

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 3651-3655

Identification of Potent and Novel Small-Molecule Inhibitors of Caspase-3

Darin A. Allen,* Phuongly Pham, Ingrid C. Choong, Bruce Fahr, Matthew T. Burdett, Willard Lew, Warren L. DeLano, Eric M. Gordon, Joni W. Lam, Tom O'Brien and Dennis Lee[†]

Sunesis Pharmaceuticals, Inc., 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA

Received 28 May 2003; revised 13 August 2003; accepted 13 August 2003

Abstract—The design and synthesis of a series of novel, reversible, small molecule inhibitors of caspase-3 are described. © 2003 Elsevier Ltd. All rights reserved.

Caspases (cysteinyl aspartate-specific proteases) have been implicated in various disease states involving dysregulated apoptosis such as myocardial infarction, stroke, traumatic brain injury, and sepsis. Caspase-3 lies at a key junction in the apoptotic cascade, mediating apoptosis from both the intrinsic and extrinsic activation pathways. Therefore, caspase-3 inhibition may prove to be a valuable therapeutic approach to treating these diseases.¹ As part of our ongoing efforts to discover small molecule caspase-3 inhibitors through use of Tethering² with extenders, we identified compound 1 as a low micromolar ($K_i = 4.0 \mu M$) inhibitor.³ Molecular modeling of 1 bound to the caspase-3 active site suggested that the molecule interacts with the protein via the catalytic cysteine (Cys163) as well as with the S_1 and S₄ binding subsites of caspase-3, and reproduces the binding mode observed in crystal structures of earlier analogues.³ Compounds derived from the DEVD tetrapeptide sequence have been shown to be potent inhibitors of Caspase-3, and the P_2 isopropyl side chain of the valine residue is important for inhibitory activity.⁴ Because the proposed model of 1 bypasses the S_2 recognition site, we reasoned that the inhibitory potency of 1 could be increased by incorporation of a P_2 binding element. The present report describes one of our approaches in developing SAR around this series of compounds by the systematic examination of P_2 and P_4 substituents, scaffold rigidification and aldehyde warhead replacement.

Chemistry

For synthetic ease, we initially prepared the compounds as diastereomeric mixtures at P_2 . Syntheses of alkyl analogues 2–7 is described in Scheme 1. The P_1 amino acid and warhead portions of the molecule were installed using

*Corresponding author. Tel.: + 1-650-266-3651; fax: + 1-650-266-3501; e-mail: dallen@sunesis.com *Present address: Glaxo SmithKline Pharmaceuticals, 709 Swedeland Rd., King of Prussia, PA 19406, USA.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2003.08.024

Scheme 1. (a) DMF di-*t*-butyl acetal/benzene/reflux;⁷ (b) NaN₃/ DMSO; (c) LDA/THF/-78 °C; (d) alkyl halide; (e) H₂/Pd/C; (f) Fmoc-OSu/NaHCO₃/dioxane/H₂O; (g) 1:3 TFA/CH₂Cl₂; (h) H₂N– Asp(*O*-*t*-Bu)–CHNNHCONH– resin/EDC/DMF; (i) 1:4 piperidine/ DMF; (j) 5-chlorosulfonyl salicylic acid/DIEA/CH₂Cl₂; (k) 5:1:1:0.25 THF/AcOH/MeCHO/TFA.

Scheme 2. (a) DMF di-*t*-butyl acetal/benzene/reflux or $H_2SO_4/Mg_2SO_4/CH_2CH_2/t$ -BuOH⁸; (b) NaH/DMF or LDA/THF; (c) for P=Phth; (i) N₂H₄/EtOH/reflux; (ii) Fmoc-OSu/NaHCO₃/dioxane/H₂O; (iii) 1:3 TFA/CH₂Cl₂; for P=Boc₂, (i) 1:3 TFA/CH₂Cl₂; (ii) Fmoc-OSu/NaHCO₃/dioxane/H₂O; (d) H₂N-Asp(O-*t*-Bu)-CHNNH-CONH-resin/EDC/DMF; (e) 1:4 piperidine/DMF; (f) 5-chlorosulfonylsalicylic acid/DIEA/CH₂Cl₂; (g) 5:1:1:0.25 THF/AcOH/MeCHO/TFA; (h) 1:3 TFA/CH₂Cl₂.

solid phase synthesis. A resin-bound semicarbazide⁵ was treated with Fmoc-Asp(Ot-Bu)-CHO⁶ to give the support-bound semicarbazone. Fmoc removal (piperidine/DMF) was then followed by amide formation with the desired acid. A second Fmoc deprotection followed by treatment with 5-chlorosulfonylsalicylic acid provided the resin-bound sulfonamide. Cleavage from the resin gave the aldehyde and removal of the Asp *t*-butyl ester gave the final products 2–7 which were purified via reverse-phase preparatory HPLC.

Derivatives 8–20 were synthesized as described in Scheme 2. Alkylation of the requisite ester with either bis-Boc or phthalimide protected amino butyl bromide furnished protected amino acids 21, which were fully elaborated in a similar manner as described above.

Since direct chromatographic separation of the diastereomers of **9** was not possible, the enantiomers of an advanced intermediate, derivatized as acyloxazolidinone diastereomers, were separated via column chromatography (Scheme 3). Cleaving the chiral auxiliary and subsequent elaboration gave the final products **9a** and **9b**. Unfortunately analysis via ¹H NMR indicated that each diastereomer was contaminated with 20% of the other diastereomer, indicating that partial epimerization had occured in one of the later synthetic steps.

Scheme 3. (a) H₂SO₄/Mg₂SO₄/CH₂CH₂/t-BuOH; (b) NaH/DMF; (c) 1:4 TFA/CH₂Cl₂; (d) (i) Oxalyl chloride/cat. DMF/EtOAc; (ii) *n*-BuLi/(*S*)-(-)-4-benzyl-2-oxazolidinone; (iii) flash chromatography (25/75 EtOAc/hexane); (e) LiOH/H₂O₂/THF/H₂O; (f) N₂H₄/EtOH/ reflux; (g) Fmoc-OSU/NaHCO₃/dioxane/H₂O; (h) H₂N-Asp(O-t-Bu)-CHNNHCONH- resin/EDC/DMF; (i) 1:4 piperidine/DMF; (j) 5chlorosulfonylsalicylic acid/DIEA/CH₂Cl₂; (k) 5:1:1:0.25 THF/AcOH/ MeCHO/TFA; (l) 1:3 TFA/CH₂Cl₂.

Scheme 4. (a) For R=Ph, PhBr/NaHDMS/Pd(OAc)₂/ligand/THF; for R=Pr; (i) NaH/allyl bromide/DMF; (b) Cl₂CH(OMe)/SnCl₄/ CH₂Cl₂;¹³ (c) HONH₂/EtOH; (d) Zn/AcOH; (e) NaOH/MeOH; (f) Fmoc-OSu/NaHCO₃/dioxane/H₂O; (g) for R=Pr only H₂/Pd/C/ EtOAc; (h) H₂N-Asp(O-t-Bu)-CHNNHCONH-resin/EDC/DMF; (i) 1:4 piperidine/DMF; (j) 5-chlorosulfonylsalicylic acid/DIEA/CH₂Cl₂; (k) 5:1:1:0.25 THF/AcOH/MeCHO/TFA; (l) 1:3 TFA/CH₂Cl₂.

Syntheses of sulfonyl chlorides needed for compounds **22–29** were accomplished either from direct chlorosulfonylation with $ClSO_3H$ or from the treatment of the requisite aryl diazonium salt with SO_2 and a copper catalyst according to literature procedure.⁹ The thiomethyl¹⁰ and oxazolyl ketones¹¹ of Asp were coupled with the requisite acid to give compounds **31–33**.

The syntheses of thiophene analogues 34-36 are described in Scheme 4. Alkylation of methyl 2-thiopheneacetate with allyl bromide or palladium catalyzed arylation¹² provided substituted acetates 37 and 38, which were fully elaborated as shown.

Results and Discussion

Our initial series of compounds were designed to explore the effect of a P_2 binding element by installing substituents alpha to the amide carbonyl of 1 (Table 1). In general, alkyl substitutions with increasing steric bulk resulted in greater caspase-3 inhibitory activity relative to 1. An aromatic substituent gave the largest increase in potency. For example, phenyl analogue 9 displayed a 40-fold gain in activity. Analogues with simple changes to the aromatic ring had activity similar to 9, with compounds 14 and 19 being the most potent of the series. As previously mentioned, all analogues were synthesized as diastereomeric mixtures at P_2 for synthetic convenience. However, once general SAR trends were established we went back and examined the importance of stereochemistry at the P_2 position. Molecular modeling of 9 (Fig. 1) indicated that both diastereomers were capable of orienting the phenyl ring into the S_2 subsite of caspase-3. To this end, the two diastereomers 9a and 9b were prepared and isolated as 80:20 mixtures and evaluated for caspase-3 inhibitory activity (Table 2). Diastereomer 9a appeared to be 5-fold more active than diastereomer 9b, showing the importance of stereochemistry at the P_2 positon. However, we did not attempt to determine the absolute configuration of 9a or 9b.

We previously had determined that the hydroxyl and the carboxylic acid group of the salicylic acid moiety are involved in key binding interactions with amino acid residues of the caspase-3 S_4 binding subsite.³ We selected compound 9 as a starting point for additional analogue synthesis to investigate SAR around the P_4 group. A number of analogues containing several known carboxylic acid bioisosteres¹⁵ were synthesized with bind-

Table 1. In vitro caspase-3 inhibition assay results for compounds 1– 20. The effectiveness of compounds against the activity of human recombinant caspase-3 was measured by collecting kinetic data over a 20-min fluorescence-based assay using Ac-DEVD-AFC as substrate. All $K_{i(apparent)}$ values were calculated using the following equation: $K_i = IC_{50}/(1 + [substrate]/K_m)^3$

0

		⊥ он о
Compd	R =	$K_{i(app)}, \mu M$
1	Н	4.0
2	Me	6.4
3	Et	1.8
4	<i>n</i> -Pr	0.8
5	<i>i</i> -Pr	0.7
6	<i>i</i> -Bu	0.6
7	PhCH ₂	4.4
8	Cyclopentyl	1.3
9	Ph	0.1
10	2-FPh	0.1
11	3-FPh	0.2
12	4-FPh	0.2
13	2-ClPh	0.2
14	3-ClPh	0.07
15	4-ClPh	0.2
16	2-MePh	0.2
17	3-MePh	0.1
18	4-MePh	0.6
19	2-Thienyl	0.07
20	3-Thienyl	0.1

 Table 2. In vitro caspase-3 inhibition assay results for the enriched diastereomeric mixtures of 9

Compd	Diastereomer ratio (a/b)	$K_{i(app)}, \mu M$	
9	50:50	0.1	
9a	80:20	0.04	
9b	20:80	0.2	

ing results summarized in Table 3. Among the analogues evaluated, only oxadiazolone 27 exhibited inhibitory activity comparable to that of salicylic acid analogue 9. The decreased potency of the corresponding N-methyl oxadiazolone 28 appears to indicate the importance of an acidic proton in retaining good inhibitory activity.¹⁶ We also briefly examined the replacement of the sulfonamide in 9 with an amide. The 4-fold loss in potency of amide 29 indicates the importance of the sulfonamide linkage to adopt a *cis*

Table 3.In vitro caspase-3 inhibition assay results for compounds22-29

Compd	R =	R'=	X =	<i>K</i> _{i(app)} , μM
9	СООН	OH	SO_2	0.1
22	Н	Н	SO_2	5.8
23	Н	OH	SO_2	2.0
24	COOH	Н	SO_2	6.8
25		Н	SO_2	1.4
26	o≓(S-N N H	Н	SO ₂	0.5
27	$0 = \bigvee_{\substack{N \\ H}}^{0 \cdot N}$	Н	SO ₂	0.1
28	O ⊂ N N Me	Н	SO ₂	1.8
29	СООН	OH	CO	0.4

Table 4.In vitro caspase-3 inhibition assay results for compounds30-33

34

35

36

Figure 1. Theoretical binding conformation of the (S,S) diastereomer of 9 in the caspase-3 active site..¹⁴

Figure 2. Theoretical binding conformation of the (S,S) diastereomer of 35 in the caspase-3 active site.

conformation in orienting the salicylic acid group in the caspase-3 S_4 binding subsite.

Due to potential therapeutic liabilities of an aldehyde warhead, we decided to investigate warheads based upon less reactive ketones. Both thiomethyl and oxazolyl ketones have been shown to be suitable warheads in peptidomimetic based caspase inhibitors.9,10 We prepared several analogues of compound 9 with the results shown in Table 4. Incorporation of either thiomethyl or oxazolyl ketones onto 9 yielded inhibitors with reduced potency relative to the parent aldehyde. Among the ketone analogues in this series, the thiomethyl ketones 30 and 31 exhibited the best potency, indicating the reactivity of the carbonyl is more important than potential binding contacts in the S_1' subsite.

We then turned our attention to replacing the flexible scaffold of 9 with a more rigid framework. We reasoned that replacement of three of the methylene groups of the main chain by an aromatic ring could improve potency by eliminating several rotational degrees of freedom. We chose the 2,5-disubstituted thiophene system to test this hypothesis since molecular modeling suggested this system should best approximate the geometry for presentTable 5. In vitro caspase-3 inhibition assay results for compounds 34-36

n-Pr

Ph

0.3

0.3

ing the P_2 and P_4 binding elements as seen in 9 (Fig. 2). The inhibitory activities for thiophene analogues 34-36 are shown in Table 5. Simply rigidifying the flexible chain resulted in a compound (34) equipotent to 1. Adding a P_2 binding element gave a 10-fold increase in potency, yet the compounds were not better inhibitors than 9. These results suggest that although the strategy of rigidifying the flexible linker of 9 is valid, a thiophene ring does not appear to allow the ideal binding geometry between the salicylic acid, a large P_2 substituent and the aspartyl side chain acid that is seen in 9.

In summary, we have discovered a novel series of reversible,17 potent in vitro caspase-3 inhibitors through the use of our extended tethering technology. Beginning with an early lead, compound 1, we developed SAR by systematically examining both P2 and P4 binding elements, aldehyde warhead replacements and scaffold rigidification. From our work described in this paper, we feel there is potential for further optimization of this series and subsequent work will be reported in due course.

Acknowledgements

We would like to thank Stuart Lam, Thomas Webb and Alex Hsi for their assistance with preparatory HPLC purifications.

References and Notes

1. (a) McBride, C. B.; McPhail, L. T.; Steeves, J. D. Emerg. Therap. Targets 1999, 3, 391. (b) Earnshaw, W. C.; Martins, L. M.; Kaufman, S. H. Annu. Rev. Biochem. 1999, 68, 383. (c) Salvesen, G. S.; Denault, J. B. Chem. Rev. 2002, 102, 4489. 2. Tethering is a service mark of Sunesis Pharmaceuticals for its fragment-based drug discovery.

3. (a) Choong, I. C.; Lew, W.; Lee, D.; Pham, P.; Burdett, M. T.; Lam, J. W.; Wiesmann, C.; Luong, T. N.; Fahr, B.; DeLano, W. L.; McDowell, R. S.; Allen, D. A.; Erlanson, D. E.; Gordon, E. M.; O'Brien, T. J. Med. Chem. 2002, 45, 5005. (b) Erlanson, D. E.; Lam, J. W.; Wiesmann, C.; Luong, T. N.; Simmons, R. L.; DeLano, W. L.; Choong, I. C.; Burdett, M. T.; Flanagan, W. M.; Lee, D.; Gordon, E. M.; O'Brien, T. Nat. Biotechnol. 2003, 308.

4. Cai, S. X.; Drewe, J.; Wang, Y.; Weber, E. US Patent 6,153,591, 2000.

5. Batchelor, J. B.; Drewe, J.; Wang, Y.; Weber, E.; Bebbington, D.; Bemis, G. W.; Fridman, W. H.; Gillespie, R. J.; Golec, J. M. C.; Lauffer, D. J.; Livingston, D. J.; Matharu, S. S.; Mullican, M. D.; Murcko, M. A.; Murdoch, R.; Zelle, R. E. US Patent 6,204,261 B1, 2001.

- 6. Karanewsky, D. S.; Kalish, V. J.; Robinson, E. D.; Ullman,
- B. R. WO0023421, 2000.
- 7. Widmer, U. Synthesis 1983, 135.
- 8. Wright, S. W.; Hageman, D. L.; Wright, A. S.; McClure,
- L. D. Tetrahedron Lett. 1997, 38, 7345.
- 9. Jones, T. R.; Varney, M. D.; Webber, S. E.; Lewis, K. K.; Marzoni, G. P.; Palmer, C. L.; Kathardekar, V.; Welsh, K. M.; Webber, S.; Matthews, D. A.; Appelt, K.; Smith, W. W.; Janson, C. A.; Villafranca, J. E.; Bacquet, R. J.; Howland, E. F.; Booth, C. L. J.; Herrmann, S. M.; Ward, R. W.; White, J.; Moomaw, E. W.; Bartlett, C. A.; Morse, C. A. *J. Med. Chem.* **1996**, *39*, 904.
- 10. Mjalli, A. M.; Chapman, K. T.; MacCoss, M.; Thornberry, N. A. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 2689.

11. Bemis, G. W.; Golec, J. M. C.; Lauffer, D. J.; Mullican, M. D.; Murcko, M. A.; Livingston, D. J. US Patent 6,103,711, 2000.

12. Moradi, W. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7996.

13. Garvey, E. P.; Oplinger, J. A.; Tanoury, G. J.; Sherman, P. A.; Fowler, M.; Marshal, S.; Harmon, M. F.; Paith, J. E.; Furfine, E. S. *J. Biol. Chem.* **1994**, *269*, 26669.

14. Graphics produced using PyMol v. 0.86; DeLano Scientific LLC; San Carlos, CA, USA; http://www.pymol.org

15. Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. J. Med. Chem. 1996, 39, 5228.

16. The pK_a of 3-phenyl-1,2,4-oxadiazol-5(4*H*)-one has been reported as 5.06; see: Ponzio, G.; Zanardi-Lamberti, B. *Gazz. Chim. Ital.* **1923**, *53*, 821.

17. Representative analogues were tested for reversible inhibition by incubation of compound with Caspase-3 followed by analysis by MS.