Iron-catalyzed carbolithiation of alkynes having no heteroatoms†

Eiji Shirakawa,* Daiji Ikeda, Tsubasa Ozawa, Shogo Watanabe and Tamio Hayashi*

Received (in Cambridge, UK) 7th January 2009, Accepted 26th January 2009 First published as an Advance Article on the web 19th February 2009 DOI: 10.1039/b900345b

Alkyl- and aryllithium compounds were found to add to alkynes having no heteroatoms in the presence of an iron or iron-copper catalyst to give various trisubstituted vinyllithium compounds.

Carbometalation of alkynes is a highly effective method to prepare multisubstituted alkenes because the metal moiety of the resulting alkenylmetals can be further transformed to various organic groups.^{1,2} Organolithium compounds are one of the most easily available organometals but their high basicity has severely restricted their use in the alkylmetalation of alkynes.^{3,4} Namely, the deprotonation of not only acetylenic protons but also propargylic protons generally predominates over the addition.^{5,6} Alkyllithiation of alkynes having propargyl protons is possible when the addition is accelerated through intramolecular reaction⁷ or by a heteroatom directing group such as an alkoxy or amino group on alkynes,⁸ but simple alkyl groups on alkynes are prone to suffer deprotonation. Significant improvement was achieved by Hosomi and co-workers with the introduction of iron catalysts, where even a methyl group on alkynes is compatible with alkyllithiation, though the disclosed alkynes are limited to those having an ether or amine moiety at the opposite site to the alkyl group.^{9,10} Here we report an improved iron catalyst system, which is applicable to alkyllithiation of alkynes having no heteroatoms. We also found that a Fe-Cu cooperative catalyst is effective for aryllithiation of alkynes.^{10a}

Suitable reaction conditions for alkyllithiation of alkynes were surveyed in the reaction of butyllithium (1a) with 1-phenylpropyne (2a) using 5 mol% of an iron catalyst (Table 1). The reaction conditions optimized by Hosomi and co-workers⁹ for butyllithiation of heteroatom-containing alkynes were found not to be effective for the addition to 2a. Thus, treatment of **1a** (3.0 equiv.) with **2a** (1.0 equiv.) in the presence of Fe(acac)₃ (5 mol%) in toluene at -20 °C for 2 h gave only 5% yield of (E)- and (Z)-2-methyl-1-phenyl-1-hexene (5a and 6a) in 98 : 2 ratio after methanolysis (entry 1). Another set of conditions (FeCl₃ in Et₂O), which was the second best in the Hosomi's paper, worked much better here to give 5a and 6a in 61% yield with 82% conversion of 2a, though the stereoselectivity was low (66 : 34) (entry 2). Addition of 20 mol% of N,N,N',N'tetramethylethylenediamine (TMEDA) to this combination increased the yield to 85% with full conversion of 2a

Kyoto University, Sakyo, Kyoto 606-8502, Japan.

(entry 3). Under these conditions, only 15 min was required for satisfactory conversion (entry 4). The yield was slightly increased on further addition of PPh3 (10 mol%) and reduction of the amount of 1a to 1.5 equiv. (entries 5 and 6). Although each entry thus far resulted in a low 5a/6a value, 5a predominated (5a : 6a = 98 : 2) at 1 min reaction time with 12% conversion of 2a (entry 7), showing that the initial product is syn adduct 3a, which isomerizes to 4a under the reaction conditions. It was found that the reaction with an excess amount of 2a over 1a improved the stereoselectivity, though the yield based on 1a is not high (entry 8). Considering that a certain amount of butyllithium (1a) is consumed for the reduction of FeCl₃ to a catalytically active low valent species, the reduction with zinc metal was conducted before the addition of 1a. Thus, pretreatment with zinc (20 mol%) increased the yield to 85% (entry 9). Use of reduced amounts of 2a lowered the stereoselectivities (entries 10 and 11), whereas the yield was decreased with an increased amount of 2a (entry 12). Treatment of 1a (3.0 equiv.) with 2a in the presence of TMEDA and PPh₃ but in the absence of an iron catalyst gave phenylallene (38%) and 3-phenylpropyne (10%), generated through deprotonation of propargyl protons, but no butyllithiation products (entry 13).

Table 2 illustrates the scope of the iron-catalyzed alkyllithiation in use of two sets of conditions, methods A and B. When the products do not have E/Z isomers ($\mathbf{R}^1 = \mathbf{R}^2$), operationally more simple method A was chosen, where 1.5 equiv. of alkyllithium 1 to alkyne 2 is used (cf. entry 6 of Table 1). In the case where R^1 and R^2 are different, we used method B, which employs 1.5 equiv. of 2 to 1 in combination with zinc as a reductant, to minimize the E/Z isomerization (cf. entry 9 of Table 1). Aryl(butyl)acetylenes having an electron-withdrawing or -donating group on the benzene ring accepted the addition of butyllithium (1a) generally in high yields (entries 1-6). Butyllithiation of 1-phenyl-1-hexyne using method B proceeded in a high yield (entry 7). Alkynes having an alkyl group other than butyl reacted stereoselectively with butyllithium under method B conditions (entries 8-10). The reaction of other alkyllithium compounds gave addition products in high stereoselectivities (entries 11 and 12).

Attempts to apply the catalyst system of the alkyllithiation to aryllithiation failed¹¹ but the Fe–Cu cooperative catalysis that is effective for arylmagnesiation of alkynes^{10a} also worked here. Thus, the reaction of phenyllithium (**7a**: 2.0 equiv.) with 1-phenylpropyne (**2a**: 1.0 equiv.) in the presence of Fe(acac)₃ (5 mol%), CuBr (10 mol%) and PBu₃ (40 mol%) in Et₂O at 30 °C for 3 h gave 62% yield of (*E*)-1,2-diphenylpropene (**8a**) and its stereo- and regioisomers (**9a** and **10a**) in 93 : 5 : 2 ratio (Scheme 1). The aryllithiation proceeded in high

Department of Chemistry, Graduate School of Science,

E-mail: shirakawa@kuchem.kyoto-u.ac.jp; Fax: 81 75 753 3988 † Electronic supplementary information (ESI) available: Experimental section, spectroscopic data and NMR spectra. See DOI: 10.1039/b900345b

 Table 1
 Iron-catalyzed butyllithiation of 1-phenylpropyne followed by methanolysis^a

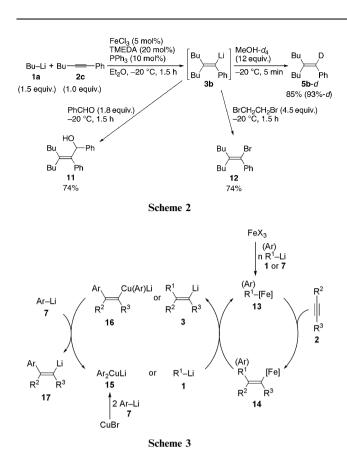
$ \begin{array}{c} \text{Bu-Li} \\ \stackrel{\textbf{1a}}{=} P_{h} \xrightarrow{\text{FeCl}_{3} (5 \text{ mol}\%)} \left[\begin{array}{c} \text{Bu} \\ \stackrel{\textbf{Li}}{=} P_{h} \end{array} \xrightarrow{\text{Ph}} \begin{array}{c} \text{H} \\ \stackrel{\textbf{H}}{=} P_{h} \end{array} \xrightarrow{\text{Ph}} \begin{array}{c} \text{H} \\ \begin{array}{c} \text{H} \end{array} \xrightarrow{\text{Ph}} \begin{array}{r} P_{h} \end{array} \xrightarrow{\text{Ph}} \begin{array}{r} P$						
Entry	Amount 1a/2a (equiv.)	Additives (mol%)	t/min	Consumed 2a (equiv.) ^{b,c}	$\mathrm{Yield}^{c,d}\left(\%\right)$	Ratio 5a : 6a ^c
1^e	3.0/1.0		120	0.32	5	98:2
2	3.0/1.0	_	120	0.82	61	66:34
3	3.0/1.0	TMEDA/20	120	0.99	85	49:51
4	3.0/1.0	TMEDA/20	15	0.94	81	63:37
5	3.0/1.0	TMEDA/20, PPh ₃ /10	15	0.97	83	57:43
6	1.5/1.0	TMEDA/20, PPh ₃ /10	15	0.97	88	51:49
7	1.5/1.0	TMEDA/20, PPh ₃ /10	1	0.12	4	98:2
8	1.0/1.5	TMEDA/20, PPh ₃ /10	15	0.96	64	92:8
9	1.0/1.5	TMEDA/20, PPh ₃ /10, Zn/20	15	0.99	85	90:10
10	1.0/1.0	TMEDA/20, PPh ₃ /10, Zn/20	15	0.96	88	65:35
11	1.0/1.2	TMEDA/20, PPh ₃ /10, Zn/20	15	0.97	85	85:15
12	1.0/2.0	TMEDA/20, PPh ₃ /10, Zn/20	15	1.06	72	94:6
13 ^f	3.0/1.0	TMEDA/20, PPh ₃ /10	120	0.63	<1	—

^{*a*} The reaction was carried out in Et₂O (1.0 mL) at -20 °C under a nitrogen atmosphere using BuLi (1a: 1.53–1.66 M in hexane) and 1-phenylpropyne (2a) in the presence of FeCl₃ (0.020 mmol). ^{*b*} The amount of consumed 2a. ^{*c*} Determined by GC. ^{*d*} The yield based on 2a (entries 1–7 and 13) or 1a (entries 8–12). ^{*e*} Fe(acac)₃ and toluene were used instead of FeCl₃ and Et₂O, respectively. ^{*f*} In the absence of FeCl₃.

FeCl₃ (5 mol%)

Table 2	Iron-catalyzed	alkyllithiation	of alkynes follow	ed by	methanolysis ^a

$R^{1}-Li + R^{2} \xrightarrow{\text{TMEDA} (20 \text{ mol}\%)} R^{3} \xrightarrow{\text{MeOH}} R^{1} \xrightarrow{\text{H}} R^{3} \xrightarrow{\text{H}} R^{2} \xrightarrow{\text{H}} R^{3} \text{$							
Entry	Method	\mathbf{R}^1	\mathbb{R}^2	R ³	t/h	$\mathrm{Yield}^{b}(\%)$	Ratio $5:6^{c}$
1	А	Bu	Bu	Ph	1.5	81	_
2	А	Bu	Bu	3-CF ₃ C ₆ H ₄	1.5	82	
3	А	Bu	Bu	$4-ClC_6H_4$	3	79	_
4	А	Bu	Bu	2-MeC ₆ H ₄	24	65	_
5	А	Bu	Bu	3-MeOC ₆ H ₄	1.5	96	_
6	А	Bu	Bu	$2-MeOC_6H_4$	1.5	82	
7	В	Bu	Bu	Ph	0.25	84	_
8	В	Bu	Hex	Ph	0.25	79	93:7
9	В	Bu	<i>i</i> -Bu	Ph	1.0	82	94:6
10	В	Bu	Et	Ph	1.0	81	92:8
11	В	Hex	Me	Ph	1.0	75	95:5
12	В	<i>i</i> -Bu	Me	Ph	0.25	72	>99:1


^{*a*} The reaction was carried out in Et₂O at -20 °C under a nitrogen atmosphere using an alkyllithium (1) and an alkyne (2) in the presence of FeCl₃, *N*,*N*,*N*',*N*'-tetramethylethylenediamine (TMEDA) and PPh₃. Method A: $\mathbf{1} = 0.68 \text{ mmol}$, $\mathbf{2} = 0.45 \text{ mmol}$, FeCl₃ = 23 µmol, TMEDA = 90 µmol, PPh₃ = 45 µmol. Method B: $\mathbf{1} = 0.40 \text{ mmol}$, $\mathbf{2} = 0.60 \text{ mmol}$, FeCl₃ = 20 µmol, TMEDA = 80 µmol, PPh₃ = 40 µmol, in combination with Zn (0.080 mmol). ^{*b*} Isolated yield based on **2** (entries 1–6) or **1** (entries 7–12). ^{*c*} Determined by GC.

Ar–Li +	R ² Ph	Fe(acac) ₃ (5 mol%) CuBr (10 mol%) PBu ₃ (40 mol%) Et ₂ O, 30 °C) MeOH			
7a : Ar = Ph	2a: R ² = Me					
7 b : Ar = 3,5-xylyl	2b : R ² = Hex	$Ar H + R^2 Ph + 8$	$\begin{array}{cc} Ar & Ph \\ H \\ R^2 & H \\ 9 \end{array}$	$\begin{pmatrix} H & Ar \\ F & H & Ar \\ H & H & H \end{pmatrix}$		
		62% yield (3 h)	93:5(:2)			
		74% yield (1.5 h)	96:4			
Scheme 1						

stereo- and regioselectivities also between 3,5-xylyllithium (7b) and 1-phenyl-1-octyne (2b).

Quenching the reaction mixture from addition of butyllithium (1a) to 1-phenyl-1-hexyne (2c) with MeOH- d_4 gave alkene **5b**-*d* having a deuterium atom on the phenylsubstituted alkene carbon, showing that alkenyllithium **3b** was actually produced by the alkyllithiation (Scheme 2). Transformation of butyllithiation product **3b** upon reaction with other electrophiles demonstrates synthetic utility of the carbolithiation reactions. Thus, the reaction mixture above was treated with benzaldehyde or 1,2-dibromoethane to give allyl alcohol **11** or alkenyl bromide **12**, respectively, in a high yield (Scheme 2).

Production of *syn*-adducts is likely to show that insertion of alkynes into the Fe–C bond generated by the reaction of an iron complex with an organolithium compound is operative in the addition step. A plausible catalytic cycle based on that in the Fe–Cu-catalyzed arylmagnesiation of alkynes^{10a} is shown

in Scheme 3. Alkyllithium 1, which is more nucleophilic than aryl Grignard reagents, seems not to require a copper co-catalyst to transmetalate with alkenyliron complex 14 giving alkyllithiation product 3. In contrast, it is likely that less nucleophilic aryllithium 7 does not have ability to transmetalate directly with 14 but with a copper complex to give diarylcuprate 15, which undergoes transmetalation with alkenyliron 14 to regenerate aryliron complex 13. The resulting cuprate (16) having an alkenyl group reacts with aryllithium 7 to give aryllithiation product 17 with regeneration of diarylcuprate 15.

In conclusion, we have disclosed that alkyl- and aryllithium compounds undergo stereo- and regioselective carbometalation reactions with alkynes having no heteroatoms under iron or iron-copper catalysis.

This work has been supported financially in part by a Grant-in-Aids for Scientific Research on Priority Areas (No.19028029, "Chemistry of Concerto Catalysis") and for a Grant-in-Aid for Scientific Research (the Global COE

Program "Integrated Materials Science" on Kyoto University) from Ministry of Education, Culture, Sports, Science and Technology, Japan.

Notes and references

- 1 P. Knochel, *Comprehensive Organic Synthesis*, ed. B. M. Trost, I. Fleming and M. F. Semmelhack, Pergamon Press, New York, 1991, vol. 4, pp. 865–911.
- 2 For a review including synthesis of tetrasubstituted alkenes through carbometalation of alkynes, see: A. B. Flynn and W. W. Ogilvie, *Chem. Rev.*, 2007, **107**, 4698–4745.
- 3 See pp. 872–873 in ref. 1.
- 4 Among the previous alkylmetalations of alkynes, alkylcupration and the zirconium-catalyzed methylalumination are two of the most effective ones. For alkylcupration, see: (a) J. F. Normant and A. Alexakis, *Synthesis*, 1981, 841–870. For methylalumination, see: (b) E. Negishi, D. E. van Horn and T. Yoshida, *J. Am. Chem. Soc.*, 1985, **107**, 6639–6647.
- 5 Alkyl(aryl)acetylenes are known to readily undergo mono- and dideprotonation upon reaction with alkyllithiums.
 (a) J. E. Mulvaney, T. L. Folk and D. J. Newton, J. Org. Chem., 1967, 32, 1674–1675; (b) J. Y. Becker, J. Organomet. Chem., 1976, 118, 247–252; (c) J. Y. Becker, J. Organomet. Chem., 1977, 127, 1–5.
- 6 For examples of carbolithiation of alkynes having no propargylic protons, see: (a) J. E. Mulvaney, Z. G. Gardlund and S. L. Gardlund, J. Am. Chem. Soc., 1963, 85, 3897–3898; (b) J. E. Mulvaney and D. J. Newton, J. Org. Chem., 1969, 34, 1936–1939; (c) A. K. Brisdon, I. R. Crossley, R. G. Pritchard, G. Sadiq and J. E. Warren, Organometallics, 2003, 22, 5534–5542.
- 7 (a) W. F. Bailey, T. V. Ovaska and T. K. Leipert, *Tetrahedron Lett.*, 1989, 30, 3901–3904; (b) G. Wu, F. E. Cederbaum and E. Neghishi, *Tetrahedron Lett.*, 1990, 31, 493–496; (c) W. F. Bailey and T. V. Ovaska, *Tetrahedron Lett.*, 1990, 31, 627–630; (d) W. F. Bailey and T. V. Ovaska, *J. Am. Chem. Soc.*, 1993, 115, 3080–3090; (e) M. Oestreich, R. Fröhlich and D. Hoppe, *Tetrahedron Lett.*, 1998, 39, 1745–1748; (f) M. Oestreich, R. Fröhlich and D. Hoppe, *4*, 8616–8626.
- 8 (a) L.-I. Olsson and A. Claesson, *Tetrahedron Lett.*, 1974, 15, 2161–2162; (b) L.-I. Olsson and A. Claesson, *Acta Chem. Scand.*, *Ser. B*, 1976, 30, 521–526.
- 9 M. Hojo, Y. Murakami, H. Aihara, R. Sakuragi, Y. Baba and A. Hosomi, *Angew. Chem., Int. Ed.*, 2001, **40**, 621–623.
- 10 For examples of the iron-catalyzed carbometalation of alkynes other than ref. 9, see: (a) E. Shirakawa, T. Yamagami, T. Kimura, S. Yamaguchi and T. Hayashi, J. Am. Chem. Soc., 2005, 127, 17164–17165; (b) D. Zhang and J. M. Ready, J. Am. Chem. Soc., 2006, 128, 15050–15051; (c) T. Yamagami, R. Shintani, E. Shirakawa and T. Hayashi, Org. Lett., 2007, 9, 1045–1048. For an example of arylmagnesiation of alkynes having no heteroatoms catalyzed by a metal (Cr) other than iron (ref. 10a and c), see; (d) K. Murakami, H. Ohmiya, H. Yorimitsu and K. Oshima, Org. Lett., 2007, 9, 1569–1571.
- 11 The reaction of **7a** with **2a** (*cf.* Scheme 1) under the conditions of method A in Table 2 at -20 or $30 \degree C$ gave only 5% (E: Z = >99:1) or 14% (E: Z = 85:15) yield of the adducts with 6 and 70% conversion of **2a**, respectively.