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DETERMINISTIC APPROXIMATION OF STOCHASTIC
EVOLUTION IN GAMES

By Michel Benaïm and Jörgen W. Weibull
1

This paper provides deterministic approximation results for stochastic processes that
arise when finite populations recurrently play finite games. The processes are Markov
chains, and the approximation is defined in continuous time as a system of ordinary dif-
ferential equations of the type studied in evolutionary game theory. We establish precise
connections between the long-run behavior of the discrete stochastic process, for large
populations, and its deterministic flow approximation. In particular, we provide probabilis-
tic bounds on exit times from and visitation rates to neighborhoods of attractors to the
deterministic flow. We sharpen these results in the special case of ergodic processes.
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1� introduction

Many models in evolutionary game theory hypothesize an infinitely
large population of interacting agents, usually represented as a continuum, and
describe the evolutionary process as deterministic, defined in terms of a system
of ordinary differential or difference equations. These equations concern changes
in population shares, one for each pure strategy in the game, and the changes
are viewed as averages over a large number of individual strategy switches. Prime
examples are different versions of the replicator dynamics (Taylor and Jonker
(1978), Taylor (1979), Maynard Smith (1982)). For a wide class of such dynamics
it has been established that dynamic (Lyapunov) stability implies Nash equilib-
rium, and that the limit point to any convergent trajectory through any initial
population state with all pure strategies present is a Nash equilibrium.2 For a cer-
tain subclass it has been shown that, even if the solution trajectory diverges, all
iteratively strictly dominated pure strategies nevertheless vanish asymptotically.3

Moreover, attractors that contain essential components and strategically stable

1 The authors thank the former editor and four anonymous referees for helpful comments. We
are also grateful for comments from Carlos Alos-Ferrer, Stefano Demichelis, Georg Pflug, William
Sandholm, and participants at presentations at Alicante University, the First World Congress of
Game Theory Society (Bilbao), the Bolzano 2000 European Economic Association Annual Congress,
Copenhagen University, MIT, the Henri Poincaré Institute (Paris), Odense University, and Vienna
University. We are grateful for travel funding from the Hedelius and Wallander Foundation. We
thank Ariane Lambert-Mogilianski for getting us to meet. This manuscript is a revised version of
Benaïm and Weibull (2000).

2 See, e.g., Bomze (1986), Nachbar (1990), and Weibull (1995).
3 See, e.g., Samuelson and Zhang (1992) and Hofbauer and Weibull (1996).

873



874 m. benaïm and j. w. weibull

sets of Nash equilibria have been identified for certain classes of such determin-
istic dynamics.4 An important question for the relevance of these results, and for
deterministic population models more generally, is whether these dynamics are
good approximations of stochastic population processes that arise from individual
strategy adaptation in finite but large populations. The present study addresses
three versions of this question, each version corresponding to a precise mean-
ing of “good approximation.” In the special case of ergodic processes, we also
provide asymptotic results for the stochastic process that go beyond those for its
deterministic approximation dynamics.
Technically, this is achieved by applying and extending mathematical results

in the theory for large stochastic deviations to a class of Markov chains that
live in compact polyhedra. We interpret these Markov chains as population pro-
cesses in finite games, where individuals are recurrently drawn from finite popu-
lations to review their strategy choice in the game. There is one population for
each player position, and all populations are of the same finite size N . Each indi-
vidual has a pure strategy that he or she uses if called upon to play the game.
At discrete times t = 0� ��2�� � � � exactly one individual is given the opportunity
to change his or her strategy in the light of some information about the current
payoff to one or more pure strategies in her player position. All individuals have
the same probability of being drawn for such a strategy review, and we assume
statistical independence across populations and over time.
The state of the population process is defined as the vector of population

shares associated with the pure strategies in the game. Hence, a population state
is mathematically equivalent to a mixed-strategy profile, with all probabilities
being multiples of the factor 1/N . The state space is thus a finite grid in the
polyhedron of mixed-strategy profiles, and a population share can only change
by ±1/N units at each review opportunity. We set the time interval � between
successive strategy reviews equal to 1/N , and study the limit as N →�. Hence,
the expected time span between two successive strategy revision opportunities for
any given individual is kept constant as N is increased. The approximation results
apply when the population size N is large, and the approximation is defined in
terms of a system of ordinary differential equations derived from the transition
probabilities of the Markov chain—the so-called mean-field equations.5

We provide examples in which these differential equations are of the type stud-
ied in evolutionary game theory. For example, different versions of the replica-
tor dynamic can arise if strategy choices are based on imitation or smooth best
replies. However, the stochastic processes here differ qualitatively from those
arising in stochastic fictitious play.6 The latter processes have “decreasing gain”

4 See, e.g., Swinkels (1993), Ritzberger and Weibull (1995), and Demichelis and Ritzberger (2001).
5 In this respect, our approach is close to that of Börgers and Sarin (1997). They study a model of

stochastic reinforcement learning where, like here, the size of jumps are reduced at the same rate as
the time rate of jumps is increased. However, their stochastic processes have continuum state spaces
and take jumps of unequal size, while our stochastic processes have discrete state spaces and take
jumps of equal size �1/N�.

6 See Fudenberg and Kreps (1993), Kaniovski and Young (1995), Fudenberg and Levine (1998),
and Benaïm and Hirsch (1999b), or, for a more mathematical treatment, Benaïm (1999).
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in the sense that the magnitude of state transitions is decreasing over time. For
in fictitious play the state is the vector of accumulated empirical frequencies of
strategies used in all previous rounds, and the change in these frequencies tends
to zero over time. These processes thus slow down over time. By contrast, the
processes studied here have “constant gain:” the effect on the state at each strat-
egy revision is of equal magnitude (1/N ) all the time.
We establish precise connections between the long-run behavior of the stochas-

tic process and its deterministic approximation. In particular, we show that if the
deterministic solution through the initial state of the stochastic process at some
point in time enters a basin of attraction, then the stochastic process will enter
any given neighborhood of the attractor inside its basin of attraction in a finite
and deterministic time, with a probability that exponentially approaches one as
the population size goes to infinity. The process will remain in this neighborhood
for a random time that exceeds an exponential function of the population size.
During the random time interval spent in the neighborhood, the process spends
almost all time near a certain subset of the attractor, the Birkhoff center of the
flow restricted to the attractor. If the process is ergodic, then it will eventually
end up near the Birkhoff center of a generically unique attractor.
Our analysis proceeds in four steps, the first of which is a sharpening of fairly

well-known results that leads up to more novel results. The first approximation
result concerns the deviation of the stochastic process from the solution trajectory
of its mean-field approximation dynamics during a given time interval. More
exactly, for any bounded time interval and finite population size N , we provide an
upper bound on the probability that the stochastic population process will depart
more than a prescribed distance from the deterministic solution trajectory during
that time interval. This upper bound goes exponentially to zero as the population
size goes to infinity. In this part of the analysis, the time horizon is thus fixed and
finite, while the population size is taken to infinity. Such “averaging theorems”
are part of the folklore in the literatures on random perturbations of dynamical
systems.7 However, the present result provides a sharp exponential estimate of
the deviation probability, based on martingale inequalities. It generalizes and
sharpens results for games in Boylan (1995), Binmore, Samuelson, and Vaughn
(1995), Börgers and Sarin (1997), Binmore and Samuelson (1997), Corradi and
Sarin (1999), and Sandholm (1999).
The second approximation result concerns the first exit time from sets. We

show that, for large population sizes N , the exit time from any neighborhood
of the deterministic solution is probabilistically very large. More exactly, for any
given time t > 0, the exit time from any neighborhood of the closure of the for-
ward orbit (the orbit from time zero on) through the initial state of the stochastic
process exceeds t for all but finitely many population sizes N , with probabil-
ity one. Consequently, the exit time from the basin of attraction of an attractor

7 See, e.g., Freidlin and Wentzell (1984), and, on stochastic approximation see, e.g., Duflo (1996,
1997), Kushner and Yin (1997), and Benaïm (1998, 1999).
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in the deterministic dynamics is large when the population is large. Moreover,
we provide bounds for the probability distribution of the exit time from certain
neighborhoods of such attractors for large but finite populations.
The third approximation result concerns empirical visitation rates to sets, i.e.,

the long-run time fraction that the stochastic process spends in a given set. Using
this random variable, we identify a certain set that has the property that the
Markov chain spends almost all time, in the long run, at the set. This set is called
the minimal center of attraction of the deterministic flow. It contains all station-
ary states and periodic orbits, and it is contained in the (more easily identified)
Birkhoff center of the dynamics. We also provide results for conditional visitation
rates, i.e., empirical visitation rates until the first exit time from a given neigh-
borhood of the set in question. Conditional visitation rates are actually highly
relevant because of the possibility of meta-stability, i.e., the possibility (in the
limit as N → �) of an infinite expected exit time from a subset—for example,
a neighborhood of an attractor—that the stochastic process with probability one
eventually will leave.
In the first result, we fix the time horizon and let the population go to infin-

ity. In results two and three, we first take the time horizon to infinity for a fixed
population size, and only thereafter do we take the population size to infinity,
thereby studying the asymptotic behavior of the stochastic process when the pop-
ulation is fixed but large. Our results on exit times and visitation rates build on
ideas in Freidlin and Wentzell (l984) and Benaïm (1998, 1999), and are comple-
mentary to the asymptotic results in Ellison (1993), Binmore, Samuelson, and
Vaughn (1995), and Binmore and Samuelson (1997).8

We finally study large deviations in the special case when the population pro-
cess is ergodic—and thus admits a unique invariant probability distribution over
the state space. Following Ellison (2000), we define the “radius” and “co-radius”
of attractors of the deterministic approximation flow, and establish an asymp-
totic result for the support of the invariant distribution for large finite popula-
tions. The main difference is that while Ellison keeps the population size fixed
and changes the stochastic micro model by taking the mutation rate to zero, we
keep the stochastic micro model fixed and take the population size to infinity. In
keeping the mutation rate fixed in the limit, we follow Binmore and Samuelson
(1997) and Young (1998b, Section 4.5).
The rest of the text is organized as follows. The studied class of Markov

chains is defined in Section 2 and the general approximation results are pre-
sented in Section 3. Section 4 briefly discusses applications to a few micro mod-
els of boundedly rational strategy choice. Section 5 provides asymptotic results
for ergodic population processes. Section 6 shows how the analysis can be
adapted to continuous-time Poisson processes. Mathematical proofs are given in
an Appendix at the end of the paper.

8 For a discussion of the relation between the two iterated limits in question, see also Gale,
Binmore, and Samuelson (1995) and Börgers and Sarin (1997).
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2� a class of stochastic processes

Consider a finite n-player game with player roles (or “positions”) i ∈ I =
�1� � � � � n�, finite pure strategy sets Si = �1� � � � �mi�, a set of pure-strategy pro-
files S =×iSi, mixed-strategy simplices

	�Si�=
{
xi ∈ �mi+ 


∑
h∈Si

xih = 1
}
�(1)

and polyhedron ��S�=×i	�Si� of mixed-strategy profiles x = �x1� � � � � xn�. The
polyhedron ��S� is thus a subset of �M , for M = ∑

i mi. For any player role i
and pure strategy h∈ Si, let eh

i ∈	�Si� denote the corresponding unit vector—the
mixed strategy for player i that assigns unit probability to pure strategy h.
For each player role i there is a population of N individuals. Each individual

is at every moment in time associated with a pure strategy in her strategy set. An
individual in population i who is associated with pure strategy h ∈ Si is called an
h-strategist. At times t ∈� = �0� ��2�� � � ��, where �= 1/N , and only then, exactly
one individual has the opportunity to change his or her pure strategy. This indi-
vidual is randomly drawn, with equal probability for all nN individuals, and with
statistical independence between successive draws.9 With this fixed relationship
between population size and period length, the expected time interval between
two successive draws of one and the same individual is n, independently of the
population size N .10 We will call the times t ∈ � transition times—the only times
when a transition can take place.
The specific models to be studied each define a Markov chain XN = �XN�t��t∈�

with finite state space �
N �S� in the polyhedron ��S� of mixed-strategy profiles.11

The state XN�t� at any time t ∈ � specifies, for every player role i ∈ I and pure
strategy h ∈ Si, the share XN

ih�t� of h-strategists in population i. The only state
transitions that can occur are that one individual in one population changes pure
strategy. For every player role i and pair �h�k� of pure strategies for that role,
we assume that there exists a continuous function ph

ik 
 ��S� → �0�1� such that
ph

ik�x�= 0 if xik = 0, and

ph
ik�x�= Pr

[
XN

i

(
t+ 1

N

)
= xi +

1
N

�eh
i −ek

i �

∣∣∣∣XN�t�= x

]
(2)

for all i ∈ I�h�k ∈ Si, N ∈ �, and x ∈ �
N �S�. In other words: the conditional

probability that a k-strategist in population i will become a h strategist is con-
tinuous in the current state. In particular, it is independent of calendar time t

9 The subsequent analysis is valid also if n individuals were simultaneously (and statistically inde-
pendently) drawn, one from each player population. The only difference is that the stochastic process
would be a factor n faster, and thus the vector field F a factor n stronger.

10 There are N draws per time unit, and each time the probability that a particular individual is
drawn is one over the total population size, nN .

11 The finite set �N �S� is the subset (“grid”) of points x in the polyhedron ��S� such that Nxih is
a nonnegative integer for all i and h.
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and population size N .12 The corresponding transition probabilities are, for any
v ∈ �M ,

Pr
[
XN

(
t+ 1

N

)
= x+ 1

N
v

∣∣∣∣XN�t�= x

]
(3)

=
{
ph

ik�x� if vi = eh
i −ek

i and vj = 0 ∀ j �= i�

0 otherwise�

2�1� The Induced Vector Field

For any player role i ∈ I and pure strategy h∈ Si, the expected net increase in the
subpopulation of h-strategists from one transition time to the next, conditional
upon the current state x, is

Fih�x�=
∑
k �=h

ph
ik�x�−

∑
k �=h

pk
ih�x��(4)

It follows from the probability specification above that Fih 
��S�→� is bounded
and continuous, with

∑
h Fih�x�≡ 0 and Fih�x�≥ 0 if xih = 0.

Recall that the polyhedron ��S� is a subset of �M , where M = ∑
i mi. Let

m = M −n, let E1 denote the m-dimensional hyperplane of �M that contains
��S�, and let E0 be the parallel m-dimensional subspace, the tangent space of E1:

E1 =
{
x ∈ �M 


∑
h

xih = 1 ∀ i

}
and E0 =

{
x ∈ �M 


∑
h

xih = 0 ∀ i

}
�(5)

We identify E1 and E0 with �m, call this space E, and view the function F as
a mapping from E to E. This function is assumed to be bounded and locally
Lipschitz continuous.13 We will call F the vector field associated with the Markov
chain XN . By “open sets” in ��S� we mean “open in the Euclidean topology
induced on ��S�⊂ E.”

Remark 1: In the special case of symmetric n-player games, an alternative
setting is that of a single population consisting of N individuals. The present
machinery then applies by letting the Markov chain XN have the finite state space
	N in the common unit simplex 	 of mixed strategies. The state XN�t� ∈ 	N at
any time t now specifies, for each pure strategy h in the common pure-strategy
set, the share of h-strategists in the population.

12 This excludes, in particular, the possibility that individual behaviors change as the population size
changes, from, say, some form of best-reply behavior in small populations to some form of imitation
behavior in large populations.

13 The function F is bounded and continuous on the polyhedron, by virtue of these properties
of the transition probabilities, and can hence be extended to the whole space E while preserving
these properties. We strengthen the continuity assumption by requiring local Lipschitz continuity.
A function F 
 E → E has this property if for every compact subset C ⊂ E there exists a scalar C

such that 	F �x�−F �y�	< C	x−y	 for all x�y ∈ C, where 	·	 is a norm on E = �m.
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3� deterministic approximation

We are interested in deterministic approximation of Markov chains XN in
the class defined above, when the population size N is large, and thus the time
interval � = 1/N between successive transition times is short. The key element
for such approximation is the vector field F 
 E → E defined above, which, for
large populations and short time intervals, gives the expected net increase in each
population share during the time interval, per time unit. (There are N transition
times per time unit and N individuals in each player population.) The associated
mean-field equations

ẋih = Fih�x� ∀ i ∈ I�h ∈ Si� x ∈ E(6)

together specify this limiting deterministic dynamic (a dot over a state variable
denotes its time derivative).
In force of the Picard-Lindelöf Theorem, the system (6) of first-order ordi-

nary differential equations has a unique solution through every point x in E.
Moreover, as noted above, the sum of all population shares in each population
remains constant over time, and no population share can turn negative. Hence,
the system of equations (6) defines a solution mapping � 
 �×��S� → E that
leaves each mixed-strategy simplex 	�Si�, and hence also the polyhedron ��S�
of mixed-strategy profiles, forward invariant. In other words, the system of differ-
ential equations determines a solution for all times t ∈ �, and if the initial state
is in ��S�, then also all future states are in ��S�.14 We will frequently call � the
induced flow.
We are now in a position to address the three questions in what precise sense, if

any, the induced flow � approximates the Markov chain XN = �XN�t��t∈� when
N is large. As N changes, in general also the initial state XN�0� ∈�

N �S� has to
change, since the finite state space �

N �S�⊂��S� changes with N (all population
shares are multiples of 1/N ). We will frequently write “XN�0� → x” as a short-
hand notation for “for every positive integer N , XN�0� ∈ �

N �S�, and XN�0�
converges to x ∈��S� as N goes to plus infinity.”

3�1� Trajectories Over Bounded Time Intervals

Our first result gives an exact form to the heuristic “law of large numbers”
that says that the stochastic population process with high probability moves
close to the associated deterministic population flow during any given bounded
time interval, granted the population is large enough. We measure the fit of
the deterministic approximation over bounded time intervals in terms of the

14 More exactly: ��0� x�= x for all x� ��ih�t� x�/�t = Fih���t� x�� for all i, h, x, and t, and �i�t� x� ∈
	�Si� for all i ∈ I , x ∈��S�, and t > 0. The time domain of the solution mapping � can be taken to
be the whole real line in force of the compactness of ��S�.
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interpolated continuous-time process X̂N defined by piecewise affine interpolation
of the Markov chain XN .15

In order to state this result more precisely, let 	·	� denote the L�-norm on
E = �m. Then 	X̂N �t�− ��t� x�	� represents the deviation of the interpolated
Markov chain from the deterministic approximation solution � at time t, mea-
sured as the largest deviation in any population share at time t:

	X̂N �t�−��t� x�	� = max
i∈I�h∈Si

∣∣X̂N
ih�t�−�ih�t� x�

∣∣�(7)

The random variable

DN�T �x�= max
0≤t≤T

	X̂N �t�−��t� x�	�(8)

is thus the maximal deviation in any population share during a bounded time
interval �0�T �.16 The proof of the following result is based on exponential mar-
tingale inequalities, enabling an exponential upper bound:

Lemma 1: There exists a scalar c > 0 such that, for any � > 0, T > 0, and any
N large enough:

Pr�DN�T �x�≥ � �XN�0�= x�≤ 2me−�2cN �

for all x ∈�
N �S�.

In other words: for a fixed game, vector field F , deviation �, and finite time
horizon T , the probability of a larger deviation in any of the population shares is,
for large enough populations, bounded from above by an exponentially decreas-
ing function of the population size N . Consequently, for any given finite time
horizon, the deterministic population flow �, induced by the vector field F , uni-
formly approximates the stochastic process over the time interval arbitrarily well,
provided the population is sufficiently large: the probability in Lemma 1 goes
to zero as N goes to plus infinity. This last claim is not a new result, however.
Binmore, Samuelson, and Vaughn (1995) establish a version of this claim for a
particular process in symmetric 2×2 coordination games; see also Boylan (1995),
Börgers and Sarin (1997), Binmore and Samuelson (1997), Corradi and Sarin
(1999), and Sandholm (1999). The value added in Lemma 1 is the exponential
and hence summable �

∑
N e−aN <+�� bound, which allows us to go beyond ear-

lier results by way of the Borel-Cantelli Lemma; see Propositions 1–3.17

15 The values of the interpolated process, at any time t ∈ �n�� �n+1���, are defined by

X̂N �t�=XN�n��+ t−n�

�
�XN ��n+1���−XN�n����

16 It is immaterial whether one writes “max” or “sup” in this equation.
17 The Borel-Cantelli Lemma states that if a sequence �Ann∈� of events An is such that the sum

of their probabilities is finite,
∑

n Pr�An� < +�, then the probability is zero that infinitely many of
them occur, Pr�lim supn→� An�= 0.
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3�2� Exit Times from Sets

The results in this subsection concern exit times from sets in the state space.
They give alternative exact forms to the heuristic “law of large numbers” that
if the population is large, and the deterministic population flow remains forever
in some subset of the state space, then also the stochastic process will remain
there for a very long time with a probability arbitrarily close to one, granted the
population is large enough.18

For any Borel set U ⊂E, and given XN with XN�0� ∈U , the exit time from U
is the random variable

�N �U�= inf�t ≥ 0 
 X̂N �t� �∈ U��(9)

For any state x ∈��S�, let ��x� be the orbit of the deterministic flow � through
x—the set of states y ∈��S� such that y = ��t� x� for some t ∈�—and let �+�x�
be the forward orbit—the set of states y ∈ ��S� such that y = ��t� x� for some
t ≥ 0. In other words, the orbit through a state x is the set of all states that have
been or will be reached, granted the state at time zero is x. The forward orbit
is the subset of these states that are reached from time zero on. Neither the
orbit nor the forward orbit need be closed sets. This is, for instance, the case if
the solution trajectory converges to a stationary state from some nonstationary
state: it does not reach the stationary state in finite time. Hence, without moving
far away from the deterministic flow the stochastic process may anyhow leave a
neighborhood of the forward orbit, since such a neighborhood need not contain
a neighborhood of the limit state in question.19 Therefore, we instead consider
neighborhoods of the closure �+�x� of the forward orbit through an initial state x.
The stationary state in the just mentioned example clearly belongs to the closure
of the forward orbit, and any neighborhood of this closure is also a neighborhood
of the limit state.
Combining Lemma 1 with the Borel-Cantelli Lemma, we obtain that, for any

open set U containing the closure of the forward orbit, and for any t > 0, the exit
time �N �U� from U exceeds t for all but finitely many N ∈ �, with probability
one.20 Hence, we have the following result.21

Proposition 1: Suppose U ⊂ E is open, �+�x�⊂ U , and XN�0�→ x. Then

Pr
[
lim

N→�
�N �U�=+�

]
= 1�

Proposition 1 can be applied to attractors of the deterministic flow. The fol-
lowing result establishes that every neighborhood of the attractor, within its basin

18 Ellison (1993) establish such a result, for an ergodic process, for exit times from neighborhoods
of strict Nash equilibria in recurrently played 2×2-coordination games.

19 A neighborhood of a set A is a set that contains an open set B that contains A.
20 Here the summability of the exponential bound in Lemma 1 is important.
21 This and many subsequent results implicitly refer to a common probability space that can easily

be constructed; see Appendix for details.
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of attraction, contains some neighborhood from which the exit time is with high
probability very large when the populations are large. In this sense, attractors are
good predictors also for the stochastic process, granted it starts near them. We
obtain this result by way of a more powerful and precise result (see Appendix,
Lemma 3) which gives exponential bounds on the rate at which the exit time
goes to infinity as the population size goes to infinity.
Formally, a nonempty compact set A⊂��S� is an attractor of the deterministic

flow � if it is invariant, ��x�⊂A for all x ∈A, and has a neighborhood U with the
property that limt→� d���t� x��A�= 0 uniformly in x ∈U , where d�x�C� denotes
the (Hausdorff) distance between a point x and a closed set C. The basin of
attraction of an attractor A is the set

B�A�=
{
x ∈ E 
 lim

t→�d���t� x��A�= 0
}
�

Proposition 2: Let A ⊂ ��S� be an attractor of the flow �; let V ⊂ B�A� be
any neighborhood of A. Then there exists a neighborhood U ⊂ V of A with closure
�U in B�A�, such that Pr�lim infN→� �N �U�=+��= 1 if XN�0� ∈ U .

Together with Lemma 1, this implies that if the deterministic flow through
the initial state of the stochastic process at some point in time enters the basin
of attraction of some attractor, then the stochastic process will enter any given
neighborhood of that attractor within a finite and deterministic time with a prob-
ability that exponentially approaches one as the population size goes to infinity,
and the process will remain in this neighborhood for a random time which with
probability one exceeds any upper bound as the population size goes to infinity.
By contrast, if an invariant set A is not an attractor, then there exists some out-

going deterministic solution orbit, from initial states near A. One can then show
that if the stochastic process starts near such an initial state, then it will depart in
finite time from any neighborhood of A, with probability one as the population
size is taken to infinity. More exactly, suppose A ⊂ ��S� is a compact invariant
set under �, and let U be a neighborhood of A such that the complement to A
in U contains no invariant set. In other words, U is an isolating neighborhood
of A. For any state x ∈��S�, let ��x� be the alpha-limit set of x, i.e., the set of
states y ∈ ��S� such that limk→+� ��tk� x� = y for some unbounded decreasing
sequence of times tk < 0. Let �U denote the boundary of the neighborhood U ,
and let U ′ be the subset of U that consists of states x ∈U such that ��x� ∈A and
��t� x� ∈ �U for some t > 0. In other words, U ′ consists of those states x in the
neighborhood U that belong to solution orbits that originate arbitrarily close to
A in the distant past and that reach the boundary of the neighborhood in finite
time. It is well-known that if A is not an attractor, then U ′ is nonempty; see, e.g.,
Conley (1978).

Proposition 3: Suppose A ⊂ ��S� is a compact invariant set with isolating
neighborhood U , and let U ′ be as defined above. If A is not an attractor of �, then
U ′ �= �, and Pr�lim supN→� �N �U� <+��= 1 if XN�0�→ x′ ∈ U ′.
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Note the contrast with Proposition 1, which states that the stochastic process,
in the limit as N goes to infinity, remains forever in a neighborhood of every
forward orbit—even if its limit is an unstable state. How can these two results
be reconciled? The answer lies in the hypothesis concerning the initial state.
Suppose x is a stationary but unstable state in the deterministic approximation
dynamics. The forward orbit is thus �x�, and Proposition 1 says that if the initial
states of the stochastic processes XN converge to x as N →�, then the exit time
from any neighborhood U of x is probabilistically very large when the population
is large, in the sense that it exceeds any given time t for all but finitely many N ,
with probability one. By contrast, Proposition 3 says that the stochastic process
almost surely will leave any such neighborhood U in finite time, granted the
initial states of the stochastic processes XN converge to some state x′ in the
nonempty subset U ′ ⊂U . Clearly x �∈U ′, and thus x′ lies at some (possibly small
but) finite distance from the stationary state x. By definition, x ∈ ��x′�, but it
takes the deterministic flow an infinite amount of time to reach x′ from x, and,
by continuity, an arbitrarily long time to reach x′ from an initial state that is
arbitrarily close to x. However, starting at x′ �= x, the deterministic flow leaves
U after a finite time. The two results essentially say that the same holds for the
stochastic processes. The contrast is particularly stark in the special case when
x is a repellor. Then the above set U ′ is the whole set U except for one point,
namely x, so in this special case the conclusion in the above proposition can be
strengthened to the claim that if XN�0� → x′ ∈ U , where x′ �= x, then the limit
superior of the sequence �N �U�, as N →�, is almost surely finite. By contrast,
if x instead were an asymptotically stable state, then Proposition 1 would imply
that if XN�0�→ x′ ∈ U , then �N �U� almost surely goes to infinity as N →�.

3�3� Visitation Rates to Sets

We next study how often, in the long-run, the stochastic process visits a given
set. Such time fractions are called empirical visitation rates, and we here study
both unconditional and conditional such rates.
First, for any Borel set U ⊂ E and time T , let V N�U�T � be the fraction of

transition times that the Markov chain XN visits U in the time interval �0�T �,
its (empirical) visitation rate in U during that time interval:

V N�U�T �= 1
���T ��

∑
t∈��T �

1�XN �t�∈U��(10)

where ��T � = � ∩ �0�T � is the subset of the transition times that fall in the
time interval �0�T �, and where ���T �� is the number of elements in ��T �. The
stochastic process XN defines the random variable V N�U�T �, for any given time
horizon T , “target” set U , and population size N .
The first result is stated in terms of the so-called minimal center of attraction of

the deterministic flow �. This set, which we will denote M���, contains all station-
ary states and all periodic orbits of �. Formally, the minimal center of attraction
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M���⊂��S� of � is the closure of the union of the supports of Borel probability
measures that are invariant under �.22 The minimal center of attraction is a sub-
set of the so-called Birkhoff center of the flow. The Birkhoff center essentially
consists of those states that, as initial states, are passed nearby infinitely many
times in the future. Formally, for any state x ∈��S�, let ��x�⊂��S� be its omega
limit set, i.e., the set of states y ∈ ��S� such that limk→+� ��tk� x� = y for some
unbounded increasing sequence of times tk > 0. The Birkhoff center B���⊂��S�
of � is the closure of the set of states x ∈��S� such that x ∈��x�. By the Poincaré
Recurrence Theorem (see, for example, Mañé (1987)), M��� ⊂ B���. It is usu-
ally easier to find the Birkhoff center than the minimal center of attraction, and
these two sets do not differ much, if at all, in many applications.
The deterministic flow will eventually be close to the minimal center of attrac-

tion. Standard results on Markov chains imply that any realization of the stochas-
tic process will eventually settle into some invariant probability measure. For
large populations, such a measure has to be close to some invariant measure
under the deterministic flow, by Lemma 1:

Proposition 4: Suppose XN�0� → x. For any open set U ⊂ E containing
M���:

lim
N→�

[
lim inf

T→�
V N�U�T �

]
= 1 a.s.

In other words: for large populations the Markov chain almost surely spends
almost all time, in the long run, at the minimal center of attraction of the deter-
ministic flow, and hence, a fortiori, at its Birkhoff center.
In many applications, the minimal center of attraction has several disjoint com-

ponents. In order to get more predictive power, we accordingly focus on condi-
tional visitation rates, i.e., visitation rates that are conditional on the event that
the stochastic process remains in some pre-specified neighborhood of the com-
ponent in question. Suppose U and C ′ are Borel sets, U ⊂ C ⊂ ��S�, and
XN�0� ∈ C. The conditional visitation rate in U with respect to the superset C is
defined as V N �U��N �C��.23 In other words, this is the visitation rate in U until
the first exit from C. For any invariant set A in the flow �, let ��A denote the
restriction of � to A, and let M���A� denote the minimal center of attraction
of the flow ��A.24 Note that M���A� ⊂ M���∩A. Likewise, let B���A� ⊃ M���A�
denote the Birkhoff center of the restricted flow ��A.
We are now in a position to state our approximation result for conditional

visitation rates. The result concerns any open set U ⊂C that contains the minimal
center of attraction of this restricted flow. The claim is that if the process starts

22 A Borel probability measure � is invariant under � if ��A�t�� = ��A� for any Borel set A and
time t, where A�t�= �y ∈��S� 
 y = ��t� x� for some x ∈A� is a Borel set by continuity of �.

23 If the first exit time �N �C� is infinite, we define V N �U��N �C�� as lim infT→� V N �U�T �.
24 For any invariant set A ⊂ ��S� under the flow �, one may unambiguously define the mapping

��A 
 �×A→A by ��A�t� x�= ��t� x� for all t ∈ � and x ∈A.
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in U , then its conditional visitation rate in U , during its stay in C, is almost surely
one as the population size N goes to plus infinity. In other words, as long as
the process remains in C, which is typically a very long time (see Proposition 2,
and Lemma 3 in the Appendix), it spends almost all time near the minimal
center of attraction of the flow restricted to the attractor in question. A fortiori,
it spends almost all time near the Birkhoff center of the flow restricted to the
attractor. This result can be established along the same lines as the preceding
result. However, the conditioning on the exit time from the superset C requires
some additional probabilistic machinery. More specifically, we obtain the result
by first establishing that every limit point of the sequence V N �·� �N �C�� is an
invariant probability measure with support in A (Proposition 8; see Appendix).

Proposition 5: Let A ⊂ ��S� be an attractor of � and let C ⊂ B�A� be a
compact neighborhood of A. If U ⊂ C is an open neighborhood of M���A� and
XN�0� ∈ U for all N , then

lim
N→�

V N �U��N �C��= 1 a.s.

Combined with Lemma 1 and Proposition 2, this result implies that, if the
deterministic solution through the initial state of the stochastic process at some
point in time enters a basin of attraction, then the stochastic process will not only
enter any given neighborhood of that attractor and remain there for a long time
if the population is large, but during this time interval, the process will actually
spend almost all time at a the minimal center of attraction of the flow restricted
to the attractor—a subset of the attractor.

3�4� Metastability

Despite the above “positive” approximation results, it is not excluded that the
stochastic process eventually stays far away from its deterministic approximation.
In particular, even if the process starts in some basin of attraction of the deter-
ministic flow it may with probability one eventually leave this basin and remain
outside forever—a phenomenon sometimes called metastability. As the above
results show, the time until such an event occurs may be probabilistically so long,
for large populations, that this phenomenon is of little practical relevance. How-
ever, this remains at least a logical possibility under certain circumstances, which
we here identify.
First, suppose the stochastic process has positive “switching” probabilities in

the following sense:

�C1� 
 0 < xik < 1 ⇒ ph
ik�x� > 0 for some h �= k�

In other words, if some, but not all, individuals in a player population i use
pure strategy k, then it is possible that a k-strategist abandons his or her current
strategy k. This property is held by many micro choice models of evolution and
learning in games.
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Secondly, suppose the stochastic process has zero probability of switching to a
currently unused strategy:

�C2� 
 xih = 0 ⇒ ph
ik�x�= 0 for all k �= h�

Stochastic processes with this property arise from micro models based on strat-
egy choice by way of imitation—then no individual ever switches to a currently
unused strategy. Such a process evidently never leaves the boundary of the poly-
hedron ��S� once this has been reached. Consequently, if both conditions [C1]
and [C2] are met, then the stochastic population process sooner or later hits
one of the vertices of the polyhedron of mixed-strategy profiles—a pure-strategy
profile—and remains there forever. Since the state space is finite, this happens
with probability one, irrespective of the initial state, and for any finite population
size:

Remark 2: If condition [C2] is met, then the Markov chain is not ergodic. If
both conditions [C1] and [C2] are met, then the chain reaches a vertex of the
polyhedron ��S� in finite time and remains there forever, with probability one.

4� examples

We here briefly consider applications to some micro models of boundedly ratio-
nal strategy choice in recurrently played games, models that have been discussed
in the literature on evolution and learning in games. For this purpose, consider a
finite game in normal form, with strategy sets as specified in Section 2, and with
payoff functions ui 
 ��S� → � derived as usual from some pure-strategy payoff
functions �i 
 S → �, for all player roles i ∈ I . We assume that all individuals
in the same player population have the same preferences, given by these payoff
functions.25 We first briefly consider two imitation behaviors and thereafter two
best-reply behaviors.

4�1� Aspiration and Random Imitation

This first choice model formalizes the decision rule “If you are dissatisfied with
the current performance of your strategy, imitate a randomly drawn individual
in your own population.” More exactly, if the current strategy performs below
some aspiration level, then, and only then, does the reviewing individual switch to
the strategy of a randomly drawn individual in her own population (this strategy
may happen to be the same as her own). Such behaviors are discussed in Gale,
Binmore, and Samuelson (1995), Björnerstedt and Weibull (1996), and Binmore

25 This assumption is standard in evolutionary game theory and facilitates connections with stan-
dard solution concepts in noncooperative game theory. However, the present analytical machin-
ery does not require this. An interesting avenue for future research is to consider heterogeneous
populations.
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and Samuelson (1997). This choice model induces a population process in the
class defined in Section 2, and it meets conditions [C1] and [C2].
It is easily shown that if the aspiration levels within each player population i are

statistically independent and uniformly distributed on an interval �ai�x�� bi�x��
that contains the range of the payoff function �i, then the resulting mean vector
field is

Fih�x�=
1
n

ui�e
h
i � x−i�−ui�x�

bi�x�−ai�x�
xih�(11)

In particular, if the aspiration distributions are state independent, ai�x� ≡ �i

and bi�x� ≡ �i for some �i < �i and for all i, then (11) is but a player-specific
time-rescaling of the Taylor (1979) version of the replicator dynamics. If instead
each aspiration level follows its population’s average payoff in such a way that
ai�x� ≡ �iui�x� and bi�x� ≡ �iui�x� for some �i < �i (and all payoffs are posi-
tive), then we obtain a player-specific time-rescaling of the Maynard Smith (1982)
version of the replicator dynamics. In this case it is as if individuals aspire to a
multiple of the current average payoff in their population, where the multipli-
cator is a random variable uniformly distributed on some interval ��i��i� (such
that �ai�x�� bi�x�� contains the range of payoffs).
Note the small amount of information needed for this choice model. In partic-

ular, a strategy reviewing individual need not even know her own strategy set or
payoff function, nor any other aspect of the game, and no information is needed
about the population state. What is needed is knowledge of a randomly drawn
individual’s pure strategy—which in an extensive-form game may mean that the
randomly drawn individual actually has to “tell” what his strategy is (what he
would have done at unreached information sets).

4�2� Aspiration and Imitation of Success

In this choice model, the strategy reviewing individual compares the perfor-
mance of her strategy with the performance of the strategy of a randomly drawn
individual in her own population. The individual switches to the other individ-
ual’s strategy if the realized payoff difference exceeds a random threshold value.
This threshold may be a switching cost or an observational error, or may emanate
from idiosyncratic preference differences between individuals in the same player
population. Clearly also this choice model generates a population process in the
class defined in Section 2, and also in this case conditions [C1] and [C2] are met.
If the threshold distributions are uniform, with a support �ai�x�� bi�x�� that

covers the range of possible payoff differences between any two pure strategies
in player role i, then it is easily shown that the mean vector-field is twice that
in equation (11), and hence one obtains the Taylor (1979) and Maynard Smith
(1982) replicator dynamics as special cases. See Kandori (1996) and Schlag (1998)
for similar choice models and observations.
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4�3� Pure and Perturbed Best and Better Replies

In Kandori, Mailath, and Rob (1993) individuals in the aggregate switch to
better or best replies to last period’s population state. In order to discuss such
behaviors, let the set of pure best replies in player role i to any mixed-strategy pro-
file x be denoted �i�x�, and let �i�x� be the set of pure better replies.26 Suppose
that the individual drawn for strategy review with probability 1−� switches to a
pure best (better) reply to the current population state, with equal (conditional)
probability for all best (better) replies, and otherwise switches to some other pure
strategy with the remaining probability �≥ 0. The induced vector field (4) corre-
sponding to the case of best replies becomes

Fih�x�=


1−�

��i�x��
−xih if h ∈ �i�x��

�

mi −��i�x��
−xih otherwise�

(12)

and likewise for the case of better replies. Clearly these vector fields are Lipschitz
continuous almost everywhere, but have discontinuities on the boundaries of
the sets where the pure best-reply (better-reply) correspondences are constant.
Consequently, both pure �� = 0� and perturbed �0 < � < 1� best-reply (better-
reply) behaviors generate population processes that fall slightly outside the class
analyzed here. Approximation results for the stochastic processes generated by
these behaviors thus call for a generalization of the present analysis.

4�4� Smooth Best Replies

Suppose instead that the reviewing individual makes a noisy observation of
the current average payoff to each pure strategy in her strategy set, and chooses
a pure strategy that has the highest observed value. More precisely, an individ-
ual drawn from population i for strategy review observes, for each pure strategy
h ∈ Si, the sum ui�e

h
i � x−i�+ �ih, where ��ih�h are independent and identically

distributed according to the extreme-value distribution function G��ih ≤ z� =
exp�−exp��z��, for � > 0. As is well-known in the random-utility discrete choice
literature (see, e.g., Anderson, de Palma, and Thisse (1992)), this leads to con-
ditional choice probabilities of the logit form. In the present context this boils
down to

Fih�x�=
exp��ui�e

h
i � x−i��∑

k∈Si
exp��ui�e

k
i � x−i��

−xih�(13)

26 The pure better replies to a mixed-strategy profile x are those pure strategies that earn at least
the same payoff as when x is played (see Ritzberger and Weibull (1995) for an analysis of the
better-reply correspondence). In order to identify the better or best replies, expected payoffs to pure
strategies need to be known. In a finite population, the expected payoff to a strategy is the same as its
average payoff when played against all individuals in all other player populations. Such information
is assumed in Kandori, Mailath, and Rob (1993).
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The induced Markov chain XN is ergodic. Moreover, as � → +�, this vector
field converges pointwise to the pure best-reply vector field (wherever this is well
defined).

5� large deviations

For any player role i ∈ I , pure strategies h�k ∈ Si, let the “�i�k → h�-switch”
be the vector v ∈ E defined by vi = eh

i − ek
i and vj = 0 for all j �= i. Let V ⊂ E

be the (finite) set consisting of all such vectors v. For each vector v ∈ V and
x ∈��S�, let �x�v�= ph

ik�x�. Hence, for each population state x, �x is a discrete
probability measure on E with support in V . Moreover, in view of equation (3),
we have

�x�v�= Pr
[
XN

(
t+ 1

N

)
= x+ 1

N
v

∣∣∣∣XN�t�= x

]
(14)

for all v ∈ V and x ∈��S�. Observe that the mean value of �x is the vector field
F at x: ∑

v∈V

v�x�v�= F �x��(15)

We will say that the family ��x 
 x ∈ ��S�� is nondegenerate if the probability
that a strategy reviewing individual switches to any other strategy is always posi-
tive. Formally,

�C3� xik > 0 ⇒ ph
ik�x� > 0 for all h�

This condition is more stringent than condition [C1], and it is incompatible
with condition [C2]. Condition [C3] clearly implies that XN is an irreducible
and aperiodic Markov chain. In particular, for each N ∈ � there exists a unique
invariant probability measure �N such that

lim
t→�Pr�XN�t� ∈ B�= �N�B�= lim

T→�
V N�B�T �(16)

for every Borel set B in ��S�.
Moreover, for large N , the process spends almost all time near a particular

attractor of the deterministic flow �. This attractor can be characterized in terms
of the game data and the micro model underlying the stochastic population pro-
cess. We achieve this characterization by relying on certain results for large devi-
ations. In the present model, the relevant large deviations are finite sequences
of many small “jumps” (each of size 1/N ) that take the stochastic process out of
one of the deterministic flow’s basins of attraction and into another. In order to
state this result, some more terminology and notation is needed.
First, for any T > 0, let C�0�T � denote the set of continuous functions

� 
 �0�T � → ��S�, functions that map times t in the bounded interval �0�T � to
mixed-strategy profiles x = ��t�. We will call such functions paths and endow
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this function space with the topology of uniform convergence. For each mixed-
strategy profile x, let Cx�0�T � denote the subset of functions � ∈ C�0�T � with
��0� = x, i.e., paths “starting” at state x. The basic approach in the theory of
large deviations is to estimate the probability that the interpolated stochastic
process X̂N , with initial state XN�0� → x, follows any given path � ∈ Cx�0�T �.
It turns out that this probability is of the order of magnitude of exp�−Ncx�T ����,
where cx�T ��� is a nonnegative number, possibly infinite, to be called the cost of
the path �. In the present context, the cost of � is defined as follows:

cx�T ���=
{∫ T

0 L���t�� �̇�t��dt if � is absolutely continuous�
+� otherwise�

(17)

where, for each state x ∈ ��S� and “direction” v ∈ E, L�x�v� is the so-called
Cramér transform of �x, defined as follows:

L�x�v�= sup
u∈E

[
�u�v− ln

(∑
w∈V

e�u�w�x�w�

)]
�(18)

While the numerical evaluation of the Cramér transform is complicated in gen-
eral, the function L is known to have the following qualitative features (see, e.g.,
Benaïm (1998)):

[P1] For each x ∈ ��S�, v → L�x�v� defines a convex and nonnegative
function.

[P2] L�x�v�= 0 iff v = F �x�.

[P3] L�x�v�<� iff v ∈V ��x�, where V ��x� is the convex hull of the support
of �x.27

In other words: given any initial state x, L�x�v� defines an “instantaneous
cost” at x, associated with every direction v from x, a cost that is a convex func-
tion of the direction, with minimum value zero in the direction of the vector field
F of the deterministic flow. The “instantaneous cost” is infinite in those direc-
tions that have zero probability in the population process XN (c.f. equation (3)).
Equation (17) simply defines the cost cx�T ��� of a path � as the integral of the
instantaneous costs along the path. It follows from the mentioned properties that
a path � from any given state x has zero cost, cx�T ��� = 0, if and only if � is
the solution to the mean-field equation (6) with initial condition ��0� = x. By
contrast, if during some subinterval of times t ∈ �0�T � the tangent vector �̇�t� to
the path � at t falls outside V ����t��, i.e., points in zero-probability directions
for the stochastic process, then the path � has infinite cost.

27 Formally,

V ��x�=
{ ∑

v∈V ��x�v�>0

p�v�v 
 p�v�≥ 0�
∑

v∈V ��x�v�>0

p�v�= 1

}
�
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For any two sets A�B ⊂ ��S� we define the cost c�A�B� of going from A to
B as the least costly path from a point in A to a point in B:

c�A�B�= inf�cx�T ��� 
 x ∈A� T > 0� � ∈ Cx�0�T �� ��T � ∈ B��(19)

Let A be an attractor of the flow �, with basin of attraction B�A�. Following
Ellison (2000), we define the radius of A as the lowest cost of going from A to
anywhere outside its basin of attraction:

R�A�= c�A���S�\B�A���(20)

Hence, the radius is a measure of the “cost of escaping” from the attractor. Like-
wise, the co-radius of an attractor is defined as the highest cost to the attractor
from anywhere outside its basin of attraction:

CR�A�= sup
x �∈B�A�

c��x��A��

Evidently, CR�A�= supx �∈B�A� c��x��B�A��. The following proposition establishes
that if the deterministic flow has an attractor A that is costlier to leave than to
reach, then, for sufficiently large populations, the stochastic population process
will spend virtually all time near that attractor, in fact near its minimal center
of attraction. This result is similar to Theorem 1 in Ellison (2000). The main
difference is that while Ellison keeps the population size fixed and changes the
underlying micro model by taking the mutation rate to zero, we keep the under-
lying micro model fixed and take the population to infinity.

Proposition 6: Let A be an attractor of �, and suppose U ⊂��S� is an open
neighborhood of M���A�⊂A. If R�A� > CR�A�, then:

(a) limN→� limT→� V N�U�T �= 1 a.s.
(b) limN→� limT→� Pr�XN�T � ∈ U�= 1.

In other words, if the radius exceeds the co-radius of an attractor A of the
deterministic flow, then the asymptotic visitation rate to any neighborhood of the
minimal center of attraction in A is arbitrarily close to 1, granted the population
size is large enough; and likewise for the asymptotic probability that the process
will be in such a neighborhood. Since this result cannot hold simultaneously for
two disjoint attractors, an implication of the result is that the inequality R�A� >
CR�A� can hold for at most one minimal attractor, that is, an attractor that does
not properly contain another attractor.
The numerical evaluation of the radius and co-radius of a given attractor is in

general difficult, including computationally demanding applications of variational
calculus. A challenging line of future research is thus to provide numerical esti-
mates of these quantities. For work in this direction, the following proposition,
which follows directly from Theorem 4.3 in Freidlin and Wentzell (1984), may
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be useful. Let H 
 E2 →� be defined by the second term in the above definition
of the Cramér transform,

H�x�u�= ln
[∑

v∈V

e�u�v�x�v�

]
�(21)

Proposition 7: Let A be an attractor of �. Suppose g is a real-valued and
continuous function defined on B�A�, such that g vanishes on A but is positive and
continuously differentiable on B�A�\A, with �g�x� �= 0 and H�x��g�x��= 0 for all
such x. Then g�x�= c�A��x�� for all x ∈ B�A�, and thus

R�A�= inf
x∈�B�A�

g�x��

Applied to symmetric 2×2 coordination games, this approach can be used to
generate results similar to those in Binmore and Samuelson (1997); see Benaïm
and Weibull (2000, revised 2001) for details.

6� poisson clocks

The stochastic processes studied in this paper have exactly one individual
drawn for strategy review at distinct deterministic times, separated by a fixed
time interval of length � = 1/N . It would be more natural to assume that these
review times instead are random. Is the analysis robust in this respect? The
canonical continuous-time model of random “arrival times” is that of a Poisson
process. It is not difficult to verify that all the qualitative results obtained in this
paper remain valid if we replace the discrete-time process XN by a continuous-
time process YN whose transition times are generated by a Poisson process with
constant intensity. More exactly, we may replace the Markov chain XN by any
Markov process YN such that, at any time t ∈ � and for all � > 0,

Pr
[
YN�t+��= x+ 1

N
v

∣∣∣∣YN�t�

]
= x =N�x�v�� +o����(22)

where �x�v� is the discrete probability measure defined in equation (14) (see
also equation (3)).
Assume, for instance, that each individual has a “Poisson clock,” with con-

stant intensity 1/n, all clocks being statistically independent. Each time an indi-
vidual’s clock “rings,” the individual reviews her strategy choice. To see that
this results in an equation of the above form, suppose that each individual �,
where � ∈�= �1�2� � � � � nN�, reviews her strategy choice at random times
0 = T0��� < T1��� < T2��� < · · · , where the random variables Tk���− Tk−1���,
for � ∈� and k ∈�, are i.i.d. exponentially distributed with mean value n. When
an individual � in any population i ∈ I is given the opportunity to revise her
strategy choice, she switches from her current strategy k ∈ Si to strategy h ∈ Sh

with some conditional probability qh
ik�x�. Thus,

Pr
[
YN

i �t+��= x+ 1
N

(
eh
i −ek

i

)∣∣∣∣YN�t�= x

]
=N

xik

n
qh

ik�x�� +o����(23)
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We explain in the Appendix how Lemma 1 can be adapted to such a
continuous-time process, while proofs of the other results are left to the reader.
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APPENDIX

Let  be the Lipschitz constant of F on the compact set ��S�⊂ E, with respect to the L�-norm,
let 	·	2 denote the L2-norm, and let 	F 	2 be the maximum of 	F �x�	2 on ��S�.28

Let Un, for n ∈ �, be the difference between the step taken by the Markov chain XN between
periods n and n+1, per time unit, and the vector field at the state:

Un =
1
�
�XN ��n+1���−XN�n���−F �XN �n����(24)

where � = 1/N is the length of a period. Let �k, k ∈ � denote the sigma-field generated by
�XN �0�� � � � �XN �k���. The following result, giving an upper bound on the difference Uk, turns out
to be useful for the proof of Lemma 1:

Lemma 2: Let � = �
√
2+	F 	2�2. For any � ∈ �m:

E
(
e���Uk��k

)≤ e� 	�	22/2�

Proof: By definition of Uk it is easy to verify that

	Uk	2 ≤max
i�h�k

	eh
i −ek

i 	2 +	F 	2 =
√

� �(25)

Let g�t�= logE�et���Uk��k�. The function g 
�→� is convex and satisfies g�0�= g′�0�= 0, g′′�t�≤
	�	22� . Therefore g�1�≤ 	�	22� /2. Q.E.D.

A� Proof of Lemma 1

Let U 
 �+ → E be the map defined by U�t� = Uk for k� ≤ t < �k+ 1��. Likewise, let �XN be
the continuous-time (right-continuous) step process generated by the Markov chain XN 
 �XN�t� is
defined for all t ∈ �+ by �XN�t� = XN�k�� for k� ≤ t < �k+ 1��. Suppose that XN�0� = x ∈ ��S�.
Then

X̂N �t�−x =
∫ t

0
�F ��XN�s��+U�s��ds(26)

=
∫ t

0
�F �X̂N �s��+F ��XN�s��−F �X̂N �s��+U�s��ds�

Since ��t� x�−x = ∫ t

0 F ���s�x��ds, we obtain

	X̂N �t�−��t� x�	� ≤ 

[∫ t

0
�	X̂N �s�−��s�x�	��ds+2�T

]
+��T ��(27)

28 The Lipschitz constant of F on the compact set ��S� is = C , for C =��S�; see footnote 13.
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where

��T �= max
0≤t≤T

∥∥∥∥∫ t

0
U�s�ds

∥∥∥∥
�
�(28)

Grönwall’s inequality implies

DN�T �x�= max
0≤t≤T

	X̂N �t�−��t� x�	� ≤ ���T �+2�T �eT �(29)

Thus, for �≤ ��/4T �e−T ,

Pr�DN �T �x�≥ ��≤ Pr
[
��T �≥ �

2
e−T

]
�(30)

Our next goal is to estimate the probability on the right-hand side. For k ∈ �, let

Zk���= exp

(
k−1∑
i=0

��� �Ui−
�

2
k�2	�	22

)
�(31)

According to Lemma 3, �Zk����k∈� is a supermartingale. Thus, for any � > 0,

Pr
[
max
0≤k≤n

〈
��

k−1∑
i=0

�Ui

〉
≥ �

]
≤ Pr

[
max
0≤k≤n

Zk���≥ exp
(
�− �

2
	�	22n�2

)]
(32)

≤ exp
(

�

2
	�	22n�2 −�

)
�

Let u1� � � � � um be the canonical basis of E =�m, �> 0, and u=±ui for some i. Set �= �2/�� n�2�
and � = ��/��u. Then

Pr
[
max
0≤k≤n

〈
u�

k−1∑
i=0

�Ui

〉
≥ �

]
= Pr

[
max
0≤k≤n

〈
��

k−1∑
i=0

�Ui

〉
≥ �

]
(33)

≤ exp
( −�2

2�n�2

)
�

It follows that

Pr���T �≥ ��≤ 2mexp
( −�2

2��T

)
�(34)

Therefore,

Pr
[
��T �≥ �

2
e−T

]
≤ 2mexp

(
−�2 e−2T

8��T

)
�(35)

and the claimed inequality follows, with

c = e−2T

8T
√√

2+	F 	22
�(36)
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B� Construction of a Common Probability Space

Let I = �0�1� and �= I�. A point in � is denoted �= ��i�i∈�. Let  be the uniform probability
on �0�1�, and let � = �, that is, for any finite collection of Borel sets A1� � � � �An ⊂ I 
 � �� ∈ � 

�1 ∈A1� � � � ��n ∈An�=

∏n
i=1 �Ai�. Let B��� be the associated product �-field. We proceed to show

that any finite Markov chain can be constructed on the probability space ���B������.
Let M = �1� � � � � d� be any finite set and P = �pij � a Markov transition matrix over M (that is,

all pij are nonnegative, and
∑

j pij = 1 for all i ∈ M). For each i ∈ M , partition I according to the
probabilities pi1� � � � �pid : let qi0 = 0, and for all j ∈ M let qij = qij−1 +pij (thus qid = 1). For each
i ∈ M , let fi 
 I → M be the associated “state indicator” function, that is, fi��� = j if qij−1 < � ≤ qij .
Using this function, one obtains a Markov chain X on ���B������ with the given transition matrix
P , and with any initial state x ∈M , by letting X 
 �→M� be defined recursively by X0���= x and

Xt+1���= fi��t+1� where i =Xt����

C� Proof of Proposition 1

Let C = ��S�\U , a compact subset of ��S�, disjoint from �+�x�. Set � = d�C��+�x��, where
d�·� ·� is the Hausdorff metric, and let t > 0. By continuity of the flow � there exists a positive integer
No such that for all N > No

sup
0≤s≤t

	��s�XN �0��−��s�x�	< �/2�(37)

Then ��N �U�≤ t�⊂ �DN �t�XN �0��≥ �/2�, for all N > No . Thus, by Lemma 1:

�∑
N=No

Pr��N �U�≤ t�≤ 2m
�∑

N=No

e−�2cN/4 <��(38)

Hence by the Borel-Cantelli Lemma, the event {�N �U�≤ t for infinitely many N} has zero probability.

D� Proof of Proposition 2

Proposition 2 follows from claim (c) of the following result; see Remark 3 below. Claim (a) is
used in the proof of claims (b) and (c), as well as in the proof of Proposition 5.

Lemma 3: Let A ⊂ ��S� be an attractor for the flow �, let C ⊂ B�A� be compact, and suppose
XN�0� ∈C for all N . Then there exists an open neighborhood U of A∪C with closure �U in B�A�, and
a scalar � > 0, such that (with m=M −n):

(a) Pr��N �U�≤ t�≤ 2m�t+1�e−�N ∀ t ≥ 0�N ∈ �.
(b) E��N �U��≥ �1/4m�e�N −1 ∀N ∈ �.
(c) lim infN→���1/N� ln �N �U��≥ � a.s.

Proof: Since A is an attractor, it is possible to find an open neighborhood U of A∪C, having
compact closure �U ⊂ B�A�, such that

��t� �U�⊂ U ⊂ �U ⊂ B�A�(39)

for all t > 0. Now fix � > 0 small enough so that

N����1� �U��⊂ U ⊂N��U�⊂ B�A�(40)

where N��U� denotes the �-neighborhood of the set U . Let t be a positive integer, and let

DN
t = sup

0≤k≤t−1
DN�1� X̂N �k���(41)
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For N large enough, X̂N �0� ∈ U . Therefore, DN
t < � implies �N �U� > t. Hence

Pr��N �U�≤ t�≤ Pr
(
DN

t ≥ �
) ≤ t−1∑

k=0

Pr�DN �1� X̂N �k��≥ ��(42)

=
t−1∑
k=0

E�Pr�DN �1� X̂N �k��≥ ��X̂N �k���

≤ 2mt exp�−�2cN��

where the last inequality follows from Lemma 1. If t ∈ �+, then

Pr��N �U�≤ t�≤ Pr��N �U�≤ �t�+1�≤ 2m�t+1�exp�−�2cN��(43)

where �t� is the largest integer not exceeding t. This proves assertion (a), for �= �2c.
To prove assertion (b) from (a), we use the fact that

E��N �U��=
∫ �

0
Pr��N �U� > t�dt ≥

∫ �

0
max�0�1−a�t+1��dt�(44)

where a= 2mexp�−�N�. Therefore,

E��N �U��≥
∫ 1−a

a

0
�1−a�t+1��dt = �1−a�2

2a
≥ 1

2a
−1�(45)

which gives (b).
Turning to assertion (c), finally, let � > 0. From assertion (a) we obtain, for N sufficiently large,

Pr��N �U�≤ exp���−��N��≤ 4mexp�−�N�(46)

or, equivalently,

Pr
[
1
N

ln �N �U�≤ �−�

]
≤ 4mexp�−�N��(47)

Hence, by the Borel-Cantelli Lemma,

lim inf
N→�

[
1
N

log �N �U�

]
≥ �−� a.s.(48)

Since this inequality holds for all � > 0, it also holds for �= 0.

Remark 3: Let V ⊂ B�A� be any neighborhood of A. Then there exists a neighborhood U ⊂ V
of A with compact closure in B�A� such that the conclusions of Lemma 3 hold provided XN�0� ∈ �U .
The proof is exactly the same since it is always possible to find such a U satisfying equation (39).

E� Proof of Proposition 3

Let U� be an �-neighborhood of U . For � > 0 small enough, every point in U ′ leaves U�. More
exactly, for all x′ ∈ U ′ there exists a time T > 0 such that ��T �x′� ∈ �U�. Hence, for XN�0� = x′,
�N �U�=+� implies DN�T �x′�≥ �. By Lemma 1, this gives

Pr��N �U�=+��≤ 2me−�2cN �(49)

and the claim follows by the Borel-Cantelli Lemma.
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F� Proof of Proposition 4

By continuity of pk
ih the Markov chain XN is Feller.29 Let C ⊂ E be a compact set disjoint from

M���. Since ��S� is compact, the sequence of probability measures �V N �·�k��k∈� is relatively com-
pact, in the topology of weak convergence. By a standard result for Markov chains, every limit point
of �V N �·�k��k∈� is almost surely an invariant measure of the chain XN (see, e.g., Lemma 1.IV.21 in
Duflo (1996)). In other words, some subsequence of the sequence �V N �·�k��k∈� converges weakly
to some invariant measure �N .30 Let �N be such a measure. Our averaging result, Lemma 1, implies
also that the limit points of the sequence ��N �N∈� are invariant probability measures under the flow �
(see, e.g., Benaïm (1998, Corollary 3.2)). For any x ∈ ��S�, let d�x�C� be the (Hausdorff) distance
from x to the set C. For any � > 0, let f� 
 ��S� → � be defined by f��x� =max�0�1−d�x�C�/��.
Clearly f� is continuous with f��x� = 1 if x ∈ C and f��x� = 0 if d�x�C� ≥ �. Let �Nkk∈� be an
unbounded increasing sequence such that the associated subsequence ��Nk

k∈� converges weakly, and

lim
k→�

�Nk
�C�= lim sup

N→�
�N �C��(50)

Then

lim
k→�

�Nk
�C�≤ lim

k→�

∫
f��x��Nk

�dx�=
∫

f��x���dx�(51)

where � is a probability measure that is invariant under �. Since C∩M���=�,
∫
f��x���dx�= 0 for

� > 0 small enough. Therefore, lim supN→� �N �C�= 0, and thus limN→� �N �C�= 0. Since this holds
for any invariant measure �N to which some subsequence of �V N �·�k��k∈� converges weakly, we
have

lim
N→�

[
lim sup

t→�
V N �C� t�

]
= 0 a.s.(52)

Hence, if U ⊂ E is an open set containing M���, then C = ��S�\U is a compact set disjoint from
M���, and the claimed result holds.

G� Proof of Proposition 5

For all N ∈ �, let T N = �N �C� and aN = N in Proposition 8 below. Then condition (53) is met,
and, by Lemma 3 (a), so is condition (54).

Proposition 8: Let �T N  be a sequence of nonnegative finite random variables. Assume that there
exists a (deterministic) sequence �aN  of positive real numbers such that (53) and (54) below hold. Then
the limit points of V N �·�T N �, in the weak∗ topology, are almost surely invariant probability measures
under �.

lim
N→�

aN

logN
=+� (53) ∑

N

Pr�T N ≤ taN � <+� for all t ≥ 0�(54)

29 The process XN is said to be Feller if for all continuous functions f 
 ��S� → �, the following
function P�f � 
��S�→ � is continuous:

�P�f ���x� = E�f �XN ���� �XN�0�= x��

30 Let � denote the space of (Borel) probability measures on ��S�. For � ∈ � and f 
 ��S� → �
in L1��� write ��f � = ∫

f d�. A sequence ��n of such measures is said to converge weakly to � if
limn→� �n�f � = ��f � for every continuous function f 
 ��S� → �. The space � endowed with this
topology is a compact metric space.



898 m. benaïm and j. w. weibull

Hence, every limit point of �V N �·� �N �C��N is a measure � that is invariant under � and whose
support is contained in the set C in the statement of Proposition 5. The support of an �-invariant
measure being an invariant set, � is supported by A. Let U be an open neighborhood of M���A�.
It follows that every limit point � of �V N �·� �N �C��N satisfies ��U� = 1. This implies the claim in
Proposition 5 (for details, see the last argument in the above proof of Proposition 4). It thus remains
to prove Proposition 8. The key step for this is the following lemma.

Let f 
 ��S� → � be a Lipschitz continuous function with max-norm not exceeding one; 	f 	 =
supx∈��S� 	f �x�	 ≤ 1. Let Lip�f � be its Lipschitz constant. It is convenient here to write the flow � in
the form �t�x�= ��t� x�.

Lemma 4: Let �T N  be a sequence of nonnegative finite random variables with the properties assumed
in Proposition 8. For all t ≥ 0:

lim
N→�

1
T N

∫ TN

0

[
f �X̂N �s��− f ��t�X̂

N �s��
]
ds = 0 a.s.

Proof: Fix t > 0. For every positive integer k set

Wk =
∫ �k+1�t

kt

[
f �X̂N �s+ t��− f ��t�X̂

N �s��
]
ds(55)

and set KN = �T N /t�−1 where �x� is the integer part of a real number x. With this notation,

1
T N

∫ TN

0

[
f �X̂N �s��− f ��t�X̂

N �s��
]
ds = 1

T N

∫ TN

0

[
f �X̂N �s��− f �X̂N �t+ s��

]
ds+

KN∑
k=0

Wk(56)

+
∫ TN

�TN /t�t

[
f �X̂N �s+ t��− f ��t�X̂

N �s��
]
ds

≤ 1
T N

(
2t+

KN∑
k=0

Wk +2t

)
�

By the Borel-Cantelli Lemma, T N →+� almost surely. Therefore, it suffices to prove that

lim
N→�

1
T N

KN∑
k=0

Wk = 0 a.s.(57)

To save on notation, we write �s = ��Ns� where we recall that �n is the sigma-field generated by
�XN �0�� � � � �XN �n/N��. Let Vk = E�Wk��kt� and Uk =Wk −Vk. We then have

Vk =
∫ �k+1�t

kt
E
[
E
(
f �X̂N �s+ t��− f ��t�X̂

N �s����s

)��kt

]
ds(58)

and, according to Lemma 1,

E
(
f �X̂N �s+ t��− f ��t�X̂

N �s����s

)≤ Lip�f � ·E(
DN �t� X̂N �s����s�(59)

≤ Lip�f �
[
E
(
DN �t� X̂N �s�� ·1�DN �t�X̂N �s��≥����s

)+�
]

≤ Lip�f ��2m���S��exp�−�2cN�+��

where ���S�� is the diameter of ��S� (the largest distance between any two points in ��S�). It then
follows that

1
T N

∣∣∣∣ KN∑
k=0

Vk

∣∣∣∣ ≤ 1
t
Lip�f ��2m���S��exp�−�2cN�+���(60)
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Since � > 0 is arbitrary, this implies that

lim
N→�

1
T N

KN∑
k=0

Vk = 0(61)

with probability one. It remains to prove that

lim
N→�

1
T N

KN∑
k=0

Uk = 0 a.s.(62)

By definition, Uk is measurable with respect to ��k+1�t and satisfies E�Uk��kt�= 0. Observe also that

�Uk+1� ≤ �Wk�+ �Vk� ≤ 4t�(63)

Therefore, exactly as in the proof of inequality (34) in the proof of Lemma 1, we obtain

Pr
(
1
n

∣∣∣∣ n−1∑
i=0

Ui

∣∣∣∣≥ �

)
≤ 2 exp

[ −�2n

2� �t�

]
�(64)

where � �t�= �4t�2. From this estimate, we deduce that for all integers m

Pr

(∣∣∣∣ 1
KN

KN∑
k=0

Uk

∣∣∣∣≥ �

)
≤ Pr�KN ≤m�+ ∑

n>m

Pr

(∣∣∣∣ 1n n∑
k=0

Uk

∣∣∣∣≥ �

)
(65)

≤ Pr�KN ≤m�+ ∑
n>m

exp
[ −�2n

2� �t�

]

≤ Pr�T N ≤ t�m+2��+	

(
exp

[−�2m

2� �t�

])
�

Now choose m= �aN +2�. Our assumptions on T N and aN imply that

+�∑
N=1

Pr

(∣∣∣∣∣ 1
T N

KN∑
k=0

Uk

∣∣∣∣∣≥ �

)
<+�(66)

and we obtain the conclusion by the Borel-Cantelli Lemma. Q.E.D.

To conclude the proof of Proposition 8 we finally use the fact that the space � of probability
measures on ��S� is separable in the topology of weak∗ convergence. More precisely, there exists a
countable family of Lipschitz continuous functions fi 
 ��S� → �, for i ∈ �, with 	fi	 ≤ 1, such that
for every sequence ��n of probability measures �n on ��S�, �n → � in the weak∗ topology if and
only if

lim
n→�

�n�fi�= ��fi�(67)

for all i ∈ �.
According to the above lemma, the event

�i�t =
{
lim
N→�

�V N �fi� T
N �−V N �fi ��t� T

N �� = 0
}

(68)

has probability one, where V N �fi� T
N � is the integral of fi with respect to the measure V N �·�T N �

defined in equation (10). Therefore also the intersection of these events, the set

�′ = ⋂
i∈N� t∈
+

�i�t�(69)

has probability one. On �′ every limit point � of V N �·�T N � satisfies ��fi� = ��fi � �t� for all i ∈ �
and t ∈
+. Therefore ��fi�= ��fi ��t� for all i ∈ � and t ∈ �+.
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H� Proof of Proposition 6

Since the chain is irreducible and aperiodic,

�N �U�= lim
T→�

V N �U�T �= lim
T→�

Pr�XN �T � ∈ U��(70)

It is thus sufficient to prove that limN→� �N �U�= 1. The proof, sketched below, follows the ideas of
Benaïm (1998) and Benaïm and Hirsch (1999a). However, it is far from straight-forward to deduce
Proposition 6 from those papers because they do not use the notions of radius and coradius. More
exactly, Benaïm (1998) proves a result similar to Proposition 6, but with U a neighborhood of the
complement to a component of the “chain recurrent set,” where the component meets a certain
topological condition. Likewise, Benaïm and Hirsch (1999a) establish that Proposition 6 holds with
U a neighborhood of the set of linearly stable equilibria, under the assumption that the mean vector
field is “cooperative” and “irreducible.”

The proof sketch for Proposition 6 runs as follows: Let D =R�A�−CR�A� > 0. For all � ∈ �0�D�
we can find disjoint neighborhoods V1 of ��S�\B�A� and V2 of A such that for all x in V1 and y in V2:

c��x��V1�−c��y��V2�≥D−� > 0�(71)

Let Y N denote the induced chain on V = V1 ∪V2 whose transition probabilities are defined by

P̃N
y �U�= Pr�Y N �t+1/N� ∈ U � Y N �t�= y�= Pr�XN �T N � ∈ U �XN�0�= y��(72)

where

T N = inf�t ∈ � 
 t > 0 
 XN �t� ∈ V�(73)

and U is any Borel subset of V .
Using (71), it can easily be shown that for some �> � > 0 with �−�≈D−�, and some ��N� ∈ � :

lim inf
N→�

1
N

ln P̃N
x �Y N ���N�� ∈ V2�≥−�(74)

uniformly in x ∈ V1, and

lim sup
N→�

1
N

ln P̃N
y �Y N ���N�� ∈ V1�≥−�(75)

uniformly in y ∈ V2.
The end of the proof is classical: For i �= j ∈ �1�2� define

mN
ij = 1

�̃N �Vi�

∫
Vj

P̃N
z �Y N ���N�� ∈ Vj��̃

N �dz��(76)

where �̃N �·�= �N �·�/�N �V �. By invariance of �N , the vector ��̃N �V1�� �̃
N �V2�� satisfies

mN
21�̃

N �V2�=mN
12�̃

N �V1��(77)

Thus,

�̃N �V1�/�̃
N �V2�≤ Ce��−��N(78)

for some constant C.
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I� Proof of Lemma 1 for Poisson Processes

Let LN denote the infinitesimal generator of the continuous-time process Y N in Section 6. That is,

LN�f ��x�= lim
t→0

E�Y N �t��Y N �0�= x�− f �x�

t

defined for every real valued continuous function on ��S�. Then

LN�f ��x�=N
∑
v∈V

(
f

(
x+ 1

N
v

)
− f �x�

)
�x�v��

Let f 
 E →R be the map defined by f �y�=���y−x. By standard results in the theory of Markov
processes, the process

f �Y N �t��exp
[
−

∫ t

0

LN�f ��Y N �t��

f �Y N �t��
dt

]
is a martingale. Set g�u�= eu −u+1. Then

LN�f ��y�

f �y�
= �F �y�� �+N

∑
v∈V

g

(
1
N

�v��
)
�y�v��

From this expression it is not hard to deduce that

LN�f ��y�

f �y�
−�F �y�� � ≤ 1

N
� 	�	22

for some constant � . This makes the process

Z�t�= exp
〈
��Y N �t�−x−

∫ t

0
F �Y N �t��dt− t

1
N

� 	�	22
〉

a supermartingale, and we conclude as in the proof of Lemma 1.
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