The Formation of Molybdenum Disulfide by the Reaction between Molybdenum Trioxde and Sulfur Dioxide in the Presence of Carbon Akimasa Yajima, Ryoko Matsuzaki, Motonori Eguchi, and Yuzo Saeki* Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 227 (Received March 27, 1981) The reaction products obtained by heating a mixture of MoO₃ and carbon in a SO₂ stream at various temperatures were examined. The possible reactions during the above process were also studied. Further, thermodynamical consideration was made of the formation of MoS₂. When a mixture of MoO₃ and carbon was heated in a SO₂ stream, MoO₂ was formed above 400 °C. At 500—550 °C, the formation of a small amount of Mo₄O₁₁ was also observed. Above 700 °C, the formation of MoS₂ in addition to MoO₂ was observed, and MoS₂ alone was obtained at 1000 °C. Sulfur was obtained outside the heating zone throughout the temperature range in this experiment. The process of the formation of MoS₂ by the reaction between MoO₃ and SO₂ in the presence of carbon can be represented as follows: The reaction between carbon and SO₂ occurs at first to form sulfur. Above ca. 400 °C, the reductions of MoO₃ with carbon and with sulfur occur to form MoO₂. Above ca. 700 °C, MoS₂ is formed by the reaction between MoO₂ and sulfur, which are formed by the above reactions. As sulfidizing agents for synthesizing molybdenum disulfide (MoS₂), hydrogen sulfide and sulfur have been well known. But there has been no report on the chemical process for synthesizing MoS₂ from molybdenum trioxide (MoO₃) using sulfur dioxide (SO₂) as a sulfidizing agent. It is not only interesting from the viewpoint of the synthesis of the sulfide itself, but also important for the development of SO₂ utilization, to obtain knowledge of the above chemical process. In this work, the reaction products between MoO₃ and SO₂ in the presence of carbon at various temperatures were examined. In order to elucidate the reaction process between MoO₃ and SO₂ in the presence of carbon, the reactions of MoO₃ with carbon and of MoO₃ with gaseous sulfur in a SO₂ stream were examined. Also, the reactions of MoO₂, formed during the reaction process between MoO₃ and SO₂ in the presence of carbon, with carbon and of MoO₂ with gaseous sulfur in a SO₂ stream were examined. Further, thermodynamical consideration was made of the formation of MoO₂. ## **Experimental** The MoO_3 used was prepared by the thermal decomposition of the guaranteed reagent ammonium paramolybdate at 600 °C. The carbon was prepared by the thermal decomposition of the guaranteed reagent D-glucose. The above materials were used as powders under 150 mesh. Gaseous SO_2 was dried by passing it through concd H_2SO_4 and over P_2O_5 . A mixture of MoO_3 and carbon at a specified ratio in a quartz boat (length: 72 mm, width: 16 mm, depth: 9 mm) was placed in a transparent quartz reaction tube (inner diameter: 28 mm, length: 1000 mm). Gaseous SO_2 was then introduced into the reaction tube. The sample part was positioned in the middle of the tubular electric furnace (heating length: 300 mm) maintained at a specified temperature for 1 h. The temperature of the sample part was controlled within ± 2 °C. After heating, the sample was held at 100 °C for 1 h in an argon stream in order to release the adsorbed SO_2 on unreacted carbon.¹⁾ The reactions of MoO_3 with carbon in an argon stream, of MoO_3 with gaseous sulfur in a SO_2 stream, of MoO_2 with carbon in an argon stream, and of MoO₂ with gaseous sulfur in a SO₂ stream were examined in a similar manner. The X-ray analysis of the sample was performed with an X-ray powder diffractometer equipped with a proportional counter using Ni filtered Cu radiation. The thermogravimetry (TG) was performed by using a thermal balance with a quartz helix. The sensitivity of the quartz helix used was approximately 72 mm/g, and the heating rate of 2.5 °C/min was employed. The molybdenum content in the sample was determined gravimetrically as PbMoO₄ after the fusion of the sample with a mixture of Na₂CO₃ and K₂CO₃. The sulfur content in the sample was determined gravimetrically as BaSO₄ after decomposing the sample with HNO₃ and KClO₃. ## Results and Discussion Reaction Products between Molybdenum Trioxide and Sulfur Dioxide in the Presence of Carbon. The TG of MoO₃ (0.3 g) in a SO₂ stream at a flow-rate of 50 cm³/min was carried out. The heating temperature of the sample was limited to below 700 °C, since MoO₃ vaporized above this temperature. No weight change was observed, and the sample after the heating was found to be unreacted MoO₃ by X-ray analysis.²⁾ These results indicate that MoO₃ does not react with SO₂. The reaction between MoO₃ and SO₂ in the presence of carbon was then examined. First, the products obtained by heating a mixture of 2.00 g of MoO₃ and 1.20 g of carbon at various temperatures for 1 h in a SO₂ stream at a flow-rate of 100 cm³/min were examined. The results are shown in Table 1, together with the weight changes in the samples. The sample in the boat was identified by X-ray analysis.²⁻⁵ The formation of MoO_2 was observed above $400\,^{\circ}\text{C}$, and a small amount of Mo_4O_{11} in addition to MoO_2 was also observed at $500-550\,^{\circ}\text{C}$. The formation of MoS_2 was observed at $700\,^{\circ}\text{C}$. A small amount of sulfur was obtained outside the heating zone throughout the temperature range in this experiment. The slight increase in the sample weight at $350-400\,^{\circ}\text{C}$ was due to the adsorption of the sulfur formed by the reaction on the unreacted carbon.¹⁾ In addition to the above observations, it was observed Table 1. Products obtained by heating a mixture of MoO_3 and carbon in a SO_2 stream at various temperatures | Temp
°C | Weight
change/% | Sample in
the boat | Amount of
sulfur
obtained
outside the
heating
zone/g | |------------|--------------------|------------------------------------|---| | 350 | +0.1 | $\mathrm{MoO_3}$ | Trace | | 400 | +0.1 | $\mathrm{MoO_3}{>>}\mathrm{MoO_2}$ | Trace | | 450 | -0.1 | ${ m MoO_3}{>}{>}{ m MoO_2}$ | Trace | | 500 | -4.7 | $MoO_2>MoO_3>Mo_4O_{11}$ | Trace | | 550 | -7.2 | $MoO_2 >> MoO_3 > Mo_4O_{11}$ | Trace | | 600 | -8.8 | $\mathrm{MoO_2}$ | 0.00_{5} | | 650 | -8.9 | ${ m MoO_2}$ | 0.03 | | 700 | -7.8 | $\mathrm{MoO_2}{>>}\mathrm{MoS_2}$ | 0.09 | that a small amount of unreacted MoO₃ vaporized and deposited outside the heating zone at 700 °C. As seen from Table 1, all the MoO3 used was converted to nonvolatile MoO₂ above 600 °C. The reactions at temperatures above 800 °C were examined by using a mixture of MoO₂ and carbon. When a mixture of 2.00 g of MoO₂ and 1.20 g of carbon was heated in a SO₂ stream (100 cm³/min) at 800 °C for 1 h, unreacted carbon was not observed in the sample obtained after the heating. This result is considered to be due to the fact that the reaction between carbon and SO₂ proceeds markedly.19 Based on the results of preliminary experiments on the suitable amount of carbon to be mixed, the products obtained by heating a mixture of 2.00 g of MoO_2 and $5.00\,\mathrm{g}$ of carbon in a SO_2 stream (100 cm³/min) at various temperatures above 800 °C for I h were examined. The mixture of MoO2 and carbon was prepared by adding fresh carbon to a mixture of MoO₂ and carbon, obtained by the reduction of MoO₃ with carbon at 700 °C. The results are shown in Table 2. Table 2. Products obtained by heating a mixture of MoO_2 and carbon in a SO_2 stream at various temperatures | Temp
°C | Weight
loss/% | Sample in the boat | Amount of
sulfur
obtained
outside the
heating
zone/g | |------------|------------------|-----------------------|---| | 800 | 34.3 | $MoO_2 \approx MoS_2$ | 3.90 | | 900 | 54.0 | $MoS_2 > MoO_2$ | 4.86 | | 950 | 57.6 | $MoS_2 > MoO_2$ | 5.04 | | 1000 | 64.2 | MoS_2 | 5.66 | Chemical analysis of the sample obtained at 1000 °C showed it to contain 59.8% Mo and 39.9% S. Chemical analysis also proved that sulfur was not adsorbed on the unreacted carbon at 1000 °C. From these results, the sulfur was found to be due to the sulfide formed. The atomic ratio of Mo : S in the sample was calculated to be $1:2.0_{\rm o}$. The results indicated that all the MoO₂ used was sulfidized to MoS₂ at 1000 °C. Reaction Process between Molybdenum Trioxide and Sulfur Dioxide in the Presence of Carbon. To elucidate the reaction process between MoO₃ and SO₂ in the presence of carbon, the following experiments were carried out under conditions similar to those described above. Reaction between MoO_3 and Carbon: The products formed by heating a mixture of MoO_3 (2.00 g) and carbon (1.20 g) at various temperatures in an argon stream (100 cm³/min) for 1 h were examined. The results are shown in Table 3. Table 3. Experimental results for the reaction between ${ m MoO_3}$ and carbon in an argon stream | $\frac{\text{Temp}}{^{\circ}\text{C}}$ | Weight
loss/% | Sample in the boat | |--|------------------|------------------------------| | 350 | | $\mathrm{MoO_3}$ | | 400 | 0.2 | $MoO_3 >> MoO_2$ | | 450 | 0.9 | $MoO_3 >> MoO_2$ | | 500 | 5.2 | $MoO_2 > MoO_3$ | | 600 | 9.7 | $MoO_2 >> MoO_3$ | | 700 | 9.7 | $\widetilde{\mathrm{MoO}_2}$ | These results indicate that the reduction of MoO₃ with carbon to form MoO₂ proceeds above about 400 °C. Reaction between MoO₃ and Sulfur in a SO₂ Stream: As seen from Table 1, when the mixture of MoO₃ and carbon was heated in a SO₂ stream, sulfur was formed. The reaction between carbon and SO₂ occurs even at 350 °C to form sulfur and this reaction proceeds markedly above about 700 °C, as reported by the present authors.¹⁾ Therefore, the reaction between MoO₃ and gaseous sulfur was examined in a SO₂ stream. MoO₃ (2.00 g) was heated in a stream of SO₂ (100 cm³/min) containing a specified amount of gaseous sulfur at various temperatures for 1 h. The amounts of sulfur introduced at various temperatures were controlled so as to be the same as those obtained by heating 1.20 g of carbon in a stream of SO₂ at a flow-rate of 100 cm³/min for 1 h: the amounts were 0.01 g for the experiments below 550 °C, 0.03 g at 600 °C, 0.09 g at 650 °C, and 0.25 g at 700 °C.¹⁾ The results are shown in Table 4. These results and the fact that MoO₃ does not react with SO₂ as described before show that the reaction between MoO₃ and gaseous sulfur proceeds above about 400 °C and that MoO₃ was reduced to MoO₂. Table 4. Products obtained by heating $\mathrm{MoO_3}$ in a stream of $\mathrm{SO_2}$ containing gaseous sulfur | | | o o z o o o o o o o o o o o o o o o o o | |----------------------|--------|--| | Temp | Weight | | | $^{\circ}\mathbf{C}$ | loss/% | the boat | | 350 | _ | $\mathrm{MoO_3}$ | | 400 | 0.2 | $MoO_3 >> MoO_2$ | | 450 | 0.3 | $\mathrm{MoO_3}\!\!>\!\!\mathrm{MoO_2}$ | | 500 | 0.5 | $MoO_3 >> MoO_2 > Mo_9O_{26}, Mo_4O_{11}$ | | 550 | 0.7 | MoO ₃ >>MoO ₂ >Mo ₉ O ₂₆ , Mo ₄ O ₁₁ | | 600 | 1.0 | $MoO_3>MoO_2>Mo_9O_{26}>Mo_4O_{11}$ | | 650 | 4.2 | MoO ₃ >MoO ₂ >Mo ₉ O ₂₆ >>Mo ₄ O ₁₁ | | 700 | 8.2 | $MoO_2 >> MoO_3 > Mo_9O_{26}, Mo_4O_{11}$ | | | | | These experimental results showed that the MoO₂ formed by heating a mixture of MoO3 and carbon in a SO₂ stream (Table 1) was formed by the reductions of MoO₃ with carbon and with sulfur. As seen from Table 1, the formation of a small amount of Mo₄O₁₁ in addition to MoO₂ was observed at 500—550 °C. As seen from Table 3, no formation of any intermediate oxide was observed in the reaction between MoO3 and carbon. As seen from Table 4, however, the formation of intermediate oxides $(Mo_4O_{11},^{4)} Mo_9O_{26}^{6)}$ in addition to MoO2 was observed during the reaction between MoO₃ and sulfur. It has been reported that on heating a mixture of MoO₃ and a sufficient amount of carbon in an argon stream, no intermediate oxide is formed.7) These facts suggested that the $\mathrm{Mo_4O_{11}}$ formed by heating a mixture of MoO₃ and carbon in a SO₂ stream was due to the reduction of MoO₃ with sulfur. Formation Reaction of MoS₂ from MoO₂: As mentioned before, when a mixture of MoO₃ and carbon was heated in a SO₂ stream, MoS₂ was formed above about 700 °C. Above this temperature, MoO₃ was reduced to MoO₂. Therefore, the reactions of MoO₂ with carbon in an argon stream and of MoO₂ with gaseous sulfur in a SO₂ stream were examined. The products formed by heating a mixture of MoO_2 (2.00 g) and carbon (5.00 g) at various temperatures for 1 h in an argon stream (100 cm³/min) were examined. The results are shown in Table 5. Table 5. Experimental results for the reaction between ${ m MoO_2}$ and carbon in an argon stream | Temp
°C | Weight
loss/% | Sample in the boat | |------------|------------------|-----------------------| | 700 | | $\mathrm{MoO_2}$ | | 750 | 0.7 | $MoO_2 >> Mo_2C > Mo$ | | 800 | 2.0 | $MoO_2>Mo_2C>Mo$ | | 900 | 7.6 | $Mo_2C>MoO_2>Mo$ | | 1000 | 11.3 | $ m Mo_2C{>}Mo$ | The results indicate that the reaction between MoO₂ and carbon proceeds above about 750 °C to form molybdenum⁸⁾ and dimolybdenum carbide (Mo₂C).⁹⁾ The Mo₂C was considered to be due to the reaction between the molybdenum formed and the carbon.⁷⁾ The products formed by heating MoO_2 (2.00 g) in a stream of SO_2 (100 cm³/min) containing a specified amount of gaseous sulfur at various temperatures for 1 h were examined. The MoO_2 used was prepared by the hydrogen reduction of MoO_3 at 600 °C,¹⁰⁾ because the reduction of MoO_3 with carbon gave a mixture of MoO_2 and unreacted carbon, as described in the previous paragraph. Prior to this experiment, the amounts of sulfur formed by heating 5.00 g of carbon at various temperatures for 1 h in a SO₂ stream at a flow-rate of 100 cm³/min were examined.¹⁾ Based on the experimental results, the amounts of sulfur introduced at various temperatures were controlled to be 0.43 g for the experiment at 650 °C, 0.81 g at 700 °C, 4.79 g at 800 °C, 5.46 g at 900 °C, and 6.59 g at 1000 °C. The experimental results are shown in Table 6. These results indicate that the Table 6. Products obtained by heating MoO_2 in a stream of SO_2 containing gaseous sulfur | $\frac{\mathrm{Temp}}{^{\circ}\mathrm{C}}$ | Weight
gain/% | Sample in the boat | |--|------------------|-----------------------| | 650 | | $\mathrm{MoO_2}$ | | 700 | 4.2 | $MoO_2 > MoS_2$ | | 800 | 10.8 | $MoO_2 \approx MoS_2$ | | 900 | 17.6 | $MoS_2 > MoO_2$ | | 1000 | 22.9 | $MoS_2 >> MoO_2$ | reaction between MoO_2 and gaseous sulfur proceeds above about 700 °C to form MoS_2 . As shown in Table 5, on heating a mixture of MoO₂ and carbon in an argon stream, MoO2 was reduced to molybdenum, and Mo₂C was also formed. Thermodynamical consideration was made on the Mo-S-C-O system, in order to discuss whether MoO₂ was converted to MoS₂ via molybdenum or without molybdenum formation. The chemical potential diagrams for the Mo-S-C-O system were constructed in a manner similar to that described by Yazawa¹¹⁾ on the basis of the available thermodynamic data¹²⁾ and phase relations.¹³⁾ As an example, the digram at 1000 °C is shown in Fig. 1. The broken line shows the oxygen and sulfur potentials in the gas phase formed by the reaction between carbon and SO₂, depending on the carbon content in the gas phase. The activity of carbon is unity at the dot mark. In these calculations, CO, CO₂, O_2 , COS, CS_2 , SO_2 , SO_3 , S_2 , S_4 , S_6 , and S_8 were assumed to be gaseous products between carbon and SO₂. Fig. 1. Chemical potential diagram for the Mo-S-C-O system at 1000 °C. The results shown in Fig. 1 indicate that MoO₂ is converted to MoS₂ via molybdenum under a low pressure of SO₂ below ca. 10⁻⁷ atm, and that MoO₂ is converted to MoS₂ without molybdenum formation under a higher partial pressure of SO₂. Considering the experimental conditions in this work, the results in Fig. 1 show that MoS₂ is formed from MoO₂ without any formation of molybdenum. The process of formation of MoS₂ by the reaction between MoO₃ and SO₂ in the presence of carbon can be represented as follows: On heating a mixture of MoO₃ and carbon in a SO₂ stream, the reaction between carbon and SO₂ occurs at first to form sulfur. Above about 400 °C, the reductions of MoO₃ with carbon and with sulfur occur to form MoO₂. Above about 700 °C, MoS₂ is formed by the reaction between MoO₂ and sulfur, which are formed by the above reactions. The present work was partially supported by a Grant-in-Aid for Scientific Research No. 555306 from the Ministry of Education, Science and Culture. ## References - 1) H. Araki, Y. H. Ryoo, M. Eguchi, R. Matsuzaki, and Y. Saeki, Bull. Chem. Soc. Jpn., 53, 2271 (1980). - ASTM X-Ray Powder Data File, 5-508. ASTM X-Ray Powder Data File, 5-452. - 4) ASTM X-Ray Powder Data File, 5-337. - 5) JCPDS Powder Data File, 24-513. - 6) JCPDS Powder Diffraction File, 12-753. - 7) A. J. Hegedüs and J. Neugebauer, Z. Anorg. Allg. Chem. **305**, 216 (1960). - 8) ASTM X-Ray Powder Data File, 4-809. - 9) JCPDS Powder Diffraction File, 11-680. - 10) M. J. Kennedy and S. C. Bevan, J. Less-Common Metals, 36, 23 (1974). - 11) A. Yazawa, Metall. Trans., 10B, 307 (1979). - 12) O. Kubaschewski, E. Ll. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," 4th ed, Pergamon Press, (1967); I. Barin and O. Knacke, "Thermochemical Properties of Inorganic Substances," Springer-Verlag (1973); I. Barin, O. Knacke, and O. Kubaschewski, "Thermochemical Properties of Inorganic Substances, Supplement," Springer-Verlag (1977). - 13) B. Phillips and L. L. Y. Chang, Trans. Metall. Soc. AIME, 233, 1433 (1965).