Zur Löslichkeit von Cobalt(IV) in Li₈SiO₆

On the Solubility of Cobalt(IV) in Li₈SiO₆

Claus Mühle und Martin Jansen*

Stuttgart, Max-Planck-Institut für Festkörperforschung

Bei der Redaktion eingegangen am 29. Juni 2007.

Abstract. Li₈SiO₆ dissolves up to 2 at.-% cobalt(IV). Crystals of such solid solutions are transparent and of deep ruby red colour. Cobalt concentrations as determined by ICP-OES, EDX and magnetic susceptibility measurements are in good accordance. The X-ray powder diffraction and the magnetic properties confirm integration of Co^{4+} into the lithiumoxosilicate. These new results

Im Zuge systematischer Untersuchungen an Alkalioxocobaltaten-(IV) wurde gezeigt, dass diese Verbindungsklasse eine silicatanaloge Struktursystematik ausbildet. Während Na₄CoO₄ [1], A₂CoO₃ (A = K, Rb, Cs) [2] und $K_6Co_2O_7$ [3] in guten Ausbeuten und phasenrein erhalten wurden, lagen in den Reaktionsprodukten entsprechender Ansätze "Li₈CoO₆" [4] und "Li₄CoO₄" [5] immer nur in Anteilen von ca. 1 gew. % neben LiCoO₂ vor, allerdings in Form auffälliger und gut gewachsener Kristalle von intensiv roter Farbe. Dieses wurde zunächst als Hinweis verstanden, dass diese Phasen durch Fremdatome stabilisiert wären. Da nach nasschemischen Analysen die Ausgangsoxide Co₃O₄ und Li₂O₂ keine nachweisbaren Fremdelemente enthielten, und in den Produkten kein Silber (Tiegelmaterial) enthalten war, wurden die Beobachtungen der geringen thermischen Stabilität der Lithiumoxocobaltate(IV) einerseits und der hohen Bildungstendenz von LiCoO2 andererseits zugeschrieben [4, 5]. Kürzlich bemerkten wir, dass es beim intensiven Vermahlen von Oxidpulvern mit Duranglasstäben in einer Schlenk-Apparatur aus Duranglas zu einem Abrieb von Glas kommen kann. Dies veranlasste uns zu untersuchen, ob es sich bei "Li₈CoO₆", bei dessen Darstellung die Ausgangsoxide in Schlenk-Apparaturen vermahlen wurden und welches isotyp mit Li_8SiO_6 [6, 7] ist, in Wahrheit um cobaltdodiertes Lithiumoxosilicat handelt.

Experimentelles

Darstellung der Proben. Gefällte Kieselsäure (Merck, 99+ %) wurde zunächst bei 300 °C im Vakuum zu wasserfreiem SiO₂ getrocknet. Lithiumoxid wurde durch Entwässern von LiOH·H₂O (Fluka, 99+ %) im Vakuum bei 800 °C hergestellt. Zur Darstellung

* Prof. Dr. M. Jansen Max-Planck-Institut für Festkörperforschung Postfach 800655
D-70506 Stuttgart Fax: +49(0)711-6891502
E-mail Adresse: M.Jansen@fkf.mpg.de are indicating that the ruby red phase, previously addressed as " Li_8CoO_6 ", is in fact cobalt doped Li_8SiO_6 .

Keywords: Lithiumoxocobalte; Lithiumoxosilicate; Solid solutions; Crystal structures; Susceptibility

des mit Cobalt dotierten Lithiumoxosilicats wurden Gemenge aus SiO₂, Li₂O, Li₂O₂ (Sigma-Aldrich, 90 %) und Co₃O₄ (Sigma-Aldrich, Kobaltschwarz) im Verhältnis 1 : 4 : 0,1 : 0,01 im Silbertiegel in einer Quarzampulle unter Argon eingeschmolzen eine Woche bei 850 °C erhitzt und langsam mit 10 °C/h auf Raumtemperatur abgekühlt. Das Produkt bestand aus einigen farblosen Kristallen (Li₂O, SiO₂, Li₄SiO₄) neben zahlreichen transparenten, rubinroten Kristallen, die geringfügig hygroskopisch sind. Bei Beimischung höherer Anteile von Co₃O₄ entstand vermehrt schwarzes LiCoO₂. Das reine Lithiumoxosilicat wurde aus einem stöchiometrischen Gemenge von SiO₂ und Li₂O bei 800 °C im Silbertiegel und in Argonatmosphäre hergestellt.

Pulverdiffraktometrie. Die Aufnahme der Röntgenpulverdiffraktogramme von Li₈SiO₆ und zermahlenen Kristallen von Li₈Si(1- δ)Co₈O₆ erfolgte auf einem Diffraktometer Stoe StadiP mit Cu-K α 1-Strahlung, Germanium Monochromator und ortsempfindlichem Proportionaldetektor (PSD) in Debye-Scherrer-Geometrie. Eine Winkelkorrektur wurde durch Vergleich mit einem externen Si-Standard durchgeführt. Aus der LeBail Anpassung mit Hilfe des Programms JANA2000 [8] konnten die Gitterparameter von Li₈Si_(1-\delta)Co₈O₆ bestimmt werden, die sich nur geringfügig von undotiertem Lithiumoxosilicat unterscheiden. Diese wurden für die Einkristallstrukturverfeinerung verwendet. Tabelle 1 zeigt die Gitterparameter von undotiertem Li₈Si(1- δ)Co₈O₆ und von der zuvor als "Li₈CoO₆" [4] publizierten Phase im Vergleich.

Einkristallstrukturverfeinerung. Ein rubinroter Kristall von ca. 0,1 mm Kantenlänge wurde unter dem Lichtmikroskop ausgesucht, in einer Glaskapillare eingeschmolzen und am Einkristalldiffraktometer (Bruker AXS, APEX-CCD Smart, MoK α , $\lambda = 71.073$ pm, Graphitmonochromator, ω -Modus) [9] vermessen. Die hexagonale Struktur wurde als Li₈SiO₆ in der Raumgruppe *P*6₃*cm* (Nr. 185) verfeinert (R₁ = 6,54 %). Die Verfeinerung des Besetzungsparameters SOF(Si) mit dem Programm SHELXTL97 [10] ergab keinen signifikanten Hinweis auf eine partielle Substitution von Silicium durch Cobalt.

C. Mühle, M. Jansen

Verbindung	Li ₈ SiO ₆	$Li_8Si_{(1-\delta)}Co_{\delta}O_6$	"Li ₈ CoO ₆ " [4]
Meßmethode Kristallsystem Raumgruppe (Nr.) Z Gitterkonstanten /pm (bei 25 °C) $V / 10^{\circ} \cdot pm^{3}$ $\rho_{cutc} /g \cdot cm^{-3}$	Pulver hexagonal $P6_3cm$ (185) 2 a = 542,63(1) c = 1062,42(1) 270,915(6) 2,201	Pulver hexagonal $P6_3cm$ (185) 2 a = 543,28(2) c = 1061,3(1) 271,30(3) 2,199	Einkristall hexagonal $P6_3cm$ (185) 2 a = 544 c = 1087 278,59 2,46
Messbereich Strahlungsquelle; λ /pm	$5^{\circ} \le 2\theta \le 75^{\circ}$ Cu-K α_1 ; 154,06	$5^{\circ} \le 2\theta \le 75^{\circ}$ Cu-K α_1 ; 154,06	$2^{\circ} \le 2\theta \le 40^{\circ}$ Mo-K α ; 71,073

Elementaranalyse. Die Bestimmung der Zusammensetzung der Kristalle erfolgte durch EDX-Analyse unter dem Rasterelektronenmikroskop (EDAX, S-UTW-Si(Li)-Detektor, Auflösung < 135 eV für Mn-K α / 1000 cps) bei einem Arbeitsabstand von 10 mm.

Zur nasschemischen Analyse wurden Proben von 7 mg ausgelesener roter Kristalle in Säure gelöst und das Si : Co-Verhältnis mittels ICP-OES (ARL 3580B) bestimmt.

Magnetische Messung. Die Messung der magnetischen Suszeptibilität von einer Quarzkapillare mit etwa 8 mg gesammelten roten Kristallen wurde unter Helium mit einem Squid Magnetometer (Quantum Design, MPMS 5.5) in einem Feld von 1 T in Abhängigkeit von der Temperatur im Bereich von 5-330 K durchgeführt.

Ergebnisse

Jüngste Versuche, "Li8CoO6" aus einem stöchiometrischen Gemenge von Li₂O₂ und reaktiven Co₃O₄ unter Innertbedingungen bei Temperaturen von 500-700 °C und unter hohen Drücken bis 20 kbar in einer Piston-Zylinder-Apparatur darzustellen, ergaben lediglich LiCoO2. Erst bei der Umsetzung von SiO2, Li2O und Li₂O₂ mit einem Li : Si-Verhältnis von 8 : 1 in Gegenwart geringer Mengen von Co₃O₄ entstehen tiefrote Kristalle, die aufgrund der identischen Struktur nach Pulver- und Einkristallröntgendaten als dotiertes Li₈SiO₆ aufzufassen sind. Die geringfügige Vergrößerung des Zellvolumens von $V = 270.9 \text{ Å}^3$ des undotiertem Li₈SiO₆ auf $V = 271,3 \text{ Å}^3$ (Tab. 1) ist ein erster Hinweis auf eine geringe Substitution von Si⁴⁺ durch Co⁴⁺ Ionen. Der früher ermittelte größere Werte für die c-Achse in "Li₈CoO₆" [4] ist auf die geringe Genauigkeit zurückzuführen, mit der die Gitterkonstante der Drehachse auf dem seinerzeit verwendeten Zweikreisdiffraktometer bestimmt werden konnte. Die rote Farbe der Einkristalle ist ein starkes Indiz für den Einbau von Co4+ Ionen in das Lithiumoxosilicat.

Nach der Elementaranalyse mittels EDX sind in den Kristallen 0,5-0,7 at. % Cobalt enthalten. Diese Werte liegen in der Nähe der Nachweisgrenze, sie korrespondieren gleichwohl mit den Ergebnissen der nasschemischen Analyse mittels ICP-OES, die etwas höhere Cobalt-Gehalte, durch anhaftendes LiCoO₂ bedingt, von 1,5-2,0 at. % ergeben.

Die Messung der magnetischen Suszeptibilität (Abb. 1) zeigt oberhalb von 50 K praktisch ein Curie-Weiss-Verhalten, wie für ein hochverdünntes magnetisches System zu erwarten, mit einer Curie-Konstanten von $C = 0,04005 \pm 0,00077 \text{ cm}^3 \cdot \text{K/mol}$ und $\chi_0 = 0,00027 \pm 0,000045 \text{ cm}^3/\text{mol}$. Bei Annahme der Elektronenkonfiguration $3d^5$ mit $s = 5/_2$ (high-spin, $\mu_{\text{eff}} = 5.9 \,\mu_{\text{Bohr}}$) entspricht das gefundene Moment einem Anteil von 0,9 at. % Cobalt(IV) [11], welches sehr gut zu den Werten der chemischen Analysen passt und damit ebenfalls ein starkes Indiz für den Einbau von Co⁴⁺ in Li₈SiO₆ ist.

Abbildung 1 Molsuszeptibilität von $Li_8Si_{(1-\delta)}Co_{\delta}O_6$ über die reziproke Temperatur. Die durchgezogen Linie entspricht der Anpassung zum Curie-Weiss-Gesetz.

Bei den früher als "Li₈CoO₆" angesehenen Phasen handelt es sich nach den hier vorgestellten Untersuchungen um feste Lösungen Li₈Si_(1-δ)Co₈O₆ mit $\delta = 0,005$ -0,02. Es ist anzunehmen, dass es sich auch bei "Li₄CoO₄" [5] um ein cobaltdotiertes Silicat, Li₄SiO₄ handelt, welches hier allerdings nicht näher untersucht wurde.

Für die Messung und Auswertung der magnetischen Suszeptibilität seien E. Brücher und Dr. R. Kremer, für die LeBail-Anpassung des Pulverdiffraktogramms Dr. A. Karpov, für die Einkristallstrukturverfeinerung Dr. J. Nuss gedankt.

- [1] M. Jansen, Z. Anorg. Allg. Chem. 1975, 417, 35.
- [2] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. 1974, 408, 75.
- [3] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. 1974, 409, 152.
- [4] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. 1973, 398, 54.
- [5] M. Jansen, R. Hoppe, Naturwissenschaften 1972, 5, 215.
- [6] W. Schartau, R. Hoppe, Naturwissenschaften 1973, 5, 256.
- [7] R. Hofmann, R. Hoppe, Z. Anorg. Allg. Chem. 1987, 555, 118.
- [8] V. Petricek, M. Dusek, JANA2000, The crystallographic computing system. Institute of Physics, Prag, Tschechische Rep. 2003.
- [9] G. M. Sheldrick, SADABS, Bruker AXS Inc, Madison, USA 1998.
- [10] G. M. Sheldrick, SHELX-97, Programs for Crystal Structure Solution and Refinement, Universität Göttingen 1997.
- [11] H. Lueken, Magnetochemie, B. G. Teubner Verlag Stuttgart-Leipzig, 1999, S. 215.