Kinetic Study of Tungsten Atoms (a ${}^{7}S_{3}$ and a ${}^{5}D_{J}$) in the Presence of C₂H₄ and NH₃ at Room Temperature

Yo-ichi Ishikawa* and Yoshitaka Matsumoto

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585

(Received November 18, 2002)

The gas-phase reactivity of W (a ${}^{7}S_{3}$ and a ${}^{5}D_{J}$) with $C_{2}H_{4}$ and NH_{3} at room temperature was investigated using a time-resolved laser induced fluorescence (LIF) spectroscopy. Tungsten atoms were produced by a 266-nm multiphoton decomposition (MPD) of W(CO)₆. The reactant pressure dependence of the *pseudo*-first-order depletion rates of W (a ${}^{7}S_{3}$) could allow an estimation of the *pseudo*-second-order depletion rate constant of W (a ${}^{7}S_{3}$), $(4.5 \pm 0.5) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ for $C_{2}H_{4}$ and $(0.73 \pm 0.10) \times 10^{-10}$ for NH₃ at 6.0-Torr total pressure with an Ar buffer. A simulation of the transient curves based on a modification of the observed apparent decay rate constants, involving nearby a ${}^{5}D_{J}$ states in the presence of $C_{2}H_{4}$ and NH₃, allowed us to separately estimate the contribution of the chemical quenching (W (a ${}^{7}S_{3}$) + R \rightarrow product(s)) and the physical quenching (W (a ${}^{7}S_{3}$) + R \rightarrow W (a ${}^{5}D_{1}$) + R) processes. In the case of $C_{2}H_{4}$, chemical quenching appeared to dominate over the physical quenching, while the physical quenching was the main depletion process in the case of NH₃. The large reactivity of the W (a ${}^{7}S_{3}$) state not only for $C_{2}H_{4}$, but also for NH₃, is discussed in terms of the relativistic effects.

Many transition-metal atoms have a number of nearby states derived from the electronic configurations of $d^{n-2} s^2$ and $d^{n-1} s^1$, which give a chance to investigate how the electronic configuration affects the reactivity other than the energy. The gasphase transition-metal chemistry has so far provided fundamental information for metal-ligand interactions.^{1–3} Those experimental results would be useful for understanding the catalytic processes on the active sites of transition-metal surfaces and also for developing theoretical calculations involving a spin-orbit interaction or a configuration interaction, and so on.^{4,5}

In the gas-phase reactions of W (a ${}^{5}D_{J}$ and a ${}^{7}S_{3}$) with some oxidants, the a ${}^{7}S_{3}$ (5d⁵ 6s¹) state reacts more efficiently with O_2 , NO, N₂O, and SO₂ than the a ⁵D₁ (5d⁴ 6s²) states,^{6,7} suggesting that the electron configuration plays the dominant role in the kinetic behavior of gas-phase tungsten. All of these oxidation reactions are reported to be bimolecular, where the common product is thought to be WO, owing to the independence of the reaction rates with respect to the total pressure. The major depletion process for the a ${}^{5}D_{1}$, a ${}^{5}D_{0}$ and a ${}^{7}S_{3}$ states was reported to be chemical quenching, though the contribution of physical quenching could not be excluded completely for the a ${}^{5}D_{2}$, a ${}^{5}D_{3}$, and a ${}^{5}D_{4}$ states. Because the quenching rate constants of the a ${}^{5}D_{J}$ states were found to be characteristically J-dependent for these oxidants, except for SO₂, the oxidation mechanism has been thought to be direct oxygen atom abstraction, but not the electron transfer mechanism.⁸ The reactivity of W atoms for other reactants, except for these oxidants, have not been reported so far.

Relativistic effects may become conspicuous in chemical reactions involving heavy elements, such as the third transition metals.^{9,10} The relativistic contraction and stabilization of the s shells, from the inner up to valence shell, and the relativistic expansion and destabilization of the d shell can be expected to have a certain effect on the chemical and physical interactions of the transition-metal elements with the reactants. An anomalous gas-phase chemical tendency of Au₂ for CO, NH₃, and C₂H₄, which could not be extrapolated from the trends in the reactivity from Cu₂ to Ag₂, was interpreted in terms of relativistic effects.¹¹ The large reactivity of W₂ (X) with C₂H₄ and NH₃, compared with Cr₂ (X) and Mo₂ (X), was also thought to have originated from relativistic effects.¹² W (a ⁷S₃) atoms having naked 5d and 6s electrons would give a chance to study the relativistic effects in chemical reactions by a comparison of Cr (a ⁷S₃) and Mo (a ⁷S₃) atoms with the same electron configuration.

In this study, we measured the transient behavior of the lowlying states of a tungsten atom W (a ${}^{5}D_{J}$ and a ${}^{7}S_{3}$) upon an interaction with C_2H_4 as a typical π -acceptor, and NH₃ as a typical σ -donor in order to understand the relation between the electronic structure and the reaction mechanism. A low-lying energy level diagram of tungsten atom is shown in Fig. 1.¹³ The a ${}^{5}D_{0}$ state with the d⁴ s² configuration is the ground state, and the other a ${}^{5}D_{J}$ states $(1 \le J \le 4)$ locate in an energy region lower than 6219 cm⁻¹. The a ⁷S₃ state with a different electron configuration of d⁵ s¹ has only 2951 cm⁻¹ more energy than the ground state. However, in such a crowded system, the transient behavior of each state must be affected by the physical quenching of nearby states as well as by the chemical quenching, especially in an experimental system where the multiphoton decomposition of metal carbonyl by focused laser light is used for the pulse production of transition atoms. We have tried to discriminate the two processes, chemical and physical quenching, by calculation trials of all the

Fig. 1. Energy level diagram of W atom below 8000 cm^{-1} .

Monitoring level	Excitation transition (λ/nm)	Monitoring transition (λ/nm)	Center wavelength of monochromator (20 nm fwhm) (λ/nm)
a ⁵ D ₄	$z {}^{7}D_{3} \leftarrow a {}^{5}D_{4}$ (500.76)	$z {}^{7}D_{3} \rightarrow a {}^{7}S_{3}$ (430.33)	430
a ⁵ D ₃	$z {}^{5}P_{2} \leftarrow a {}^{5}D_{3}$ (407.11)	$z {}^{5}P_{2} \rightarrow a {}^{5}D_{2}$ (383.61)	383
a ⁵ D ₂	$z {}^{5}P_{2} \leftarrow a {}^{5}D_{2}$ (383.61)	$z {}^{5}P_{2} \rightarrow a {}^{5}D_{2}$ (383.61)	383
a ⁵ D ₁	$z {}^{5}F_{2} \leftarrow a {}^{5}D_{1}$ (384.73)	$z {}^{5}F_{2} \rightarrow a {}^{5}D_{1}$ (384.73)	384
a ⁵ D ₀	$z {}^{5}F_{1} \leftarrow a {}^{5}D_{0}$ (384.86)	$z {}^{5}F_{1} \rightarrow a {}^{5}D_{0}$ (384.86)	384
a $^{7}S_{3}$	$z {}^{7}P_{2} \leftarrow a {}^{7}S_{3}$ (429.58)	$z {}^{7}P_{2} \rightarrow a {}^{7}S_{3}$ (429.58)	430

Table 1. Excitation and Monitoring Transitions Used in LIF Spectroscopy

transient figures of the related states (a ${}^{5}D_{J}$ and a ${}^{7}S_{3}$) with one consistent set of rate constants obtained from a modification of the apparent decay rates. In a laser vaporization/flow tube/LIF experiment developed by Lian et al., Mo (a ${}^{7}S_{3}$) atoms have been reported to react with C₂H₄, but not to react with NH₃.¹⁴ Such a specific reactivity was discussed in terms of the extent for reduction of the electronic repulsive interaction as an early barrier. Another object of this study was to see whether the trend of reactivity can persist in W atoms of the same group VI concerning relativistic effects.

Experimental

The concentration of each low-lying electronic state of tungsten atom was pursued by using a time-resolved LIF technique in a mass-flow-controlled cell at room temperature. Our time-resolved LIF apparatus was very similar to a typical one.^{15,16} A photolysis 266-nm light source was a pulsed Nd:YAG laser (Spectron SL 803, $\lambda = 266$ nm). The laser beam, after passing through a Teflon iris (6 mm in diameter), was focused onto the center of a reaction cell using a quartz lens (f = 15 cm). As a source of resonance light for LIF, a Nd:YAG laser (Spectra-Physics GCR290-10) pumped dye laser (Lumonics HD-500) with a dye of Stilbene 420 (2×10^{-4} M in CH₃OH) was used with a 10 Hz repetition rate synchronized with the photolysis light by a digital delay generator (SRS DG535). The electronic transition used to monitor each state and the associated wavelength of the monochromator for fluorescence observation are given in Table 1. The fluorescence was detected by a photomultiplier (Hamamatsu R-928) set behind an exit slit of the monochromator (Spex Minimate; f = 20 cm, reciprocal dispersion = 4 nm/mm), the output of which was subsequently sent to a digital oscilloscope (Tektronix TD320). The digital output was stored and analyzed by a PC. The typical average laser shots were 256 to obtain an LIF intensity corresponding to W atom concentration at each delay time. W(CO)₆ (Aldrich, 98%) was degassed by several freeze-thaw cycles at -10° C and used without further purification. A sample mixture of W(CO)₆ (≤ 10 mTorr) and Ar as a carrier gas was allowed to flow slowly through a brass cell with two suprasil windows. The flow quantity of each gas was controlled by a calibrated mass-flow controller (STEC-400MARK2 or 3: full scale, 10 sccm; accuracy, $< \pm 0.2$ sccm) prior to admission to the reaction cell. The mass-flow controller was used as purchased without any further calibration. The total mass-flow rates were between 5–10 sccm, and the reactant (C_2H_4 and NH_3) flow rates were 0.02-1.0 sccm. The total pressure was kept constant at 6.0 Torr with an Ar buffer, which was monitored with a capacitance manometer (MKS 220BH: full scale, 10 Torr; accuracy, < ±0.015

Fig. 2. (a) C₂H₄ addition effects on the transient LIF curves of W (a ⁷S₃) at 6.0-Torr total pressure with Ar buffer gas. C₂H₄ pressures are 0.0 (□), 0.05 (○), 0.1 (△), 0.2 (▽), and 0.3 Torr (◊). Each solid line is a single-exponential decay fit obtained with an appropriate decay rate constant. (b) Determination of the apparent second-order depletion rate constant. Solid line is a linear fit.

Torr) attached directly to the center of the flow cell.

Results

Typical depletion plots of W (a ${}^{7}S_{3}$) in the presence of C₂H₄ at 6.0-Torr total pressure using an Ar buffer are shown in Fig. 2(a), where approximate single-exponential decays were observed. The solid lines through data are single-exponential decay fits. These pseudo-first-order rates estimated from the single-exponential fitting increased proportionally with increasing the C₂H₄ pressure (Fig. 2(b)), giving an apparent second-order depletion rate constant of $(4.5 \pm 0.5) \times 10^{-10} \text{ cm}^3$ molecule⁻¹ s⁻¹. Similar plots obtained in the case of NH₃ addition are shown in Fig. 3. The apparent second-order depletion rate constant of $(0.73 \pm 0.10) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ was estimated from the NH₃ pressure dependence of the pseudo-first order decay rates (Fig. 3(b)). Each error was one statistical deviation $(\pm \sigma)$ in the linear fitting. W (a ⁷S₃, d^5 s¹) is more interactive with C₂H₄ than with NH₃ in a similar manner as Mo (a 7S_3 , d⁵ s¹).

Because a multiphoton decomposition (MPD) of $W(CO)_6$ was used for the pulse production of metal species in our experiment, many electronic states other than the a 7S_3 state were inevitably produced. The a 7S_3 state is metastable in W, dif-

Fig. 3. (a) NH₃ addition effects on the transient LIF curves of W (a ⁷S₃) at 6.0-Torr total pressure with Ar buffer gas. NH₃ pressures are 0.0 (\square), 0.1 (\bigcirc), 0.2 (\triangle), 0.3 (\bigtriangledown), and 0.4 Torr (\diamondsuit). Each solid line is a single-exponential decay fit obtained with an appropriate decay rate constant. (b) Determination of the apparent second-order depletion rate constant. Solid line is a linear fit.

fering from Cr and Mo, and the transient of this state must be affected by physical quenching from/to nearby states. Thus, the transient behaviors of some low-lying states of tungsten (a ${}^{5}D_{J}$) in addition to the a ${}^{7}S_{3}$ state were also investigated as a function of the reactant pressure (C₂H₄ or NH₃) in order to distinguish between the chemical quenching and the physical quenching to nearby states.

Figures 4 and 5 show the addition effects of C₂H₄ and NH₃ on the transients of W (a ${}^{5}D_{J}$) together with W (a ${}^{7}S_{3}$) at a total pressure of 6.0 Torr with an Ar buffer. The apparent depletion rate constants estimated from the additive concentration dependence of the decay rates are summarized in the third column of Tables 2 and 3. Each solid line in the figures is a calculated curve based on the assumption of an appropriate mechanism involving physical and chemical quenching processes, as mentioned below. Without any additives, except for Ar buffer (6.0 Torr) and a trace of W(CO)₆ (\$10 mTorr) as precursor of W atoms, each electronic state (a ${}^{5}D_{J}$ and a $^{7}S_{3}$) shows a characteristic transient behavior, as shown by the open square symbols in each figure. The apparent growth in the a ${}^{5}D_{4}$, a ${}^{5}D_{3}$, a ${}^{5}D_{1}$ and a ${}^{5}D_{0}$ states indicates the occurrence of the physical quenching of the upper states correlating to these states, probably by Ar. The lack of growth in the a

Fig. 4. C_2H_4 addition effects on the transient LIF curves of W (a 7S_3) (a) and W (a 5D_J ; J = 4 (b), 3 (c), 2 (d), 1 (e), and 0 (f)) at 6.0-Torr total pressure with Ar buffer gas. C_2H_4 pressures are 0.0 (\Box), 0.05 (\bigcirc), 0.1 (\triangle), 0.2 (\bigtriangledown), and 0.3 Torr (\diamondsuit). Each solid line is a calculation curve on the assumption of an appropriate mechanism involving physical and chemical quenching processes. See discussion in the text.

Fig. 5. (a) NH₃ addition effects on the transient LIF curves of W (a ${}^{7}S_{3}$) (a) and W (a ${}^{5}D_{J}$; J = 4 (b), 3 (c), 2 (d), 1 (e), and 0 (f)) at 6.0-Torr total pressure with Ar buffer gas. NH₃ pressures are 0.0 (\Box), 0.1 (\bigcirc), 0.2 (\triangle), 0.3 (\bigtriangledown), and 0.4 Torr (\diamondsuit). Each solid line is a calculation curve on the assumption of an appropriate mechanism involving physical and chemical quenching processes. See discussion in the text.

Table 2. Second-Order Rate Constants $(k^{(2)}_{apparent}, k^{(2)}_{physical})$, and $k^{(2)}_{chemical}/10^{-10}$ cm³ molecule⁻¹ s⁻¹) of W (a ⁵D_J and a ⁷S₃) with C₂H₄ at Room Temperature

State (R.P.) ^{a)}	Level energy /cm ⁻¹	$k^{(2)}_{apparent}$	$k^{(2)}_{ m chemical} \ (\sigma/{ m \AA}^2)^{ m b)}$	$k^{(2)}_{ m physical} \ (\sigma/{ m \AA}^2)^{ m b)}$
a ⁵ D ₄ (1.0)	6219.33	$0.42\pm0.04^{\rm c)}$	~0.013 ^{d)} (0.002)	0.40 (0.074)
a ⁵ D ₃ (1.5)	4830.00	0.28 ± 0.02	~0.013 (0.002)	0.35 (0.065)
a ⁵ D ₂ (5.0)	3325.53	0.11 ± 0.02	~0.013 (0.002)	$\begin{array}{c} \sim 0.05 \; (\rightarrow a \; ^7 \mathrm{S}_3) \\ (0.009) \\ 0.20 \; (\rightarrow a \; ^5 \mathrm{D}_1) \\ (0.037) \end{array}$
a ⁷ S ₃ (9.0)	2951.29	4.5 ± 0.5	5.2 (0.96)	$\begin{array}{c} \sim \!\! 0.05 \ (\rightarrow \ a \ ^5D_2) \\ (0.009) \\ 0.10 \ (\rightarrow \ a \ ^5D_1) \\ (0.018) \end{array}$
a ⁵ D ₁ (8.0)	1670.30	0.14 ± 0.01	~0.013 (0.002)	0.20 (0.037)
a ⁵ D ₀ (20.0)	0	0.013 ± 0.002	0.013 (0.002)	_

a) Presumed relative initial population for kinetic simulation. b) The absolute cross section $\sigma (= k/\langle v \rangle)$; $\langle v \rangle = (8kT/\pi\mu)^{1/2} = 541 \text{ m s}^{-1}$. c) One standard deviation of the linear fitting. d) A swung mark (\sim) means that the simulation is not sensitive to the value probably including $\pm 200-300\%$ error.

Table 3. Second-Order Rate Constants $(k^{(2)}_{apparent}, k^{(2)}_{physical}, and k^{(2)}_{chemical}/10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ of W (a ⁵D_J and a ⁷S₃) with NH₃ at Room Temperature

State (R.P.) ^{a)}	Level energy /cm ⁻¹	$k^{(2)}_{apparent}$	$k^{(2)}_{\text{chemical}} (\sigma/\text{\AA}^2)^{\mathrm{b})}$	$k^{(2)}_{ m physical} \ (\sigma/{ m \AA}^2)^{ m b)}$
a ⁵ D ₄ (1.0)	6219.33	$0.84\pm0.02^{\rm c)}$	$\sim 0.0015^{d}$ (0.0002)	1.8 (0.27)
a ⁵ D ₃ (1.5)	4830.00	0.50 ± 0.03	~0.0015 (0.0002)	1.6 (0.24)
a ⁵ D ₂ (5.0)	3325.53	0.57 ± 0.05	~0.0015 (0.0002)	$\begin{array}{c} \sim\!$
a ⁷ S ₃ (9.0)	2951.29	0.73 ± 0.10	0.20 (0.03)	$\begin{array}{c} {\sim}0.20 \; (\rightarrow \; a \; {}^5\mathrm{D_2}) \\ (0.045) \\ 0.70 \; (\rightarrow \; a \; {}^5\mathrm{D_1}) \\ (0.11) \end{array}$
a ⁵ D ₁ (8.0)	1670.30	0.37 ± 0.03	~0.0015 (0.0002)	0.52 (0.078)
a ⁵ D ₀ (20.0)	0	0.0015 ± 0.0004	0.0015 (0.0002)	_

a) Presumed relative initial population for kinetic simulation. b) The absolute cross section $\sigma (= k/\langle v \rangle)$; $\langle v \rangle = (8kT/\pi\mu)^{1/2} = 663 \text{ m s}^{-1}$. c) One standard deviation of the linear fitting. d) A swung mark (\sim) means that the simulation is not sensitive to the value probably including $\pm 200-300\%$ error.

 ${}^{5}D_{2}$ state may be interpreted by a faster mixing with the a ${}^{7}S_{3}$ state, owing to the small energy gap of 370 cm⁻¹, or the larger initial concentration compared with the upper a ${}^{5}D_{3}$ and a ${}^{5}D_{4}$ states, so that the contribution of physical quenching to this state may be obscured at a glance. The concentration of the ground state of a ${}^{5}D_{0}$ increases until about 100 µs, and then decreases over a fairly long time (~ms). Upon the addition of reactants, the transient behaviors show that the a ${}^{7}S_{3}$ state is more interactive for C₂H₄ than any a ${}^{5}D_{J}$ states, and that

the ground state (a ${}^{5}D_{0}$) is chemically less reactive for both reactants. The absence of a fast production of the a ${}^{5}D_{1}$ state synchronized with the fast decay of the a ${}^{7}S_{3}$ state by the addition of $C_{2}H_{4}$ suggests that the main depletion process of the a ${}^{7}S_{3}$ state is chemical quenching. Compared with the case of $C_{2}H_{4}$ (Fig. 4), there seem to be significant growths in the a ${}^{5}D_{3}$, a ${}^{5}D_{1}$, and a ${}^{5}D_{0}$ states by the addition of NH₃ in Fig. 5, suggesting that physical quenching is the main depletion process for the upper states of these states.

Fig. 6. An assumed quenching processes of W (a^7S_3 , and a^5D_J) in the presence of C₂H₄ or NH₃ for the calculation of the transient concentrations of W (a^7S_3 and a^5D_J). In the kinetic schemes, k^c 's are the chemical quenching constants and k^p 's are the physical quenching constants.

Discussion

The addition of C₂H₄ or NH₃ on the transients of W (a ⁵D_J) together with W (a ⁷S₃) at a total pressure of 6.0 Torr with an Ar buffer resulted in the following qualitative kinetic behaviors: a) W (a ⁷S₃) was more interactive with C₂H₄ than NH₃, while W (a ⁵D_J) was less interactive with C₂H₄ than NH₃. b) The important quenching process for W (a ⁷S₃) by C₂H₄ seemed to be chemical, because fast production of the lower state (a ⁵D₁) corresponding to the decay of W (a ⁷S₃) was apparently not observed. c) The depression efficiency of the a ⁵D_J states, except for the a ⁵D₀ state. d) There seemed to be some upper states which are physically quenched to the a ⁵D₄, a ⁵D₃, a ⁵D₁ and a ⁵D₀ states, mainly by Ar buffer.

Some numerical calculations were carried out in order to deduce *semi*-quantitative information about the kinetics of the a ⁷S₃ state and the a ⁵D_J states with C₂H₄ and NH₃ from their transient data. The presumed kinetic mechanism used for the numerical calculation is shown in Fig. 6. In the kinetic schemes, k^{c}_{i} is a *pseudo* second-order rate constant for chemical quenching of the *i*-state, and k^{p}_{ij} is a physical quenching rate constant of the *i*-state to the *j*-state. Because the energy differences between two states of $\Delta J = 1$ in a ⁵D_J multiplet were larger than 1390 cm⁻¹, which are fairly large compared to the thermal energy at room temperature (~200 cm⁻¹), any energy transfer from a lower state to an upper state in the a ⁵D_J multiplet was ignored in the calculation, while the physical quenching between the a ${}^{7}S_{3}$ state and the a ${}^{5}D_{2}$ state was introduced to the calculation owing to its small energy gap of 374 cm⁻¹. At first, the transients of these states (a ⁷S₃ and a ${}^{5}D_{I}$) observed under no reactant addition were simulated. This simulation fixed the relative initial concentrations of these six states and some rate constants unrelated to the reactant. The presumed initial concentration ratios are given in Tables 2 and 3, which are roughly similar to the Boltzmann distribution at 1800 K ($[{}^{5}D_{4}]$; $[{}^{5}D_{3}]$; $[{}^{5}D_{2}]$; $[{}^{7}S_{3}]$; $[{}^{5}D_{1}]$; $[{}^{5}D_{0}] = 1.0:2.4:5.7:$ 10.7:12.7:16.1) when the statistical weight (2J + 1) is taken into consideration. The difference in the initial concentrations between two systems of C₂H₄ and NH₃ might be due to the experimental scatter. Three states of W_x, W_y, and W_z had to be introduced into the reaction mechanism in order to simulate the rise behaviors of the corresponding three states: a ${}^{5}D_{4}$, a ⁵D₃, and a ⁷S₃. The possible candidates for these W_x , W_y , and W_z states are the upper states of a 5D_J or a 7S_3 , as shown in Fig. 1. The initial relative concentrations of the W_x , W_y , and W_z states were assumed to be 3.0, 1.5, and 2.0 when [a ⁵D₄] at t = 0 was set to 1.0. The residual parameters are the chemical and physical quenching rate constants of the reactant with W_x , W_y , W_z , $a^{5}D_4$, $a^{5}D_3$, $a^{5}D_2$, $a^{7}S_3$, $a^{5}D_1$, and a ⁵D₀ states, where the a ⁵D₂ and a ⁷S₃ states had two physical rate constants quenched to the a ${}^{7}S_{3}$ and a ${}^{5}D_{1}$ states and to the a ${}^{5}D_{2}$ and a ${}^{5}D_{1}$ states, respectively. The disappearance of W atoms due to an escape from an observation zone was postulated to have the same rate constant k_d (= 2.5 × 10³ s^{-1}) for all states. Because there is not any physical quenching process for the lowest state, a ${}^{5}D_{0}$, the slope of the decay rates vs reactant pressure plots was thought to give a chemical quenching rate constant, $k_{0}^{c} = (1.3 \pm 0.2) \times 10^{-12} \text{ cm}^{3} \text{ s}^{-1}$ for C₂H₄ and $k^c_0 = (1.5 \pm 0.4) \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}$ for NH₃. In a simulation, it was assumed that these chemical quenching rate constants were adaptable for every a ${}^{5}D_{I}$ state. The physical quenching rate constants of the a ${}^{5}D_{J}$ states were estimated from the difference between the apparent total quenching rate constant and the chemical quenching rate constant, the values of which were used as the initial values in the trial calculation. Because the chemical quenching rate constants of the a ${}^{5}D_{I}$ states were fairly small compared to the apparent quenching process in both cases of C₂H₄ and NH₃, the alteration within one order in the chemical quenching rate constant did not affect these calculation curves significantly. It was therefore impossible to recognize the characteristically J-dependent of the chemical quenching rate constants of the a ⁵D₁ states, as observed for some oxidants.⁶ The observed transient data without C₂H₄/NH₃, especially the three data sets in Figs. 4a, 4d, and 5d, show a substantial disagreement with the simulation results compared to the case with the reactant. This may suggest that there are some minor processes not included in our mechanism, such as the physical and chemical quenching by coordinatively unsaturated tungsten carbonyls or CO produced in photolysis. By the addition of the reactant, these minor processes may have less effect on the total reaction mechanism, owing to the appearance of the main processes with the reactant.

The rate constants estimated from the visual fittings for W (a ${}^{5}D_{J}$ and a ${}^{7}S_{3}$) are summarized in Table 2 (for C₂H₄) and Table 3 (for NH₃) together with the apparent second-order

quenching rate constants. Some noticeable tendencies can be seen in their reactivity, though the resultant rate constants were not definitive because of the arbitrary kinetic model and of the arbitrary optimization of the fitting. The apparent second-order quenching rate constants of W (a ⁷S₃) with C₂H₄ and NH₃ of $(4.5 \pm 0.5) \times 10^{-10}$ and $(0.73 \pm 0.10) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹, estimated simply from the reactant pressure dependence of the *pseudo*-first-order depletion rates of W (a ⁷S₃), are slightly smaller than the sum of two rate constants for the physical and chemical processes. It seems to be reasonable that the state, which has an upper state with a tendency to be physically quenched, has a larger total quenching rate constant.

The a ${}^{7}S_{3}$ state is chemically more reactive with $C_{2}H_{4}$ than NH₃. Such a characteristic reactivity for the π -acceptor and σ -donor molecules has been observed in the ground state (a $^{7}S_{3}$) of the Mo atom, where the second-order rate constant for the Mo + C_2H_4 at 296 K was $2.3\times10^{-13}\mbox{ cm}^3\mbox{ s}^{-1}$ (at 7.8 Torr He), while that for the $Mo + NH_3$ was too small to be evaluated, $<5 \times 10^{-15}$ cm³ s⁻¹.¹⁴ Less reactivity of Cr (a $^{7}S_{3}$) for NH₃ and C₂H₄ has been observed at room temperature in the gas phase.^{15,16} A significant reactivity of W ($a^{7}S_{3}$), even for a σ -donor (NH₃), contrary to the cases of Cr (a ⁷S₃) and Mo (a ${}^{7}S_{3}$), may be interpreted as indicating a larger polarizability of the tungsten atom caused by 6s/5d hybridization, though the reported values of the static average electric dipole polarizabilities for ground state these atoms (Cr; 11.6 (± 2.9), Mo; 12.8 (\pm 3.2), W; 11.1 (\pm 2.8))¹⁷ do not show such a tendency. A 6s-orbit contraction and stabilization as a result of relativistic effect may make this hybridization easier. However, some of the resultant collision complexes, W(NH₃), can be expected to be unstable and to dissociate spontaneously. This dissociation process would contribute to the physical quenching to the lower electronic state, while the stabilization process for a collision complex would contribute to the chemical quenching.

The a ${}^{7}S_{3}$ state (5d⁵ 6s¹) is chemically more reactive with C_2H_4 than any states of a 5D_1 (5d⁴ 6s²) by a factor of 500 (Table 2). The bond formation of W (a $^{7}S_{3}$) with C₂H₄ can be interpreted by the Dewar-Chatt-Duncanson mechanism based on the analogy of the MO calculation of Mo (a $^{7}S_{3}$)- C_2H_4 .^{4,18,19} The chemical reaction of W (a ⁷S₃) with C_2H_4 could be treated as a second-order reaction in kinetic simulations, which may suggest that this addition pathway reaches a high-pressure limit, even at 6.0 Torr Ar buffer gas, and that the adduct complex $W(C_2H_4)^*$ has a rather long lifetime. In the s¹ configuration, the singly occupied d orbital of tungsten might overlap effectively with the vacant π^* orbital of C₂H₄ owing to the smaller electronic repulsion, weakening the C-C bond to form three-membered ring complex having some internal coordinates easy to flow into for the excess energy in the association coordinate. Such a long-lived M(alkene)* complex has been expected by a statistical unimolecular rate theory (RRKM theory), which assesses the plausibility of a saturated termolecular mechanism, even at 1 Torr He.⁴ The reduction of the 6s electron repulsion for the π electron of C₂H₄ can be interpreted in terms of the formation of 6s/5d hybridization. The first step is a weak adsorption of the C_2H_4 on the W atom, which is connected with a spin flip from a septet to a

Table 4. Second Order Rate Constants $k^{(2)}$ for Chemical Quenching of W (a ⁷S₃, a ⁵D_J) with Some Simple Molecules at ~300 K ($k^{(2)}/10^{-12}$ cm³ molecule⁻¹ s⁻¹)

	$O_2^{a)}$	NO ^{b)}	$N_2O^{b)}$	SO2 ^{b)}	C_2H_4	NH ₃
a ⁵ D ₄	1.8	7.1	1.5	36		
a ⁵ D ₃	2.5	15	1.9	22	~ 1.3	~ 0.15
a ⁵ D ₂	1.3	9.9	1.1	16		
a ⁷ S ₃	180	190	58	400	520	~20
a ⁵ D ₁	11	49	0.14	21	~1.3	~0.15
a ⁵ D ₀	1.6	28	0.003	6.0	1.3	0.15

a) Ref. 6. b) Ref. 7.

quintet. This coordination may subsequently be assisted by a π -back donation, because of the relativistic extraction of the 5d orbital. The addition product of W(C₂H₄) is expected to have a bent structure with a triplet (or quintet) electronic state with a loose C…C bond, the interaction of which may be similar to the Cr (a ⁷S₃) + O₂.⁵

The second-order rate constants for the chemical quenching of W (a ⁷S₃) for C₂H₄ and NH₃ at room temperature are summarized in Table 4 together with the presumed constants of W (a ⁵D_J). C₂H₄ is chemically reactive for the a ⁷S₃ (5d⁵ 6s¹) state as much as the oxidants,^{6,7} and the electron configuration also plays an important role in the coordination reaction of C₂H₄ in the same manner as the oxidation reactions.

There seems to be slight difference in the efficiency of physical quenching between C_2H_4 and NH_3 for the a 5D_J states, where NH₃ is observed to physically quench these states more effectively than C₂H₄. The degenerate deformation vibration frequency of NH₃ is 1627.5 cm⁻¹ and the C=C stretching vibration frequency of C_2H_4 is 1623.3 cm⁻¹, which are approximately resonant with the energy gaps of the a ⁵D_J manifold $(J = 0 \text{ to } J = 1, 1670.3 \text{ cm}^{-1}; 1 \text{ to } 2, 1655.2; 2 \text{ to } 3,$ 1504.5; 3 to 4, 1389.3). The facts that the physical quenching efficiency of NH_3 is about a few times as large as that of C_2H_4 , and that the physical quenching efficiency monotonously increases with increasing the level energy, are not consistent with the direct energy-transfer mechanism. These facts suggest that NH₃ is relatively easier to form a collision complex with a ${}^{5}D_{I}$ than C₂H₄ because the early barrier, probably for sd hybridization, may be overcome by the large dipole moment of NH₃. However, the resultant complex, W(NH₃), seems not to be stable at room temperature and to dissociate, where the a ${}^{5}D_{I}$ state may be physically quenched to the lower spin-orbit state. On the other hand, it is fairly difficult for C₂H₄ to overcome the early barrier because the electron density on C₂H₄ approaching the W atom is not high, resulting in the small quenching efficiency. The cross sections of intramultiplet mixing between the a ${}^{5}D_{I}$ states with $\Delta E \approx 1500 \text{ cm}^{-1}$ are on the order of 0.1 $Å^2$, which are smaller than those observed in the Cr (⁷P_J) states with $\Delta E \approx 100$ cm⁻¹ by two orders.²⁰

Summary

The a ${}^{7}S_{3}$ state of the tungsten atom is chemically more reactive with C₂H₄ than with NH₃, though it does react chemically with NH₃ differing from the other group-6 elements (Cr, Mo). Both reactions, W (a ${}^{7}S_{3}$) + C₂H₄ and W (a ${}^{7}S_{3}$) + NH₃, could be analyzed as being bimolecular, implying that even at a low total pressure of 6-Torr Ar the adduct complexes, W(C₂H₄)* or W(NH₃)*, had a relatively long lifetime, enough for deactivation. The a ${}^{7}S_{3}$ state (5d⁵ 6s¹) is chemically more reactive with C₂H₄ than any states of a ${}^{5}D_J$ (5d⁴ 6s²) by a factor of 500 (Table 2). The physical quenching appeared to dominate over the chemical quenching for W (a ${}^{5}D_J$) in both cases of C₂H₄ and NH₃. The large interaction between W (a ${}^{7}S_{3}$) and W (a ${}^{5}D_J$), not only with C₂H₄, but also with NH₃, is consistent with the relativistic contraction of the 6s shell and the relativistic expansion of the 5d shell.

We are grateful to Professor K. Honma (Himeji Institute of Technology) for useful comments on the kinetic interpretation. This work was supported by a Grant-in-Aid for Scientific Research (No. 11640508) from the Ministry of Education, Culture, Sports, Science and Technology.

References

1 Y. Wen, A. Yethirai, and J. C. Weisshaar, *J. Chem. Phys.*, **106**, 5509 (1997).

- 2 M. L. Campbell, J. Phys. Chem. A, 102, 892 (1998).
- 3 K. Honma, J. Phys. Chem. A, 103, 1809 (1999).

4 J. J. Carroll, K. L. Haug, J. C. Weisshaar, M. R. A. Blomberg, P. E. M. Siegbahn, and M. Svensson, *J. Phys. Chem.*, **99**, 13955 (1995).

5 A. Martinez, J. Phys. Chem. A, 102, 1381 (1998).

6 M. L. Campbell and R. E. McClean, J. Chem. Soc., Faraday Trans., **91**, 3787 (1995).

7 J. S. S. Harter, M. L. Campbell, and R. E. McClean, *Int. J. Chem. Kinet.*, **29**, 367 (1997).

8 K. Honma, M. Nakamura, D. E. Clemmer, and I. Koyano, J. Phys. Chem., **98**, 13286 (1994).

9 K. S. Pitzer, Acc. Chem. Res., 12, 271 (1997).

10 P. Pyykkö, Chem. Rev., 88, 563 (1988).

11 L. Lian, P. A. Hackett, and D. M. Rayner, J. Chem. Phys., **99**, 2583 (1993).

12 Y. Ishikawa and Y. Matsumoto, *Chem. Phys. Lett.*, **352**, 209 (2002).

13 "Atomic Energy Levels, Vol. III," ed by C. E. Moore, NSRDS-NBS, 35, U.S. Government Printing Office, Washington D.C. (1971), p. 156.

14 L. Lian, S. A. Mitchell, and D. M. Rayner, *J. Phys. Chem.*, **98**, 11637 (1994).

15 J. M. Parnis, S. A. Mitchell, and P. A. Hackett, J. Phys. Chem., 94, 8152 (1990).

16 Y. Ishikawa, H. Ogawa, and T. Iwaki, *Bull. Chem. Soc. Jpn.*, **75**, 493 (2002).

17 "CRC Handbook of Chemistry and Physics, 70th Edition," ed by R. C. Weast, CRC Press, Inc., Boca Raton, Florida (1989– 1990), E-72.

18 M. R. A. Blomberg, P. E. M. Siegbahn, and M. Svensson, *J. Phys. Chem.*, **96**, 9794 (1992).

19 J. J. Carroll, K. L. Haug, and J. C. Weisshaar, *J. Am. Chem. Soc.*, **115**, 6962 (1993).

20 J. M. Parson and T. Ishikawa, J. Chem. Phys., 80, 3137 (1984).