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Abstract

Ridges and ravines are the main components constituting a "ngerprint. Traditional automatic "ngerprint identi"ca-
tion systems (AFIS) are based on minutiae matching techniques. The minutiae for "ngerprint identi"cation are de"ned by
ridge termination and ridge bifurcation. Most AFIS perform ridge line following process to automatically detect
minutiae based on binary or skeleton "ngerprint image. For low-quality "ngerprint images, the preprocessing stage of an
AFIS produces redundant minutiae or even destroys real minutiae. The minutiae detection algorithms in direct
gray-scale domain have been developed to overcome these problems. The "rst step of gray-scale minutiae detection
algorithm is to determine ridge locations and then perform gray-scale ridge line following algorithm to extract minutiae.
However, the existing gray-scale minutiae detection techniques can only work on partial "ngerprint image due to the
ignorance of image background. Moreover, the gray value variation inside a ridge also generates redundant ridge points.
In this paper, we propose a novel method, based on gray-level histogram decomposition, to locate the ridge points in
complete "ngerprint images. By decomposing the gray-level histogram, redundant ridge points can be eliminated
according to some statistical parameters. Experimental results demonstrate that the correct rate can be over 95% even
applied to poor-quality "ngerprint images. � 2001 Pattern Recognition Society. Published by Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Fingerprints have been used as a personal identi"ca-
tion tool for more than 100 years. The major reasons are
due to their uniqueness and unchangeable properties.
Governments who collect "ngerprints for criminal identi-
"cation and business who collect "ngerprints for security
purpose store tremendous amount of "ngerprint images
that continuously increase the importance of automatic
"ngerprint identi"cation systems. Many automatic "n-
gerprint identi"cation systems (AFIS) have been pro-
posed over the last 30 years [1}3]. The purpose of an

AFIS is to "nd out whether the individual represented
by an incoming "ngerprint image is the same as an
individual represented by one of a large "led "ngerprint
image database. In a "ngerprint image, ridges and ra-
vines are the main constituting components and the
minutiae for "ngerprint identi"cation are de"ned by the
ridge #ow interruption, such as ridge termination and
ridge bifurcation. Most automatic "ngerprint veri"cation
systems verify "ngerprints by minutiae matching tech-
niques. Fig. 1 shows the #ow diagram of an automatic
"ngerprint matching system. In this system, the feature
extraction stage obtains the minutiae in the "ngerprint
image by recording their coordinates and tangent direc-
tions. The matching process is performed by comparing
the minutiae of an incoming "ngerprint with the minu-
tiae of "ngerprint image "les in database until the system
"nd one identical "ngerprint image.

The "ngerprint acquisition process can be classi"ed
into three categories. They are ink technique, optical
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Fig. 1. An overview of automatic "ngerprint identi"cation process.

prisms and holograms. Fingerprint images, which are
acquired by ink technique, often produce regions that
miss some information due to excessive inkiness or ink
de"ciency [4]. For acquisition techniques that use op-
tical prisms or holograms, inadequate pressure while
pressing "nger on optical surface will generate nonuni-
form illuminated regions in "ngerprint images. Further-
more, the prominence of ridge lines from the "ngerprints
of elder peoples or manual workers can be considerably
lower such that the "ngerprint pattern might be unread-
able. In addition, "ngerprint skin diseases, injure, skin
moisture or slightly movement while acquiring "nger-
print images also produce smudged and noisy regions.

The preprocessing stage plays an important role in
automatic "ngerprint identi"cation system because the
quality of acquired "ngerprint image always cannot meet
the requirement of most automatic identi"cation sys-
tems. From the properties as described above, we know
that we cannot improve the identi"cation accuracy if the
"ngerprint preprocessing technique is not good enough.
Traditional "ngerprint image preprocessing process usu-
ally consists of "ve stages:

(1) Filtering "ngerprint image to enhance the "nger-
print ridges.

(2) Adaptive segmentation to separate the "ngerprint
ridges from ravines.

(3) False minutiae reduction through re"nement of ab-
normal ridge line #ow.

(4) Thinning process that reduces the ridges to one pixel
width.

(5) Noise removal process for eliminating pores and
spurs produced by thinning.

The enhancement process increases the contrast be-
tween the foreground ridges and the background [5].
A robust segmentation method is required for detecting
nonuniform regions and should be insensitive to the
contrast of the original images. The composite method
[6] that combines segmentation methods based on direc-
tion and variance information is promising. Since false
minutiae caused by ridge line fragment will appear after
the binarization process, a re"nement process is neces-
sary to reconstruct some lost information [7]. Fig. 2
illustrates the images after binarization and thinning
processes. As we noticed, there exist many redundant
minutiae in both binary and skeleton images which do
not appear in the original image.

These preprocessing procedures always take over 95%
of the identi"cation time [8]. Thus, reducing some of the
desired preprocessing stages but keeping the perfor-
mance means the increase in identi"cation speed. How-
ever, there is a trade o! between the identi"cation speed
and accuracy. Low-quality "ngerprint images will de-
crease the identi"cation accuracy, whereas good-quality
images will require much more preprocessing time.
Therefore, it is necessary to develop an automatic "nger-
print identi"cation system which can extract minutiae in
gray-scale domain, i.e., no traditional preprocessing is
necessary, instead of those systems using binary or skel-
eton "ngerprint images.

Recently, Maio and Malton have developed a minu-
tiae detection method in direct gray-scale domain [4]. By
allocating the ridge positions as the start points, a gray-
level ridge line following algorithm is proposed by com-
puting the tangent direction of each ridge point sliding
the ridges and then the minutiae in the "ngerprint image
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Fig. 2. An example illustrating various "ngerprint images. (a) Original image. (b) Binary image. (c) Skeleton image.

can be extracted. Their work is equivalent to the
minutiae extraction stage in a traditional AFIS but
without any preprocessing procedure. However, the
major disadvantage of their method is that their algo-
rithm treats the "ngerprint image analysis as a bimodal
problem. Actually, a "ngerprint image is constructed
by three portions: ridges, ravines and background.
Therefore, "ngerprint image analysis should be a
trimodal problem [9]. In their approach, only ridges
and ravines in "ngerprint images are taken into consid-
eration. This means that their method can only work on
partial "ngerprint images, which exclude the back-
ground.

In this paper, we propose a ridge allocation algorithm
in gray-scale domain to "nd out the positions of ridges in
a complete "ngerprint image. In our approach, the global
information about the range of ridges, ravines as well as
background in the gray-level histogram are determined
by a statistical analysis of this trimodal distribution. The
e!ect of background is also considered in our method.
Our ridge allocation algorithm can be considered as the
preprocessing stage of an automatic "ngerprint identi-
"cation system in gray-scale domain. We have chosen to
allocate ridges in a complete "ngerprint image directly

from the gray-scale domain without binarization and
thinning for the following reasons [4]:

� A lot of information may be lost during the binariz-
ation process.

� The binarization technique has been proved to be
unsatisfactory when applied to low-quality image,
such as broken ridges.

� Binarization and thinning are time-consuming.

The rest of this paper is organized as follows. In
Section 2, we analyse "ngerprint image patterns in order
to understand the intrinsic properties. In Section 3, a
histogram decomposition method is introduced to ex-
tract the information about the range of ridges, ravines
and background in gray-level histogram. In Section 4,
we propose a concrete algorithm to solve the problem
of allocating ridge position in a gray-scale "nger-
print image. The di$culties encountered in the previous
works like background elimination and identical ridge
points elimination are also discussed in this section.
Experimental results are demonstrated in Section 5.
Finally, conclusions and future works are given in
Section 6.
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Fig. 4. An example illustrating surface S. (a) Original sub-image of a "ngerprint. (b) The corresponding discrete surface.

Fig. 3. Three gray-level histograms derived from di!erent parts of a "ngerprint image. (a) The sub-image locating at the central part of
the image with only two distributions. (b) Considering the whole image, there exist three distinctive distributions in the histogram. The
cluster on the left belongs to the background. (c) The sub-image includes a small area of the background, which also exist three
distributions.

2. Gray-scale 5ngerprint image analysis

Let I be a p�q gray-scale "ngerprint image with
G gray levels and gray (x, y) be the gray value of pixel
I(x, y) with x"1,2, p and y"1,2, q. Then, the gray-
level histogram H of image I is of the form
H"�H( j ) � j3[1, G]�. H(1) to H(G) represent the histo-
gram probabilities of the observed gray values from
1 to G, and H(g)"��gray[I(x, y)]"g, g"1,2G, x"

1,2, p and y"1,2, q�. For representation conveni-
ence, let gray level 1 be the brightest pixels and gray level
G be the darkest pixels. Fig. 3 depicts the gray-level
histograms of a complete "ngerprint image with 256 gray

levels and the two portions of this image with and with-
out background, respectively. The gray-level histogram
of a "ngerprint image with background always possesses
three distributions in the histogram.

Let z"gray(x, y) correspond to image I with
x"1,2, p and y"1,2, q. The discrete surface repres-
ents a small area of a "ngerprint image, S, as shown in
Fig. 4. In this "ngerprint surface S, the protruding parts
in the surface correspond to the "ngerprint ridges, and
the concave parts correspond to the "ngerprint ravines.
The "ngerprint ridges can be de"ned as a set of local
maximum points along the one direction in S, and the
"ngerprint ravines be the local minimum points.
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Fig. 5. An example of the section sets. (a) The section set is acquired by drawing a line segment from lower-left to upper-left. (b) The
numbers of the marks represent the appearing sequence of the ridge points from left to right in the section set.

Let a section set � be a set of points in a "ngerprint
image which belong to a line segment lying on the
xy-plane. Then, � can be de"ned as

�"�(x, y, z)�(x, y)3Line((x
�
, y

�
), (x

�
, y

�
)) and z3[1, G]�,

where Line((x
�
, y

�
),(x

�
, y

�
)) represents a line segment with

start point (x
�
, y

�
) and termination point (x

�
, y

�
). This

means that we map the two-dimensional pixels of section
set � to one-dimensional points along the direction of
Line. For the points in �, their gray values g compose
a histogram. The ridge allocation algorithm attempts to
locate the ridge points by extracting local maximums in a
section set �. Shown in Fig. 5 is an example illustrating a
section set and the corresponding ridge locations.

For "ngerprint images with only ridges and ravines,
i.e., bimodal distribution in the gray-level histogram,
Maio and Malton [4] developed a minutiae detection
method including the technique of locating ridge posi-
tions in direct gray-scale domain. Unfortunately, their
method will fail if it is applied to a complete "ngerprint
image including background in the image. The major
reason of the failure is that there still possess &ripples'
while acquiring a section set � in the background part
only. That is, the ridge allocation algorithm will extract
local maximum points as ridge locations no matter they
are coming from the pattern area, i.e., the area of only
ridges and ravines, or not. Moreover, the ripple charac-
teristic also exists if some part of section set � intersect
with the same ridge line. The pores of sweat gland and
moisture on the skin make the ridge line a harsh surface
on a "ngerprint image. Redundant ridge points will be
produced if we only employ the phenomenon of height
variation in �. Fig. 6(a) illustrates the section set
with the line segment extending to the image back-
ground. There exist several redundant ridge points
generated from the ripple of background. Fig. 6(b)
shows the section set where a part of line segment is lying
on the same ridge line. It will also produce some redund-

ant ridge points which belong to the inside of this ridge
line.

Obviously, we can locate the genuine ridge points if we
understand which pixels are lying on the pattern area,
which pixels are lying on the background and which
pixels belong to the same ridge line. A possible solution is
to interpret the structure of the gray-level histogram to
understand pixels in what range of gray levels are tend to
be in the pattern area, and what range is for the back-
ground.

In order to estimate the gray-level ranges of ridges,
ravines, and background in the histogram, we have to
decompose the gray-level histogram to understand the
information while allocating the ridge positions in a "n-
gerprint image. This task is just like the multi-thre-
sholding of a gray-scale image. For our problem, there
will exist three distributions in the gray-level histogram
which represent the clusters of ridges, ravines and back-
ground, respectively. Our goal is not only to extract the
gray values which can separate ridges, ravines, and back-
ground in a "ngerprint image, but also have to estimate
some statistical parameters, i.e., means, variances and
probabilities, that can represent these three clusters.
There are several methods that can "nd the threshold
values of a gray-level histogram by statistical approach
[10}12]. However, the existing statistical histogram de-
composition approaches always su!er from their high
computational complexity. The parameter estimation
procedure employ iterative parameter re"nement until
convergence. For real-time problems, such as automatic
"ngerprint identi"cation, it is necessary to develop an
e$cient method that can decompose the histogram into
several nonoverlapping clusters and then estimate the
parameters representing each cluster.

In the next section, we will introduce a fast histogram
decomposition method. In this method, the gray-level
histogram is converted to mixture Gaussian distribution
that has been formulated and proven by Zhuang [12].
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Fig. 6. The section set with background. (a) A section set including some ridge points derived from the ripple of background. (b)
A section set with some ridge points derived from the same ridge line.

That is, each object in an image will be a Gaussian-like
distribution in this gray-level histogram with di!erent
mean and variance values. In our work, we use the statist-
ical approach and some heuristic parameters to decom-
pose this histogram into nonoverlapping distributions
without a priori knowledge about the number of objects.
The proposed method does not employ conventional iter-
ative parameter re"nement. Instead, by estimating the
initial nonexact mean and variance values as the cues for
determining the initial threshold value, the Skewness of
certain interval in this candidate distribution is calculated
to quickly locate the deterministic optimal estimation in-
terval. After optimally estimating the mean and variance
values of each distribution in the histogram, a maximum-
likelihood-based decision criterion is applied to determine
the optimal threshold values among distributions. Then,
the information about the range of ridges in the gray-level
histogram can help us in determining the genuine ridge
points among a random selected section set �.

3. Fast gray-level histogram modeling and decomposition

Generally, there exist a number of &mountains' in the
histogram if it is a multimodal distribution. Each distri-

bution in the histogram will map to an object in the
image. For any gray-level histogram with n distributions,
the multi-thresholding techniques are to automatically
determine n!1 threshold values that can be used to
separate this multimodal histogram into n nonoverlap-
ping distributions.

For nature scene with large samples, we assume that
the observation comes from a mixture of n#1 Gaussian
distributions, name f, having respective means and vari-
ances (m

�
, ��

�
),2,(m

���
, ��

���
) with respective propor-

tions P
�

,2, P
���

. Therefore, the mixture distributions
re#ected in the histogram will be in the form of

f (k)"
���
�
���

P
�

�2��
�

exp�!

1

2�
k!m

�
�
�
�

�

�.

Our objective is to "nd the parameters, i.e., means, vari-
ances, and proportions, to satisfy the minimization

min(� f!H�).

In order to decompose a gray-level histogram into
several nonoverlapping distributions, we have to "nd the
local minimums "rst and then perform further parameter
estimation tasks. However, the histogram distribution,
which was acquired from real-world scene, is always
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Fig. 8. The histograms before and after convolution. (a) Original histogram distribution. (b) Smoother histogram after convoluting with
Gaussian masking window.

Fig. 7. Gaussian masking window.

anomalously distributed. Hence, a histogram smoothing
process is necessary before performing the decomposi-
tion process.

Let Wg be a Gaussian masking window with 2p#1
bins and b

�
, k"1, 2, 2, 2p#1(p*0, b

�
*0, �b

�
"1)

be the elements of Wg. The new gray level in HI is
calculated as the convolution of H and Wg:

HI "H�Wg,

where &�' denotes the convolution operation. Thus,

HI "�HI ( j )� j3[1, G]�

forms the smoothed histogram where

HI (i)"
1

2p#1

�
�

����

b
�����

H(i#u)

for i"p#1 to G!p.
Fig. 7 is an example of Gaussian masking window with

seven bins. For a 2p#1 bins masking window, each bin
can be calculated by

b
�
"0.5(1!cos(�k/p)).

Fig. 8 shows the histograms before and after convolut-
ing with a Gaussian masking window of 21 bins (p"10).

After the smoothed histogram HI has been obtained,
the peaks and valleys in the histogram can be determined
by the following rule: For any gray value i, i3[1, G], HI (i)
is a peak if HI (i)'HI (i!1) and HI (i))HI (i#1). On the
other hand, HI (i) is a valley if HI (i)(HI (i!1) and
HI (i)*HI (i#1).

Suppose that there exist an n distinct Gaussian clusters
C

�
, i"1, 2, n, then HI must have n peaks, denoted by

R(1), 2, R(n), and n!1 valleys, denoted by <(1),

2,<(n!1). Then, the interval of C
�

in the smoothed
histogram HI will be [<(i!1),<(i)!1], with <(0)"1
and <(n)"G#1. We will de"ne an optimal estimation
interval within each cluster to estimate the parameters
that can represent the distribution of the clusters.

The Skewness, �
�

, involving the second- and third-
order central moments can be de"ned as

�
�
"

�
�

���
�

.

Central moments are de"ned as �
�
"E�(x!m)��"

��
��

(x!m)�f (x) dx. If the random variable x is discrete
type with unknown mean value, �

�
can be rewritten by its

sample mean, m	 , as �
�
"�

�
p
�
(x

�
!m	 ), with m	 "�

�
p
�
x
�
,

where p
�

is the occurrence probability of x
�
. Here, Skew-

ness is a symmetric measurement of distributions. �
�
'0

means that the distributions are left-biased, and �
�
(0

for right-biased distributions. For univariate normal
distributions N(m, ��), since f (!x)"f (x), the odd-order
central moments will all be zero. That is,
�
�
"E�(x!m	 )��"0. Thus, �

�
will be zero if this distri-

bution is normal distribution.
For mixture Gaussian distributions with clusters

C
�
, i"1, 2, n, the overall Skewness for the range of each

cluster is meaningless because each Gaussian cluster is
contaminated by the neighboring clusters at the margins
of both sides. However, the Skewness is also close to zero
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Fig. 9. Optimal searching interval.

at a certain interval which is near the center of each
cluster. Therefore, this special interval should be deter-
mined "rst to obtain optimal initial estimation of the
cluster centers and then perform other further estima-
tions and decisions.

For each cluster C
�

in Gaussian mixture, we select
the interval for initial cluster's mean value estimation
by length r

�
"�

�
(<(i)!<(i!1)!1). This length, r

�
,

possesses the properties of r
�
<�

�
and r

�
J�

�
. The length

of interval satis"es Tchebychew inequality and can be
used as the length of optimal parameter estimation
interval.

Now, let us de"ne a searching window w with length
r
�

to search the location of optimal estimation interval of
cluster C

�
. The searching window w which starts by

placing the leftmost point at <(i!1) slides toward
the end of cluster <(i)!1 by moving one bin at a time.
The searching process stops if the rightmost point
reaches the end of cluster <(i)!1. They will have
<(i)!<(i!1)!1!r

�
searching windows. Meanwhile,

the Skewness �
�

is calculated for each searching window
w
	
, j"1, 2, 2,<(i)!<(i!1)!1!r

�
, denoted by

�
�

(w
	
). For our problem, the Skewness of each searching

window can be calculated as

m


	

"

�
��
	

iH(i)

�
��
	

H(i)
, �

�
(w

	
)"

�
��
	

(i!m


	

)�H(i)

�
��
	

H(i)

and �
�

(w
	
)"�

�
(w

	
)/���

�
(w

	
).

Therefore, the optimal interval w* for estimating the
mean and variance of each cluster is determined by the
interval which has minimum absolute skewness value.
That is

wH"min
	

��
�

(w
	
)�.

The optimal estimation interval wH
�

of cluster C
�

will be located at [a
�
, b

�
). Fig. 9 is an example illustrat-

ing the position of searching windows w and the
location of optimal estimation interval w* for one distri-
bution.

Then the initial mean, variance and proportion of this
cluster can be optimally determined by

m(
�
"

���
����

kH(k)

���
����

H(k)
, �( �

�
"

���
����

(k!m(
�
)�H(k)

���
����

H(k)

and PK
�
"���

����
H(k)/�

���
H(u).

For the ith observation H(i), it is more likely generated
by cluster C

�
if

PK
�

�2��(
�

exp�!

1

2�
i!m(

�
�(
�
�

�

�
'

PK
	

�2��(
	

exp�!

1

2�
i!m(

	
�(
	
�

�

�
for 1)j)n, 1)k)n, and jOk.

If there are n clusters, we will obtain n!1 threshold
values ¹

�
, i"1, 2, 2, n!1. Therefore, the ith threshold

¹
�

can be determined as follows:

¹
�
"max�k: H(k) is generated by the ith Gaussian

cluster�.

Finally, for each cluster C
�
, i"1, 2, 2, n, the range be-

comes [¹(i!1), ¹(i)!1] with ¹(0)"1 and ¹(n)"g.
The mean, variance and proportion of the cluster can
then be determined by the following equations:

m
�
"

�
����

iH(i)

�
����

H(i)
, ��

�
"

�
����

(i!m
�
)�H(i)

�
����

H(i)

and P
�
"�

����
H(i)/�

���
H(i).

4. Gray-scale 5ngerprint ridge allocation algorithm

For the discrete surface S in a "ngerprint image I, we
acquire a section set � by intersecting the surface Swith an
arbitrary length line segment in randomly selected direc-
tion. By determining the local maximums in �, we can
extract ridge points which belong to this section set. How-
ever, noise is always present in "ngerprint images no
matter what "ngerprint image acquisition method is used
(as mentioned in Section 1). Thus, we "rst smooth the
section set � by convoluting it with a seven bins Gaussian
masking window. Then, we determine the local maximums
as the candidate ridge points by comparing the gray value
variation of three consecutive points in �. Fig. 10 illus-
trates the comparison of a section set � before and after
the smoothing process. The method of histogram smooth-
ing and local minimums or local maximums extraction
have been described in the previous section.

Suppose there exist m ridge points R and n valley
points V in a section set �, namely R

�
, R

�
, 2, R

�
and

<
�

,<
�

, 2,<
�
, respectively. These ridge points and val-

ley points are alternately distributed from left to right
along the direction of section set �. That is, R

�
will be the
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Fig. 10. Comparison of ridge section before and after smoothing.

leftmost ridge point in � and R
�

will be the rightmost
one. The same condition also exists for the valley points.
The ridge points R and the valley points V in � compose
a feature set, namely the train set. Since the location of
section set � is arbitrary selected in a "ngerprint image,
the initial element (the leftmost element) and the terminal
element (the rightmost element) in the train set become
uncertain. Moreover, some candidate ridge points are
probably lying on the same ridge line and the locations in
the section set � are always unknown. These properties
make the "ngerprint ridge allocation an obscure problem
and are di$cult to "nd a straightforward solution.

4.1. Estimation of gray-level ranges of components
in xngerprint images

First, we decompose the gray-level histogram of a "n-
gerprint image to obtain the information about the global
gray-level range of ridge points as well as the ravines and
image background by the fast histogram decomposition
algorithm as described in the previous section. Generally,
as we have already shown in Fig. 3, there always exist
three distinctive distributions in the gray-level histogram
of a complete "ngerprint image. After decomposing the
histogram into three nonoverlapping clusters that repres-
ent the gray-level range of ridges, ravines and background,
we will obtain two threshold values which separate these
three clusters and some parameters, i.e., means, variances
and probabilities, of the extracted clusters.

In Fig. 11, three clusters C
�
, C

�
, and C

�
, which corres-

pond to the clusters of background, ravines and ridges in
the histogram distribution from left to right, respectively,
are separated by two threshold values ¹

�
and ¹

�
. The

gray values of the pixels in each cluster will map into
the gray-level range in the histogram from gray level 1
to ¹

�
for cluster C

�
, ¹

�
#1 to ¹

�
for cluster C

�
and

¹
�

#1 to G for pixels in cluster C
�
. The cluster center

m and the standard deviation � of clusters C
�
, C

�
, and

C
�

are denoted by m
�
, m

�
, m

�
and �

�
, �

�
, �

�
, respectively.

From the statistical point of view, the population of
cluster C

�
will concentrate in the range of [m

�
!�

�
/2,

m
�
#�

�
/2], and the population of C

�
will concentrate in

the range of [m
�
!�

�
/2, m

�
#�

�
/2]. Let us de"ne an-

other threshold value ¹
�

, whose value is the gray-level
di!erence between the ridge cluster C

�
and the ravine

cluster C
�

by

¹
�

"�m�
!

�
�

2 �!�m�
#

�
�

2 �,

¹
�

is the minimum requirement of the gray-level change
of two adjacent elements in the train set if the candidate
element belongs to the genuine ridge but are obtained
from a blur or dark part in the "ngerprint image. We will
discuss the usage of ¹

�
, ¹

�
, and ¹

�
in the following part

of this section.
Then, by analyzing the appearance sequence of ele-

ments and the degree of gray-level shift according to ¹
�

,
¹

�
, and ¹

�
for the adjacent elements in the train set, we

can determine which ridge points come from the pattern
area or which points are derived from the image back-
ground or inside the same ridge.

4.2. The ridge allocation algorithm

Let the function P represent the position of elements in
a section set �, and P(R

�
)(P(R

	
) represent the position

of R
�

which is at the left in � compared to the position of
R

	
. That is, P(R

�
)(P(R

�
)(2(P(R

�
) and P(<

�
)(

P(<
�

)(2(P(<
�
). From our observation, the section

set � always comes from the four types according to the
role of both elements at the initial and the terminal
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Fig. 11. Example of the decomposition result.

Fig. 12. Four types of ridge sections.

positions by the following rules:

�3�
¹ype 1; if P(<

�
)(P(R

�
) and P(R

�
)(P(<

�
)

Ninit"0 and end"0,

¹ype 2; if P(<
�

)(P(R)
�

and P(<
�
)(P(R

�
)

Ninit"0 and end"1,

¹ype 3; if P(R
�

)(P(<
�

) and P(R
�

)(P(<
�
)

N init"1 and end"0,

¹ype 4; if P(R
�

)(P(<
�

) and P(<
�
)(P(R

�
)

N init"1 and end"1,

where &init' and &end' denotes the initial element and the
terminal element in the train set, respectively. For repres-
entation convenience, we use zero as the valley points
and one for the ridge points just like the representation of
digital signal with only low- and high-voltage conditions.
Fig. 12 illustrates these four types of section sets.

Since the ridge elements and the valley elements are
alternately distributed in the train set, we de"ne the
reference element of a certain valley point<

�
, i"1, 2, n,

to be the ridge point which is at the left of <
�

and closest
to <

�
, named R

	
. For the four di!erent types of section

sets as described above, the index j of the reference ridge
can be determined by j"i#init!1. That is, the refer-

ence ridge of the valley point <
�

will be R
��������

. For
Types 1 and 2 section sets, the reference ridge of <

�
is

R
���

because init"0 (starting from a valley point) for
these two types. On the other hand, the reference ridge of
<

�
is R

�
for Types 3 and 4 because init"1 (starting from

a ridge point). The information which is acquired from
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Fig. 13. Intermediate conditions.

the (R
��������

, <
�
) pair will give us an explicit solution in

allocating the genuine ridge points.
In order to interpret the condition of elements con-

tained in the train set, we divide the train set into three
portions and discuss them individually. These three por-
tions of elements are the initial elements, the intermediate
elements, and the terminal elements.

4.2.1. The initial elements
For Types 1 and 2 section sets, the starting element in

the train set is a valley point without reference ridge point
at its left. Therefore, we discard the initial valley element
if this train set comes from Types 1 and 2 section sets. For
Types 3 and 4 section sets, the initial element pair that
belongs to the train set is (R

�
,<

�
) and R

�
is the starting

element (see Fig. 12).

4.2.2. The intermediate elements
After eliminating the starting valley point for Types

1 and 2 section sets, the rest of elements in the train set
are all intermediate elements excepts the terminal ridge
points of Types 2 and 4 section sets. There exist three
di!erent conditions while observing the gray-level shift
for the intermediate element pairs (R

��������
, <

�
). Fig. 13

illustrate these three conditions. The element pairs with
larger drop height are obtained from distinct ridges, and
the element pairs with smaller drop height are coming
from an identical ridge line. The image background also
produces many element pairs.

We can extract the genuine ridge points in the train set
by the following rules. Let the function gray( ) ) denote
the gray value of elements in the train set. For any
candidate element pair (R

	
,<

�
), j"1, 2, m and

i"1, 2, n, there exist four possibilities for the belonging
of element R

	
.

(1) R
	

is derived from the ripple of image background if
the gray value of R

	
is smaller than ¹

�
. That is,

R
	
3C

�
if gray(R

	
)(¹

�
. We will discard this ridge

element R
	
:

(2) R
	

is accepted as genuine ridge point if the element
pair (R

	
,<

�
) satis"es the following conditions: The

gray value of R
	

is larger than ¹
�

and the gray value
di!erence of R

	
and <

�
exceeds ¹

�
. By de"ning the

set of genuine ridge points as R, R
	
3R if and only if

gray(R
	
)'¹

�
and (gray(R

	
)!gray(<

�
))'¹

�
.

(3) Both R
	

and <
�

are derived from the same ridge line
of a "ngerprint image if the gray value of<

�
is larger

than ¹
�

and the gray value di!erence of R
	

and
<

�
is smaller than ¹

�
. That is, R

	
, <

�
3C

�
if

gray(<
�
)'¹

�
and (gray(R

	
)!gray(<

�
))(¹

�
. We

will store this ridge element R
	

as a temporal ridge
point R

�
. Several element pairs, which belong to the

identical ridge line, appear following the "rst identi-
cal ridge element pair R

�
. We will search the other

element pairs still left in the train set from left to

right. If there exists an element pair (R
��������

,<
�
)

with i(k(n that satis"es rule (2), we mark the
temporal ridge point R

�
as a genuine ridge element

and discard all ridge points from R
	��

to R
��������

.
On the other hand, if there does not exist any ele-
ment pair, which satis"es rule (2) while searching to
the end of train set, we keep R

�
and make decision

according to the terminal elements.
(4) The element pair (R

	
,<

�
) that does not satisfy any of

the rules (1), (2) or (3) will be discarded. Since there
will exist some blur area in a "ngerprint image
which is produced by slightly movement while ac-
quiring this "ngerprint image, we will discard these
uncertain ridge elements to avoid locating erron-
eous ridge points, i.e., the ridge points that are ac-
tually derived from background or ravines.

4.2.3. The terminal elements
The terminal elements are de"ned as the rightmost

ridge element that has not been referenced by any ele-
ment. Thus, only Types 2 and 4 section sets possess
terminal ridge elements. Figs. 14(a) and (b) illustrate the
terminal conditions for the section sets that are termin-
ated inside a ridge. There will exist a temporal ridge
R

�
with P(R

�
)(P(R

�
). For this condition, we accept the

terminal ridge element R
�

as a genuine ridge point with-
out any limitation. The section sets as illustrated in
Fig. 14(c), which possess the terminate ridge R

�
, are

acquired from Types 2 and 4 section sets. We accept the
terminal ridge element R

�
if the element pair (R

�
,<

�
)

satis"es the acceptance rule (2).
The gray-scale ridge allocation algorithm is a combi-

nation of "nding the genuine ridge points by the rules
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Fig. 15. Distinctly distributed ridge sections.

Fig. 14. Terminal conditions.

described in the three individual portions of the elements
in the train set. After reaching the terminate element, the
ridge elements R

�
, with l3[1, m] and R

�
3R, become the

extracted ridge points in the section set �. The corre-
sponding coordinate of each ridge point in R is the
location of a ridge in the "ngerprint image I.

5. Experimental results

Some experiments have been conducted to evaluate
the performance of the proposed gray-scale ridge alloca-
tion algorithm with NIST Special Database 4 "ngerprint
images [13]. The "ngerprint images were acquired and
quantized into 512�512 with 256 gray levels in the test
data set. Since the gray-scale minutiae detection algo-
rithm proposed by Maio [4] has already developed an
explicit method to allocate all ridges in "ngerprint im-
ages, our experiments will present only some critical
conditions by a selected line segments as supplements.
The experiments include the ordinary distinct ridge sec-
tions, the ridge section which extends to the image back-
ground and the ridge section with a large portion runs
through a ridge line. The ridge sections derived from

a poor-quality "ngerprint images with nonuniform illu-
mination conditions or some contaminated areas are also
considered to demonstrate the robustness of the pro-
posed ridge allocation algorithm. For representation
convenience, the section sets in our experiments were
acquired along the direction of the line segment with an
arrow. The allocation results presented on the ridge sec-
tion are then marked back to the corresponding coordi-
nate in the "ngerprint image. Finally, a quantitative
measure about the correctness of our method is presented.

5.1. Distinctly distributed ridge sections

For the sub-images derived from a part of complete
"ngerprint images with only ridges and ravines, the ridge
section will be distinctly distributed. For this condition,
the histogram decomposition process extracts only one
threshold value ¹

�
and will ignore the background e!ect

while locating the ridge points. In Fig. 15, the extracted
ridge points in the section set do not locate on the highest
bins because the smoothing step of section set prevents
the appearance of noise inside the ridges. We can observe
that some ridges possess two local maximums with only
one ridge point being located.

5.2. Ridge sections extending to image background

Considering a complete "ngerprint image with back-
ground, there exist fake ridge points due to the ripple of
gray-level variation if the section set is extended to image
background. These ridge points derived from the image
background must be eliminated to prevent the genera-
tion of false minutiae while applying gray-scale ridge line
following algorithm. Fig. 16 illustrates a section set with
a portion lying on the image background and the corre-
sponding ridge allocation results in a "ngerprint image.
For the extraction result of Maio's method [4], as shown
in Fig. 16(a), there exist four fake ridge points due to the
ripple caused by the gray-value variation on the points,
which are lying on the background along the extraction
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Fig. 16. Ridge section with background. (a) The extracted ridge points by Maio's method. There exist four fake ridge points on the image
background. (b) The generated ripple of the background will be ignored in our method.

line. On the other hand, our method ignores the
ripple coming from the background and extracts only
"ve genuine ridge points that are locating at the pattern
area (see Fig. 16(b)). As we noticed, the forth ridge points
counting from the left of this section set with lower height
due to the contrast de"ciency can also be located
correctly.

5.3. Ridge sections within a ridge line

The ridge lines of a "ngerprint image are arbitrary
distributed with various #ow directions. An automatic
system should be invariant with the rotation and transla-
tion of "ngerprint images. For the line segment in ex-
tracting the section set with regulated direction in the
automatic ridge allocation process, it might not vertically
intersect with all ridge lines. A portion of the ridge
section set probably runs through a ridge line and gener-

ates redundant ridge points due to the appearance of
sweat pores on the "ngertips. These redundant ridge
points, which are locating inside an identical ridge line,
should be eliminated in the ridge allocation process to
prevent tracking a ridge line repeatedly in the ridge line
following process.

Fig. 17 illustrates the ridge section run through a ridge
line. For the methods that extract ridge points depending
only on local maximums, such as Maio's method, some
redundant points will be generated. (see Fig. 17(a)). In
Fig. 17(b), the ridge points derived from the same ridge line
are successfully eliminated by using our method. Although
some identical ridge points which are actually coming
from the same ridge line still cannot be eliminated perfect-
ly due to the contrast de"ciency of "ngerprint images, our
method can eliminate almost all redundant ridge points
no matter they are derived from the image background
or belonging to the same ridge lines.
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Fig. 17. Ridge section in a ridge line. (a) For Maio's method, there exist two redundant points for the section set runs through a ridge. (b)
The ridge points that belong to the same ridge line are eliminated correctly in our method.

5.4. Nonuniform illumination section sets

Most "ngerprint images, which are acquired from
biometric systems, always possess the nonuniform
illumination property. We will demonstrate the perfor-
mance of our ridge allocation algorithm while applying to
nonuniform illumination areas in "ngerprint images. Figs.
18(a) and (b) illustrates the section set derived from an area
of "ngerprint with nonuniform illumination. Although the
gray value of the ridge points with higher illuminance are
lower than their neighboring ridge points, our method can
still locate them correctly because the gray-level di!er-
ences are large enough to satisfy the acceptance rule. On
the other hand, for the binary image as shown in Fig. 18(c),
there are four ridge points missing because some ridge
lines are broken into fragments after the binarization
process. The extraction results of the corresponding skel-
eton image cannot "nd all genuine ridge points. As illus-
trated in Fig. 18(d), there exist "ve missing points. This
evidence shows that binary or skeleton image-based mi-
nutiae detection algorithm will miss the detection of
some minutiae in the nonuniform illuminated areas.

5.5. Ridge sections derived from contaminated areas

Due to the moisture or slightly movement while acquir-
ing a "ngerprint image, ridges will be blended with ravines
that result in some blur areas. These critical contaminated
areas will cause many false minutiae after the binarization
or thinning process. Fortunately, our direct gray-scale
method can allocate most ridge points even the section
sets are derived from contaminated areas. Fig. 19(a) shows
the contaminated sub-image of a "ngerprint image. The
extracted section and the ridge location after applying our
gray-scale ridge allocation algorithm are shown in Fig.
19(b). Although missing some genuine ridge points, our
method can still locate most of the ridges in this con-
taminated area. On the other hand, we could hardly "nd
any possible ridge line on the binary or skeleton image at
the same position of the line segment lying on the original
image. As illustrated in Figs. 19(c) and (d), we can extract
some ridge points intersecting with the extraction line.
However, no ridge line following algorithm can "nd the
successive ridge path while applying to the contaminated
areas in binary or skeleton images.
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Fig. 18. Ridge section for nonuniform area. (a) The original gray-scale image, (b) derived ridge section, (c) The corresponding binary
image and the extraction result missed four ridge points. (d) The corresponding skeleton image and "ve ridge points cannot be extracted.

Finally, we perform a quantitative measurement
about the accuracy of the proposed gray-scale ridge
allocation algorithm with six "ngerprint images as shown
in Fig. 20. The size of these test "ngerprint images are
512�512 by 500 dpi resolution and are quantized into
256 gray levels. In order to demonstrate that the pro-
posed method is not only suitable for some special types
of "ngerprints, these test patterns are selected from di!er-
ent classes of the well-known Henry's Classixcation [14].
In this experiment, ten ridge sections were acquired by
equally spaced straight line segments acrossing each "n-
gerprint image in both vertical and horizontal directions.
It might have three kinds of errors generated in this
experiment:

1. Missing points: The ridge points in section sets, which
belong to genuine ridges but have not been allocated,
are counted as missing points.

2. Erroneous points: Points which belong to valleys but
are marked as ridges.

3. Redundant points: There only exist one ridge point for
one ridge line. The extra points are considered as
redundant points.

By applying the proposed automatic ridge allocation
algorithm to the test images, we verify the allocation
results by human eyes. The quantitative measurement
results are summarized in Table 1. In this experiment, the
best allocation result occurs in "ngerprint 2 due to the
high contrast and no contaminated area appearing in
this "ngerprint image. Fingerprints 1 and 6 also have
high accuracy due to high contrast. However, some con-
taminated areas will hide the real ridges which will result
in more missing points. The worst allocation result oc-
curs in "ngerprint 5 due to low contrast and highly
contaminated areas appearing in this "ngerprint image.
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Fig. 19. Ridge section derived from contaminated area. (a) The original sub-image of the contaminated area in a "ngerprint image and
the corresponding ridge location after applying the gray-scale ridge allocation algorithm. (b) The extracted ridge points in the section set.
(c) Binary image of this contaminated sub-image. (d) Skeleton image of this contaminated sub-image.

The only erroneous point also occurs in this poor-quality
image. For the redundant ridge points, "ngerprint 4 is the
worst image because many parallel ridge lines lying on
the bottom of this image. The horizontal lines, which run
through sweat pores of these parallel ridge lines, generate
additional ridge points. This condition is unavoidable if
we "x the direction of line segments while extracting the
ridge sections. In this experiment, we do not take the
number of redundant points into account while evaluat-
ing the allocation accuracy. However, the false rates will
still be less than 6% if we recognize the redundant points
as error allocations. For poor-quality images, the 96.8%
overall average accuracy rate is acceptable.

We also present some comparing results as sum-
marized in Table 2. In this experiment, the performances
of our direct gray-scale method are compared with bi-

nary and skeleton image based methods. There are three
independent image operations including smoothing, bi-
narization and thinning implemented in this experiment.
The smoothing operation is accomplished based on
a two-dimensional median "lter with 5�5 mask. The
binarization operation is carried out based on Mehtre's
[6] "ngerprint segmentation method. For the thinning
process, the algorithm proposed by Baruch [15] which
provides good results on "ngerprint image is used. This
experiment was conducted on the image presented in
Fig. 20 with the same rules of setting the extracting lines
as the previous experiment. The performance evaluation
results, as tabulated in Table 2, shows that unsmoothed
binary image possesses the worst allocation result due to
the high missing- and erroneous-point rates caused
by the ridge line fragments. For binary images, the
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Fig. 20. Experiment images.

Table 1
Summary of the performance evaluation results with di!erent "ngerprint images based on the direct gray-scale method

Finger print True ridge points Correct points Missing points Erroneous points Redundant points Accuracy (%)

1 288 280 8 0 5 97.2
2 294 290 4 0 7 98.6
3 370 357 13 0 9 96.5
4 336 324 12 0 14 96.4
5 310 292 17 1 11 94.2
6 361 354 7 0 8 98.1
Total 1959 1897 61 1 54 96.8

Table 2
Performance evaluation results for di!erent approaches

Method True ridge points Correct points Missing points Erroneous points Redundant points Accuracy (%)

Direct gray scale 1959 1897 61 1 54 96.8
Unsmoothed
binary

1959 1777 139 43 93 90.7

Smoothed
binary

1959 1828 115 16 86 93.3

Smoothed
skeleton

1959 1846 108 5 22 94.2

generated redundant points that are produced by the
section sets running through a ridge line cannot be elimi-
nated. This is the major reason of the high redundant-
point rate for both smoothed and unsmoothed binary

images. The smoothed skeleton image possesses the best
extraction result on the production of redundant points
because the sweat pores inside ridge lines disappear after
the thinning process. However, the accuracy rate of the
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Table 3
Average computational time on PC Pentium-III 550 MHz machine

Method Average computational time (s)

Histogram decomp. Smoothing Binarization Thinning Ridge extraction Total time

Direct gray scale 0.33 * * * 0.26 0.59
Unsmoothed binary * * 0.92 * 0.12 1.04
Smoothed binary * 0.63 0.94 * 0.11 1.68
Smoothed skeleton * 0.63 0.94 1.86 0.08 3.51

skeleton image is still lower than that of the direct gray-
scale method due to its high missing-point rate.

Table 3 tabulates the average computational times
spending in automatic ridge extraction measured on
a PC Pentium-III 550 MHz machine. As we noticed, the
preprocessing stages, such as the smoothing, binarization
and thinning, are time consuming. Although it is neces-
sary to perform the histogram decomposition process in
order to acquire some essential parameters in our direct
gray-scale approach, the total time for extracting the
ridge points in a section set is still less than that of the
binary and skeleton images.

6. Conclusions and future works

Minutiae are the key features for the automatic "nger-
print identi"cation system (AFIS). Fingerprint analysis
based on direct gray-scale minutiae detection and veri"-
cation is a new research topic due to the insu$cient
capability of binary or skeleton image-based approaches.
Locating the ridge position is the "rst step of gray-scale
ridge line following algorithm that extracts minutiae in
direct gray-scale domain without conventional prepro-
cessing stage. Allocating a ridge position in "ngerprint
images is not straightforward due to the appearance of
image background and the sweat pores inside the ridge
lines. In this paper, we propose a direct gray-scale ridge
allocation algorithm based on gray-level histogram de-
composition. By this technique, experiments demonstrate
that the redundant ridge points derived from back-
ground or the sweat pores inside a ridge are eliminated
correctly. Moreover, ridge points derived from the con-
taminated areas of "ngerprint images can also be located.
The allocation accuracy can reach over 95% even ap-
plied to poor-quality "ngerprint images with nonuniform
illuminanced areas or highly contaminated areas. This
direct gray-scale approach requires no preprocessing
stages and could be applied to on-line "ngerprint identi-
"cation systems due to its low computational time.

The following works are the goals to the pursued in the
future:

� Dynamically adjust the directions of the line segments
for extracting the ridge sections to possibly intersect

the ridge lines vertically. This will raise the allocation
accuracy if less section sets are acquired from the
parallel distributed ridges.

� Develop a complete gray-scale ridge line following
algorithm which can work on complete "ngerprints,
i.e., with image background.

� Develop an automatic "ngerprint classi"cation system
(AFCS) in direct gray-scale domain. Preprocessing of
"ngerprint images is time consuming and will produce
false minutiae. The gray-scale approach probably can
solve these problems.

References

[1] B. Moayer, K.S. Fu, A syntactic approach to "nger-
print pattern recognition, Pattern Recognition 7 (1975)
1}23.

[2] D.K. Isenor, S.G. Zaky, Fingerprint identi"cation using
graph matching, Pattern Recognition 19 (2) (1986)
113}122.

[3] N.K. Ratha, K. Karu, S. Chen, A.K. Jain, A real-
time matching system for large "ngerprint database,
IEEE Trans. Pattern Anal. Mach. Intell. 18 (8) (1996)
799}813.

[4] D. Miao, D. Maltoni, Direct gray-scale minutiae detection
in "ngerprints, IEEE. Trans. Pattern Anal. Mach. Intell. 19
(1) 1997.

[5] L. O'Gorman, J.V. Nickerson, An approach to "nger-
print "lter design, Pattern Recognition 22 (1) (1989)
29}38.

[6] B.M. Mehtre, B. Chatterjee, Segmentation of "ngerprint
image* a composite method, Pattern Recognition 22 (4)
(1989) 381}385.

[7] Q. Xiao, H. Ra!at, Fingerprint image postprocessing:
a combined statistical and structural approach, Pattern
Recognition 24 (10) (1991) 985}992.

[8] J.L. Blue et al., Evaluation of pattern classi"ers for "nger-
print and OCR application, Pattern Recognition 27 (4)
(1994) 485}501.

[9] A.P. Fitz, R.J. Green, Fingerprint classi"cation using
a hexagonal fast fourier transform, Pattern Recognition
29 (10) (1996) 1587}1597.

[10] X. Zhuang, T. Wang, P. Zhang, A highly robust estimator
through partially likelihood function modeling and its
application in computer vision, IEEE Trans. Pattern Anal.
Mach. Intell. 14 (1) (1992) 19}35.

1924 J.-H. Chang, K.-C. Fan / Pattern Recognition 34 (2001) 1907}1925



[11] M.J. Carlotto, Histogram analysis using a scale-space ap-
proach, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9
(1) (1987) 121}129.

[12] X. Zhuang, Y. Huang, K. Palaniappan, Y. Zhao, Gaussain
mixture density modeling, decomposition, and applica-
tions, IEEE Trans. on Image Process 5 (9) (1996)
1293}1302.

[13] C. I. Watson, C. L. Wilson, Fingerprint Database, Nation-
al Institute of Standards and Technology, Special
Database 4, FPDB, April, 1992.

[14] E. R. Henry, Classi"cation and use of "ngerprint. Rout-
ledge, London, 1900.

[15] O. Baruch, Line thinning by line following, Pattern Recog-
nition Lett. 8 (4) (1988) 271}276.

About the Author*JENG-HORNG CHANG was born in Taipei, Taiwan, in 1965. He received his B.S. degree in electrical engineering
from National Taiwan Institute of Technology in 1991 and the M.S. degree in electrical and computer engineering from University of
Missouri } Columbia in 1993. He has joined the faculty of St. John's and St. Mary's Institute of Technology since 1993 in Taiwan. He is
currently a Ph.D. student of CSIE at National Central University. His research interests include pattern recognition, image processing
and arti"cial intelligence.

About the Author*KUO-CHIN FAN was born in Hsinchu, Taiwan, on 21 June 1959. He received his B.S. degree in Electrical
Engineering from National Tsing-Hua University, Taiwan, in 1981. In 1983 he worked for the Electronic Research and Service
Organization (ERSO), Taiwan, as a Computer Engineer. He started his graduate studies in Electrical Engineering at the University of
Florida in 1984 and received the M.S. and Ph.D. degrees in 1985 and 1989, respectively. From 1984 to 1989 he was a Research Assistant
in the Center for Information Research at University of Florida. In 1989, he joined the Institute of Computer Science and Information
Engineering at National Central University where he became professor in 1994. He was the chairman of the department during
1994}1997. Currently, he is the director of Software Research Center and Computer Center at National Central University. Professor
Fan is a member of IEEE, and a member of SPIE. His current research interests include image analysis, pattern recognition, and
computer vision.

J.-H. Chang, K.-C. Fan / Pattern Recognition 34 (2001) 1907}1925 1925


