-diabetic agents in rodents.³

Disappointing human clinical trials with one such agent (CL-316243, BTA-243), optimized for the rodent β_3 -AR, have been attributed to partial rather than full agonism at the human β_3 -AR and poor oral bioavailability.⁴ A new phase of β_3 -AR agonist discovery at Wyeth-Ayerst Research thus utilized a Chinese hamster

ovary (CHO) cell line expressing the cloned human β_3 -AR receptor⁵ in addition to the human β_1 - and β_2 -ARs. In vivo activity was assessed using a transgenic mouse model of thermogenesis.⁶

This paper describes a systematic approach undertaken to explore the utility of the 4-piperidine scaffold (Fig. 1, Structures Ia and Ib) in the design of human β_3 -AR agonists.

Figure 1. Urea derivatized 4-aminopiperidine template for human β_3 -AR agonism.

Division of the molecule into two pieces on either side of the secondary alkyl amine suggested either asymmetric epoxides such as **4** or asymmetric β -amino alcohols such as **23** as key structural building blocks. Routes to these are shown in Schemes 1–3. Mitsunobu reaction of commercial *R*-(+)-glycidol with phenols **3**⁷ and **7** (Scheme 1) provided epoxides **4** and **8**,⁸ respectively. Other more elaborate epoxides (e.g., **11**⁹ and **14**¹⁰) (Scheme 2) were provided by alkylation of the corresponding phenols

^{*}Corresponding author at present address: ArQule, Inc., 19 Presidential Way, Woburn, MA 01801, USA. Fax:+1-781-994-0670; e-mail: mashwell@arqule.com

⁰⁹⁶⁰⁻⁸⁹⁴X/01/\$ - see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(01)00645-X

Scheme 1. (a) 'BuPh₂SiCl, imidazole, CH₂Cl₂, 82%; (b) Pd/C, cyclohexene, EtOH, 94%; (c) R-(+)-glycidol, PPh₃, DEAD, THF, 56%; (d) 'BuPh₂SiCl, imidazole, CH₂Cl₂, 98%; (e) MCPBA, CHCl₃, 85%; (f) Raney Ni, H₂, THF, 73%; (g) mesyl chloride, THF, 'Pr₂NEt, 66%; (h) Boc₂O, CH₂Cl₂, 96%; (i) NaOH, MeOH, 79%; (j) R-(+)-glycidol, DEAD, PPh₃, 70%.

with the commercially available (2S)-(+)-glycidyl-3-nitrobenzenesulfonate.

In the case of epoxide 17, an alternate synthesis to that previously disclosed¹¹ was developed starting from trisubstituted phenol 15. Here the alkylation with (2S)-(+)-glycidyl-3-nitrobenzenesulfonate was performed prior to the reduction of nitroaniline 16 and ring closure with phosgene yielding 17 (Scheme 2).

Alternatively, when phenethylamines were the target agonists epoxides such as 20 were constructed or purchased [(R)-(+)-3-chlorostyrene oxide for the preparation of 37a]. An alternative strategy required chiral amino alcohol 23, and this was prepared as shown in Scheme 3.

The preparation of the scaffold piperidine **27** is shown in Scheme 4. Selective protection of the primary amine of **24** as the BOC amide was followed by reductive amination with 4-benzylpiperidinone to yield **26**. Removal of the benzyl protecting group gave the secondary amine **27**.

Reaction of 27 with isocyanates or with triphosgene followed by an amine provided ureas 28 depending on reagent availability. Following purification and removal of the BOC group with formic acid the formate salt 28 was used directly or treated with NaOH to liberate the free base.

Ureas 35 proved more difficult to prepare. The instability of the intermediate nitro aldehyde, generated by oxidation of 30, could be avoided if the Dess-Martin oxidation was followed immediately by protection as the dimethyl acetal to give 31 as shown in Scheme 5. Reduction of the nitro group of 31 provided aniline 32. Ureas 35 were obtained from 32 as described for 27 above.

Intermediate ureas 28 were reacted directly with epoxides in the presence of a hindered organic base, thus providing access to either aryloxypropanolamines or phenethylamines as shown in Scheme 6. This reaction was not regiospecific and access to the starting epoxides was not always feasible. An alternative approach is illustrated in the preparation of 37c. Here, in situ gen-

Scheme 2. (a) β-Ethoxyacryl chloride, Et₃N, benzene, 99%; (b) HCl, 78%; (c) Raney Ni, H₂ 'PrOH, THF, 47%; (d) 48% HBr, heat, 80%; (e) acetone, water, K₂CO₃, PhCH₂Br, 27%; (f) K₂CO₃, 2-butanone, (2S)-(+)-glycidyl-3-nitrobenzenesulfonate, 82 and 32% for 13 to 14; (g) NaNO₂, H₂O, HCl (concd); (h) NaOH, 3-hydroxypyridine, 22% steps g and h; (i) K₂CO₃, acetone, (2S)-(+)-glycidyl-3-nitrobenzenesulfonate, 28%; (j) Raney Ni, ethanol; (k) phosgene, CH₂Cl₂, 51% for steps j and k.

Scheme 3. (a) PhCH₂Br, NaOMe, MeOH, 80%; (b) Br₂, CHCl₃, 87%; (c) NaBH₄, ethanol, THF, 96%; (d) K₂CO₃, 2-butanone, 74%; (e) MeSO₂Cl, pyridine, CH₂Cl₂, 47%; (f) CuBr₂, CHCl₃, 57%; (g) (*R*)-2-methyl-CBS-oxazaborolidine, BH₃, THF, 61%; (h) NaN₃, DMSO; (i) H₂, Pd/C, MeOH, 71% for steps h and i.

eration of the aldehyde **38** and subsequent reductive amination provided phenethylamines such as **37c**.¹²

The in vitro data for a selection of simple alkyl ureas based on the 4-aminopiperidine scaffold is presented in Table 1. In general molecules of this type (**29a–f**) have comparable human β_3 -AR agonism relative to the standard isoproterenol, considerably weaker β_2 -AR agonism and some selectivity over β_1 -AR agonism. The greatest receptor subtype selectivity is found when the alkyl group is an extended straight chain (cf. **29a** and **29b**). Importantly the potency of β_1 -AR agonism appears to fall off as the chain length increases.

An extensive selection of aryloxypropanolamines was prepared holding the alkyl urea portion of **29a** constant. The importance of the 4-hydroxy group of **29a** was demonstrated by its removal to give **29g** which is an

Scheme 4. (a) BOC₂O, CH₂Cl₂, 92%; (b) 4-benzylpiperidinone, Na(OAc)₃BH, AcOH, Na₂SO₄, 90%; (c) Pd/C, cyclohexene, ethanol, 96%; (d) isocyanate, THF (75–90%) or amine, triphosgene, CH₂Cl₂, (50–80%); (e) formic acid (80–95%).

Scheme 5. (a) Dess–Martin oxidation, CH_2Cl_2 ; (b) trimethyl orthoformate, PTSA, methanol, 89% for steps a and b; (c) Pd/C, ammonium formate, ethanol, 76%; (d) 4-benzylpiperidinone, Na(OAc)₃BH, AcOH, Na₂SO₄, 90%; (e) isocyanate, THF (75–90%) or amine, triphosgene, CH_2Cl_2 , (50–80%); (f) formic acid, (80–95%).

Scheme 6. (a) Aryloxy epoxide, ethanol, ${}^{i}Pr_2NEt$, heat (30–75%); (b) ethanol, ${}^{i}Pr_2NEt$, heat, 16%; (c) H₂ Pd/C, ethanol, 5% for steps b and c (20–37%); (d) NaI, MeSiCl₃, CH₃CN; (e) MeOH, NaCNBH₃, AcOH, 7% for steps d and e.

Table 1. Agonist activity at cloned human β -ARs of alkyl urea substituted piperidines

Compd	Ar	\mathbb{R}^1	\mathbb{R}^2	$\beta_3 \: EC_{50} \: (nM) \: IA \: (\%)^a$	$\beta_1 \; EC_{50} \; (nM) \; IA \; (\%)^a$	β EC ₅₀ (nM) IA (%) ^a
29a	4-OHPh	Octyl	Н	8 (>100)	610 (53)	ia ^c
29b	4-OHPh	Me	Н	47 (85)	350 (106)	ia ^c
29c	4-OHPh	Н	Н	30 (100)	511 (77)	ia ^c
29d	4-OHPh	ⁱ Pr	Н	90 (105)	943 (54)	ia ^c
29e	4-OHPh	Chexl	Н	80 (112)	85 (68)	77 (17)
29f	4-OHPh	Et	ethyl	36 (96)	164 (74)	iac
29g	4-FPh	Octyl	Н	37%@10µM	nd ^b	nd ^b
29h	O ↓N NH₂	Octyl	Н	290 (68)	nd ^b	nd ^b
29i	`O H IN≖O H	Octyl	Н	ia@0.1µM	nd ^b	nd ^b
29j	O ^N NOH	Octyl	Н	66 (67)	88 (60)	nd ^b (16)
37a	3-ClPh	Octyl	Н	1020 (77)	nd ^b	nd ^b
37b (racemic)		Octyl	Н	$42\% @ 10\mu M$	nd ^b	nd ^b

^a β -ARs agonistic activities were assessed by measurement of cAMP accumulation levels in CHO cells expressing human β -ARs; the intrinsic activities (IA) are given as a percentage of maximal stimulation relative to isoproterenol. ^bnd, not determined. ^cia, inactive.

3125

Compd	Ar	\mathbb{R}^1	\mathbb{R}^2	$\beta_3 \ EC_{50} \ (nM) \ IA \ (\%)^a$	$\beta_1 \; EC_{50} \; (nM) \; IA \; (\%)^a$	$\beta_2 EC_{50} (nM) IA (\%)$
29k	4-OHPh	$\sim \sim \sim$	Н	50 (90)	187 (27)	ia ^c
291 29m 29n 29o 29p 29q 29q	4-OHPh 4-OHPh 4-OHPh 4-OHPh 4-OHPh 4-OHPh HO	4-Fbenzyl 2,4-diFbenzyl 2,4-diClbenzyl 2-Fbenzyl 2,6-diFbenzyl 2,5-diFbenzyl Octyl	Н Н Н Н Н	41 (93) 30 (84) 250 (91) 37 (91) 32 (104) 23 (92) 200 (99)	109 (63) 460 (106) 254 (56) 260 (36) 750 (75) 522 (48) nd ^b (22)	ia ^c ia ^c ia ^c ia ^c ia ^c ia ^c
29s	HO NHSO ₂ Me	2,5-diFbenzyl	Н	1 (100)	423 (75)	ia ^c
37c	HO NHSO ₂ Me	2,5-diFbenzyl	Н	5 (100)	2640 (78)	10 (110)

Table 2. Agonist activity at cloned human β -ARs of urea substituted piperidines

^aSee footnotes for Table 1.

^bSee footnotes for Table 1.

^cSee footnotes for Table 1.

essentially inactive compound. Similarly more complex replacements (**29h–j**) also significantly reduced activity. Phenethylamines (**37a,b**) were prepared but offered no improvement.

The induction of thermogenesis in human β_3 -AR transgenic mice (Tg mice) by 29a was compared with its ability to induce thermogenesis in β_3 -AR knock-out mice (KO mice). This assay was employed as an in vivo measure of the potential of these agonists to treat or inhibit disorders related to obesity or type II diabetes. Disappointingly 29a had weak in vivo activity in the human β_3 -AR transgenic mouse (11% ±8% at 10 mg/ kg ip). One possible reason for the low in vivo activity was suggested by Phase I metabolism studies using isolated P450 rat microsomes. It was demonstrated in this assay that the long alkyl chain was a site of oxidation. A number of capped alkyl ureas were prepared in order to overcome this liability. In the case of the cyclopentylpropyl urea 29k the β_3 -AR agonism was reduced compared to 29a and no improvement in in vivo activity was observed.

A more successful approach is illustrated with **29**. Here a robust and selective in vivo response $(46\% \pm 4\%$ at 10 mg/kg ip) was measured. However, there has been a decrease in both β_3 -AR agonism and selectivity. Systematic variations of the substituents on the phenyl ring led to the identification of **29q** (Table 2). Here the 2,5-di fluoro substituent pattern provided a β_3 -AR agonist with over 20-fold selectivity against β_1 -AR partial agonism and devoid of β_2 -AR agonism.

Further Phase I metabolic studies highlighted the 4hydroxyphenyloxy portion of the molecule as a potential liability and a further round of optimization was undertaken. Firstly, comparing **29a** with **29r** it is clear that there is a significant loss of activity when the NHSO₂Me substituent was introduced adjacent to the phenol. Importantly, switching to the 2,5-difluoro capped urea and the corresponding phenethylamine provided the potent β_3 -AR agonist **37c**. However, little selectivity over β_2 -AR agonism was observed.

Significantly, when the ethanolamine portion of **37c** was replaced with the corresponding aryloxypropanolamine to give **29s**, potent β_3 -AR agonism (EC₅₀=1 nM) was combined with high selectivity over both β_1 -AR and β_2 -AR. Compound **29s** was also demonstrated to be a selective human β_3 -AR agonist in vivo (22% ±7% at 10 mg/kg ip) and thus shows promise as an agent for the treatment of obesity, type II diabetes and frequent urination.

In conclusion 4-aminopiperidine has been demonstrated to be a viable scaffold for the preparation of human β_3 -AR agonists. Optimization of piperidine alkyl ureas derived from this structural element led to the identification of many in vitro selective β_3 -AR agonists. In vivo results in a β_3 transgenic mouse of thermogenesis and supporting data from in vitro P450 microsomal studies led to the identification of aromatic capped ureas. The selectivity of these aromatic capped ureas was improved by varying the substituents and substitution pattern around the phenyl ring. The resulting 29s was found to be a potent human β_3 -AR full agonist (EC₅₀=1 nM) with greater than 400-fold selectivity over β_1 -AR and no β_2 -AR agonism. In addition **29s** was active at a dose of 10 mg/kg in the acute in vivo β_3 transgenic mouse model of thermogenesis.

References and Notes

1. For a recent review, see: Weyer, C. J.; de Souza, C. Drug Dev. Res. 2000, 51, 80.

- 2. Takeda, M.; Obara, K.; Mizusawa, T.; Tomita, Y.; Arai,
- K.; Tsutsui, T.; Hatano, A.; Takahashi, K.; Nomura, S. J. Pharm. Exp. Ther. 1999, 288, 1367.
- 3. Largis, E. E.; Burns, M. G.; Muenkel, H. A.; Dolan, J. A.;
- Claus, T. H. Drug Dev. Res. 1994, 32, 69.
- 4. Weyer, C.; Tataranni, P. A.; Snitker, S.; Danforth, E., Jr.; Ravussin, E. Diabetes 1998, 47, 1555.
- 5. Lelias, J. M.; Kaghad, M.; Rodriguez, M.; Chalon, P.;
- Bonnin, J.; Dupre, I.; Delpech, B.; Bensaid, M.; LeFur, G.;
- Ferrara, P.; Caput, D. FEBS Lett. 1993, 324, 127.
- 6. Susulic, V. S.; Frederich, R. C.; Lawitts, J.; Tozzo, E.; Kahn, B. B.; Harper, M.-E.; Himms-Hagen, J.; Flier, J. S.; Lowell, B. B. J. Biol. Chem. 1995, 270, 29483.
- 7. Stern, A.; Swenton, J. S. J. Org. Chem. 1987, 52, 2763.

- 8. For a related synthesis, see: Beeley, L. J.; Thompson, M.; Dean, D. K.; Kotecha, N. R.; Berge, J. M.; Ward, R. W. PCT. Int. Appl. WO 9604233, 1996. Chem. Abstr. 1996, 125, 58092. 9. For a synthesis of the racemic epoxide see: Tominaga, M.; Tone, H.; Nakagawa, K.; Takada, K.; Hoshino, Y.; Watanabe, K. Chem. Pharm. Bull. 1981, 29, 2166.
- 10. Fisher, M. H.; Parmee, E. R.; Mathvink, R. J.; Weber, A. E.; Ok, H. O. Eur. Pat. Appl. EP 611003, 1994. Chem. Abstr. 1994, 121, 300591.
- 11. Elsinga, P. H.; van Waarde, A.; Jaeggi, K. A.; Schreiber, G.; Heldoorn, M.; Vaalburg, W. J. Med. Chem. 1997, 40, 3829.
- 12. For full experimental details, see: Ashwell, M. A.; Solvibile, W. R.; Molinari, A. J.; Quagliato, D. PCT application, submitted July 2000.