CATALYSIS

## Isomerization of *n*-Butane on Dealuminated Mordenite Promoted with Zirconium Dioxide

D. B. Tagiev, R. V. Starikov, A. A. Imanova, and M. I. Rustamov

Mamedaliev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan

Received June 21, 2006

Abstract—Zirconiun dioxide promotes the catalytic activity of a dealuminated mordenite in *n*-butane isomerization. A method is suggested for preparing, without any solvents, a sulfated mordenite-zirconium catalyst active at relatively low temperatures.

**DOI:** 10.1134/S107042720702019X

Isomerization of *n*-butane is one of the most important processes of petrochemical industry in production of alkylates and other valuable products [1, 2]. To perform this reaction, different heterogeneous catalysts have been suggested. Among them the chlorinated platinum-alumina catalysts, metallozeolites, and sulfated zirconium dioxide are of particular interest [1–8]. Each of these catalysts has advantages and disadvantages. For instance, chlorinated platinum-alumina catalyst require a thorough pretreatment of the raw material and are environmetally unfavorable. Isomerization with metallozeolites is performed at high temperatures; they are favorable in isomerization of  $C_5$  and  $C_5-C_6$  paraffins. Sulfated zirconium dioxide is active at relatively low temperatures. However, additional studies are required to improve the stability and reproducibility of its catalytic properties.

Due to cellular structure and possibility of purposeful modification of the physicochemical properties, zeolites are promising catalysts for *n*-butane isomerization. It was shown in [9, 10] that dealumination of H-mordenite enchances its isomerization activity. The activity of dealuminated H-mordenite can be further raised by choosing appropriate promoters [11, 12].

In this study, we examined the catalytic properties of binary mordenite-zirconium and ternary sulfated mordenite-zirconium catalysts to find the probable synergism of such systems and to develop on their base low-temperature catalysts of *n*-butane isomerization.

## EXPERIMENTAL

The catalysts were prepared from dealuminated H-mordenite with the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio of 17 (sample HM<sub>17</sub>). To promote HM<sub>17</sub> with zirconium dioxide, we used impregnation and mechanical mixing of the zeolite with ZrO(NO<sub>3</sub>)<sub>2</sub> or ZrO(OH)<sub>2</sub>, with subsequent decomposition of the mixture at 823–873 K [the samples were denoted as  $aZrO_2/HM_{17}$  (impregnation) and HM<sub>17</sub>– $aZrO_2$  (mixing), where *a* is the ZrO<sub>2</sub> content, wt %]. The samples obtained were sulfated by their treatment with 2 M solution of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. Catalysts were molded with aluminum hydroxide as a binding agent, dried at 383–393 K, and calcined at 823–873 K.

The conversion of *n*-butane was studied in a flowtype apparatus at atmospheric pressure within the 433– 523 K range. A 2 cm<sup>3</sup> portion of cylindrical catalyst granules 1–3 mm in size was charged into a quartz reactor and activated in an air flow at 773 K for 3 h. After the experiments, the catalyst was regenerated under the same conditions. After activation or regeneration, catalysts were cooled in an N<sub>2</sub> flow to the reaction temperature, and *n*-butane was started to be delivered at a flow rate of 300 ml h<sup>-1</sup>. No carrier gas was used.

The induction period of the reaction was 20– 30 min, depending on the experimental conditions. During this time, the isobutane yield reached the maximum and then decreased to a constant value. The data reported in this paper are related to 20th minute of the reaction run. The reaction products were monitored chromatographically, and catalysts, by powder X-ray diffraction (DRON-3M X-ray diffractometer) and thermal analysis (Q-1500D derivatograph).

Zirconium dioxide synthesized by decomposition of  $ZrO(NO_3)_2 \cdot 2H_2O$  and calcination of  $ZrO(OH)_2$  hydrogel precipitated with NH<sub>4</sub>OH solution shows low activity in *n*-butane isomerization. Sulfation of  $ZrO_2$  preliminarily calcined at 823–873 K does not raise the isobutane yield. The active catalyst is formed after treatment with an  $(NH_4)_2SO_4$  solution of  $ZrO(OH)_2$  dried at room temperature. In this case, the *n*-butane conversion is 22.0% at 493 K; the yield of isobutane reaches 16.9% (the residue consists of propane and *n*-and isopentanes).

Impregnation of dealuminated mordenite  $HM_{17}$  with  $ZrO(NO_3)_2$  aqueous solution, with further calcinations at 823 K, substantially improves the catalyst activity, which appears in a rise in the isobutane and isopentane yield and in a decrease in the optimal temperature of the reaction. That is,  $ZrO_2$  has a promoting effect on the activity of dealuminated mordenite.

It should be noted that, in contrast to  $HM_{17}$ , whose sulfation does not substantially affect its isomerization activity,  $aZrO_2/HM_{17}$  samples (a = 2.5-10.0 wt %) show after sulfation a higher activity in *n*-butane isomerization at relatively low temperatures. These data show that, in contrast to  $ZrO_2$ , which directly promotes  $HM_{17}$ , sulfate ions raise the activity of dealuminated mordenite only when the latter contains zirconium dioxide. The data obtained are listed in Table 1.

Depending on the  $ZrO_2$  content in mordenite-zirconium and sulfated mordenite-zirconium catalysts, the *n*-butane conversion and the total yield of isoparaffins (isobutane and isopentane) pass through maxima. As can be seen from the figure, the maximal activity of the catalysts prepared by impregnation is observed for samples containing 5.0–7.5 wt % ZrO<sub>2</sub>.

The same extremal dependences are observed for catalysts prepared more simply by mechanical mixing of  $HM_{17}$  and  $ZrO(NO_3)_2 \cdot 2H_2O$  without any solvent, followed by molding with a binding agent, drying, and calcination. A comparison of samples containing from 5 to 20 wt %  $ZrO_2$  showed that the  $HM_{17}$ –10 wt %  $ZrO_2$  catalyst has the highest activity in *n*-butane isomerization. The corresponding data are listed in Table 2.

It should be noted that such an extremal dependence of the activity on the  $ZrO_2$  content is observed for the catalysts prepared by mechanical mixing of HM<sub>17</sub> with a ZrO(OH)<sub>2</sub> hydrogel synthesized by precipitation from ZrOCl<sub>2</sub> · 8H<sub>2</sub>O solution with aqueous

 Table 1. Isomerization of *n*-butane on mordenite-containing catalysts prepared by impregnation

| Catalyst                                                                | <i>Т</i> ,<br>К | <i>n</i> -Butane<br>con-<br>ver-<br>sion, % | Yield,<br>isobu-<br>tene | wt %<br>isopen-<br>tane |
|-------------------------------------------------------------------------|-----------------|---------------------------------------------|--------------------------|-------------------------|
| HM <sub>17</sub>                                                        | 523             | 28.0                                        | 16.1                     | 2.5                     |
| 4% SO <sub>4</sub> <sup>2-</sup> /HM <sub>17</sub>                      | 523             | 28.2                                        | 15.4                     | 3.7                     |
| 27% SO <sub>4</sub> <sup>2-</sup> /ZrO <sub>2</sub>                     | 493             | 22.0                                        | 16.9                     | 2.4                     |
| 5% ZrO <sub>2</sub> /HM <sub>17</sub>                                   | 493             | 30.0                                        | 18.5                     | 3.0                     |
| 4% SO <sub>4</sub> <sup>2-</sup> /5% ZrO <sub>2</sub> /HM <sub>17</sub> | 463             | 34.5                                        | 21.3                     | 4.0                     |

**Table 2.** Isomerization of *n*-butane on mordenite-zirconium catalysts prepared by mechanical mixing of  $HM_{17}$  and  $ZrO(NO_3)_2 \cdot 2H_2O$ 

| Sam-<br>ple Cataly<br>no. | 「                                     | T,<br>K | <i>n</i> -Butane<br>con-<br>ver-<br>sion, % | Yield, wt %    |                 |
|---------------------------|---------------------------------------|---------|---------------------------------------------|----------------|-----------------|
|                           | Catalyst                              |         |                                             | isobu-<br>tene | isopen-<br>tane |
| 1                         | HM <sub>17</sub>                      | 493     | 24.5                                        | 12.0           | 0.6             |
| 2                         | $HM_{17}^{-}-5\%$ ZrO <sub>2</sub>    | 493     | 48.2                                        | 25.9           | 3.1             |
| 3                         | $HM_{17}^{17} - 10\% Zr\tilde{O}_{2}$ | 463     | 12.7                                        | 9.1            | 1.6             |
|                           | 17 2                                  | 493     | 54.5                                        | 28.5           | 5.3             |
| 4                         | $HM_{17} - 15\% ZrO_{2}$              | 463     | 3.0                                         | 2.6            | _               |
|                           | 17 2                                  | 493     | 52.7                                        | 25.5           | 3.4             |
| 5                         | $HM_{17} - 20\% ZrO_{2}$              | 493     | 33.5                                        | 19.9           | 4.6             |
| 6                         | $HM_{17}^{17}$ -ZrO(OH) <sub>2</sub>  | 463     | 5.8                                         | 4.5            | 0.6             |
|                           | (as calculated                        | 493     | 31.8                                        | 20.2           | 2.9             |
|                           | for $10\%$ ZrO <sub>2</sub> )         |         |                                             |                |                 |
| 7                         | ZrO <sub>2</sub>                      | 493     | 0.9                                         | 0.5            | -               |

 $NH_4OH$ . However, at the same  $ZrO_2$  content, the activity of catalysts prepared using a zirconium salt (Table 2, sample 3) is higher than the activity of



(1, 3) conversion  $\alpha$  of *n*-butane and (2, 4) total yield of isoparaffins A vs. the ZrO<sub>2</sub> content in (1, 2) aZrO<sub>2</sub>/HM<sub>17</sub> and (3, 4) 4% SO<sub>4</sub><sup>2-</sup>/aZrO<sub>2</sub>/HM<sub>17</sub> catalysts.

RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 80 No. 2 2007

**Table 3.** *n*-Butane conversion in an apparatus with two series-connected reactors (catalyst  $HM_{17}-10\%$  ZrO<sub>2</sub>- 4% SO<sub>4</sub><sup>2-</sup>)

| Temperature, K |                                               | Yiels, %                                                                                                                                                                                   |                                                        |  |
|----------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| reactor 2      | sion, %                                       | isobutene                                                                                                                                                                                  | isopentane                                             |  |
| —              | 8.9                                           | 7.4                                                                                                                                                                                        | 0.2                                                    |  |
| _              | 36.3<br>51.6                                  | 19.2<br>26.0                                                                                                                                                                               | 2.3<br>4.9                                             |  |
| 463<br>463     | 37.2<br>43.9                                  | 25.3<br>28.9                                                                                                                                                                               | 3.4<br>4.1                                             |  |
|                | nture, K<br>reactor 2<br>-<br>-<br>463<br>463 | $\begin{array}{c ccc} \text{nture, K} & n-\text{Butane} \\ \hline \text{conversion, \%} \\ \hline \\ \hline \\ - & 8.9 \\ - & 36.3 \\ - & 51.6 \\ 463 & 37.2 \\ 463 & 43.9 \\ \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |

the sample prepared from ZrO(OH) hydrogel (Table 2, sample 6).

The difference in the properties of mordenite-zirconium catalysts prepared by impregnation or mechanical mixing is also manifested in that sulfation of impregnated catalysts  $aZrO_2/HM_{17}$  calcined at 823 K raised their activity, while sulfation of the  $HM_{17}$ –  $aZrO_2$  (mixed catalysts) samples calcined at the same temperature does not substantially affect the activity.

The three-component catalyst  $HM_{17}-10\%$   $ZrO_2-4\%$   $SO_4^{2-}$  prepared by simultaneous mixing of  $HM_{17}$ ,  $ZrO(NO_3)_2 \cdot 2H_2O$ , and  $(NH_4)_2SO_4$  followed by thermal treatment under the above standard conditions has a higher isomerization activity. At 463–493 K, the yield of isobutane and isopentane on this catalyst was 19.2–26.0 and 2.3–4.9%, respectively, at an *n*-butane conversion of 36.3–51.6%. The yield of the main by-product of the reaction, propane, decreases substantially faster as compared to the isobutane yield, and the selectivity of the reaction correspondingly increases.

Taking into account the data obtained, we studied the conversion of *n*-butane on a catalytic apparatus with two series-connected reactors. In this case, a higher yield of isoparaffins and selectivity can be reached at lower temperatures. The data on *n*-butane conversion and the yield of isoparaffins after the first and second reactors at various temperatures are listed in Table 3. As seen, the yield of isobutane in the two-reactor system at 448-463 K increases to 25.3-28.9% at a small decrease in the isopentane yield. The reaction selectivity with respect to isoparaffins increases to 75% due to a substantial decrease in the propane yield. These results are of certain interest because the catalyst used contained no precious metals (Pt, Pd) and was prepared by a simple and convenient method at atmospheric pressure and without any carrier gas. Such catalysts can be used as a basis for preparation of more active catalysts for isomerization of n-paraffins.

The high catalytic activity of sulfated  $ZrO_2$  promoted with various metals (Mn, Fe, Ga, Pt, etc.) was discussed in a number papers [6-8, 13-17]. In this study, we showed that zirconium compounds promote the activity of dealuminated mordenite, whereas sulfation does not affect isomerization activity of mordenite itself, but substantially improves that of the mordenite-zirconium catalysts. This fact suggests that the promoting effect of sulfate ions is caused by the presence of  $ZrO_2$  in the catalysts. At the same time, it should be noted that dealuminated mordenite is not only a support for  $ZrO_2$  and  $SO_4^{2-}$ , but is the dominating component of the mordenite-zirconium catalysts, as indicated by the attainment of the maximal catalytic activity at small concentrations of ZrO<sub>2</sub> and  $SO_4^{2-}$  and by the preservation of the same features of the reaction before and after promotion of  $HM_{17}$ . The parallel variation of the yields of propane, isobutane, and isopentane with time can be caused by the bimolecular mechanism of the reaction. However, this matter requires a further study.

The thermal analysis of the systems  $HM_{17}$ , 5%  $ZrO_2/HM_{17}$  and 4%  $SO_4^{2-}/5\%$   $ZrO_2/HM_{17}$  and of samples prepared by mechanical mixing ( $HM_{17}$ –10%  $ZrO_2$  and  $HM_{17}$ –10%  $ZrO_2$ –6%  $SO_4^{2-}$ ) does not show any substantial difference in their thermal behavior. Only one endothermic peak at 388 K, caused by elimination of adsorbed water, exists in the DTA curve of  $HM_{17}$ . After impregnation of  $HM_{17}$  with  $ZrO(NO_3)_2$ , this peak shifts to 398 K and a weak endothermic peak appears at 628 K.

These facts are probably caused by dehydration and decomposition of the zirconium salts. The high-temperature peaks of sulfate decomposition were not found, probably, because of the small amounts of sulfate groups in the samples examined.

The X-ray diffraction patterns show that the crystal structure of H-mordenite is preserved after dealumination and promotion with zirconium dioxide. In the diffraction patterns of a powder with the composition 7.5%  $ZrO_2/HM_{17}$  and  $ZrO_2$ , prepared by decomposition of  $ZrO(NO_3)_2 \cdot 2H_2O$  at 873 K, reflections characteristic of tetragonal  $ZrO_2$  at  $2\theta = 30^\circ$  were observed [18]. Based on the data obtained, we can suggest that impregnation of  $HM_{17}$  with a  $ZrO(NO_3)_2$ aqueous solution, followed by thermal treatment at 823–873 K, yields a mixed mordenite-zirconium system with a higher isomerization activity at relatively low temperatures because of the interaction between the decomposing zirconium salt and  $HM_{17}$ . This process affects the specific texture and acid-base properties of the catalytic mixture.

## CONCLUSIONS

(1) The promoting effect of  $ZrO_2$  on the catalytic activity of dealuminated mordenite in isomerization of *n*-butane was found.

(2) It was shown that the sulfated mordenite-zirconium catalyst prepared by a simple and convenient method shows high activity in *n*-butane isomerization at atmospheric pressure and relatively low temperatures.

## REFERENCES

- Egizarov, Yu.G., Savchits, M.F., and Ustilovskaya, E.Ya., *Geterogenno-kataliticheskaya isomerizatsiya uglevodorodov* (Heterogeneous Catalytic Isomerization of Hydrocarbons), Moscow: Nauka i Tekhnika, 1989.
- 2. Yadav, G.D. and Nair, J.J., *Microporous Mesi Mater.*, 1999, vol. 3, no. 1, pp. 1–11.
- 3. Tran, M.-T., Gnep, N.S., Szabop, G., and Guisnet, M., *Appl. Catal. A.*, 1998, vol. 170, no. 1, pp. 49–58.
- 4. Gembicki, S.A., *Stud. Surf. Sci. Catal.*, 2000, vol. 130, pp. 147–154.
- 5. Willegas, J.I., Kumar, N., Smeiskova, A., et al., *Appl. Catal. A.*, 2005, vol. 284, nos. 1–2, pp. 223–230.
- Sony, X. and Sayari, A., *Catal. Rev. Sci. Eng.*, 1996, vol. 38, p. 239–412.

- De Rossi, S., Ferraris, G., Valigi, M., and Gazroli, D., Appl. Catal. A, 2002, vol. 231, nos. 1–2, pp. 173–184.
- Li, X., Nagoaka, N., Simon, L.J., et al., J. Catal., 2005, vol. 232, no. 2, pp. 456–466.
- 9. Ganizares, P., de Lukas, A., and Dorado, F., *Appl. Catal. A*, 200, vol. 196, no. 2, pp. 225–231.
- Tagiev, D.B., Starikov, R.V., Imanova, A.A., et al., *Protsessy Neftekhim. Neftepererab.*, 2004, no. 2, pp. 103–107.
- Tagiyev, D.B., Starikov, R.V., and Imanova, A.A., Abstracts of Papers. *3rd FEZA Conf.*, Prague, 2005, p. 166.
- Tagiev, D.B., Starikov, R.V., Imanova, A.A., et al., *Protsessy Neftekhim. Neftepererab.*, 2004, no. 3, pp. 75–80.
- 13. Keiich, N., Akihoro, O., and Kaoru, F., *Appl. Catal. A*, 2000, vol. 195, pp. 383–393.
- 14. Moreno, J.A.and Poncelet, D., *Appl. Catal. A*, 2001, vol. 210, nos. 1–2, pp. 151–164.
- 15. Hua, W. and Sommer, J., *Appl. Catal. A*, 2002, vol. 227, nos. 1–2, pp. 279–286.
- 16. Wong, S.-T., Li, T., Cheng, S., et al., *Appl. Catal. A*, 2005, vol. 296, no. 1, pp. 90–99.
- 17. Li, X., Nagaoka, K., Simon, L.J., et al., *J. Catal.*, 2005, vol. 232, no. 2, pp. 456–466.
- 18. Morterra, C., Cerrato, G., Pinna, F., and Signoretto, M., J. Catal., 1995, vol. 157, no. 1, pp. 109–123.