

Communication

N(#)-2-Naphthylmethoxymethyl-Protected Histidines: Scalable, Racemization-Free Building Blocks for Peptide Synthesis

Kohei Torikai, Ryota Yanagimoto, and Louis A Watanabe

Org. Process Res. Dev., Just Accepted Manuscript • DOI: 10.1021/acs.oprd.9b00538 • Publication Date (Web): 19 Feb 2020 Downloaded from pubs.acs.org on February 23, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

$N(\pi)$ -2-Naphthylmethoxymethyl-Protected Histidines: Scalable, Racemization-Free Building Blocks for Peptide Synthesis

Kohei Torikai,*^{,†} Ryota Yanagimoto,[†] and Louis A. Watanabe[‡]

[†] Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

[‡] Watanabe Chemical Industries, Ltd., 2-2-5 Sakaimachi, Naka-ku, Hiroshima 730-0853, Japan

Supporting Information Placeholder

ABSTRACT: Histidine (His) racemizes with relative ease during peptide synthesis. One strategy to suppress this racemization is the protection of the nitrogen atom of the imidazole moiety in His with a suitable protecting group. Among the numerous protecting groups that have already been tested, the *p*-methoxybenzyloxymethyl (PMBOM) group on the π -nitrogen atom effectively suppresses the racemization. However, a large-scale synthesis of $N(\pi)$ -PMBOM-protected derivatives has hitherto been hampered by the requirement of a freshly prepared unstable reagent. Herein, we report the synthesis of $N(\pi)$ -2-naphthylmethoxymethyl (NAPOM)-protected His derivatives, which can be prepared on a gram scale and do not suffer from the aforementioned instability problems. Furthermore, these NAPOM-protected His derivatives suppress the racemization in Boc- and Fmoc-based peptide synthesis.

KEY WORDS: histidine, $N(\pi)$, NAPOM, protecting group, racemization, peptide synthesis

INTRODUCTION

Histidine (His; **1** in Scheme 1), one of the 20 naturally occurring amino acids, contains a basic imidazole moiety with two nitrogen atoms. The nitrogen atom that is in closer proximity to the stereocenter will henceforth be denoted $N(\pi)$ (from the Latin word "pros" – "in front"), whereas the other will be referred to as $N(\tau)$ (from the Greek word "tele" – "far, far off"). In biologically active peptides and proteins, the His imidazole moiety often serves as a hydrogenbonding and/or metal-binding site.¹ Given these significant roles, the controlled chemical synthesis of His-containing peptides has become an important task in the synthetic community.

Yet, the basicity of the imidazole moiety causes difficulties in the peptide synthesis.² Specifically, the His residue exhibits a high propensity toward epimerization, especially when its carboxylic moiety is activated in e.g. acid-halides or acid-anhydrides (**2**; Scheme 1), which is usually the case for the subsequent coupling with an elongating peptide chain. The epimerization is tentatively triggered via the abstraction of a C α -H by the π -nitrogen to generate enolate **3**, which affords L-His derivative **2** and its enantiomer *ent*-**2** at the same rate.³ In order to suppress this racemization, protection of the more nucleophilic and hence more easily and selectively protectable τ -nitrogen atom with bulky and/or electron-withdrawing groups such as triphenylmethyl (Trt) in e.g. **4** (Chart 1)⁴ was first attempted to reduce the basicity of the π -nitrogen atom indirectly.⁵ In fact, this $N(\tau)$ -protection considerably suppressed the racemization, albeit

that it was still unsatisfactory given the presence of the free π -nitrogen atom, which is considered to act directly as a base. Therefore, currently developed His building blocks bear protecting groups such as phenacyl,⁶ allyl,⁷ benzyloxymethyl (BOM),⁸ *t*-butyloxymethyl (Bum)9 and p-methoxybenzyloxymethyl (PMBOM)10ab on the π -nitrogen atom,⁵ as these groups suppress the racemization more efficiently. Among these, $N(\alpha)$ -fluorenylmethoxycarbonyl (Fmoc)- and $N(\pi)$ -PMBOM-protected His derivative 5 (Chart 1) is particularly useful, considering that the PMBOM group can be cleaved readily with trifluoroacetic acid (TFA) following the Fmoc-based peptide synthesis. Despite its synthetic utility, 5 has not found widespread applications, which is probably due to two main reasons: i) difficulties associated with generating 5 on a large scale, which requires substantial amounts of the relatively unstable protecting agent PMBOMCl, and ii) the requirement for low temperature reactions and chromatographic purification during the synthesis of PMBOMCl.^{10c} It should also be noted that the application of the PMBOM group to the Boc-based strategy may be difficult due to its lability under acidic conditions, which are required to remove the Boc group.

We have recently reported that the 2-naphthylmethoxymethyl (NAPOM) group (Chart 1) may serve as an alternative and also orthogonally to PMB(OM).¹¹ We discovered that the NAPOM group is moderately stable in acidic media, i.e., it tolerates e.g. 1 equivalent of camphorsulfonic acid in MeOH,¹¹ and a catalytic amount of trifluoromethanesulfonic acid at -20 °C,¹² while it is cleaved with CBr₄ in refluxing MeOH.¹¹ We envisaged that this lability of the NAPOM group could potentially offer the chance of a selective removal of the Boc group in the presence of NAPOM group. Furthermore, NAPOMCl, an introducing agent for the NAPOM group, is a stable and storable solid that can be prepared at 0 °C without chromatographic purification.¹¹ Herein, we report the chromatographyand epimerization-free synthesis of $N(\alpha)$ -Fmoc- (**6**) or $N(\alpha)$ -Bocand $N(\pi)$ -NAPOM-protected His (**7**), and their application to the racemization-free synthesis of peptides.

RESULTS AND DISCUSSION

The first task of our project was the chromatography-free synthesis of $N(\pi)$ -NAPOM-protected **6** and **7** under retention of the high enantiomer excess (ee). The synthesis of $N(\alpha)$ -Boc derivative **7** commenced with the esterification of inexpensive **1** using SOCl₂ and MeOH to afford **8** (Scheme 2). Since this esterification is very clean, crude **8**, after complete evaporation of all volatiles, was used in the next reaction, i.e., the selective introduction of the Boc group at the τ -nitrogen atom of **8**.

Scheme 1. Main Epimerization Pathway of the Histidine **Residue During Chemical Peptide Synthesis.**

Initially, we very slowly added Boc₂O to a mixture of 8 and Et₃N at room temperature (6 h), followed by stirring for further 18 h at room temperature. This approach afforded 9a in excellent selectivity (9a : 9b : $10 \approx 97$: 3 : 0), but low ee, judging from the fact that 11 obtained from this lot exhibited only 33% ee. We envisaged that the racemization could potentially occur during the prolonged exposure of the $N(\pi)$ -unprotected materials such as 8 and 9a to basic conditions. Thus, 8 was subsequently exposed to Et₃N and Boc₂O for only 2.5 h at room temperature,13 which furnished a mixture of 9a, 9b, and 10 in a 89 : 9 : 2 ratio. The ensuing treatment of this mixture with K₂CO₃ in MeOH to cleave any unnecessary Boc groups on the imidazole rings of 9a and 9b, generated Boc-His-OMe 10 in 73% over three steps as the sole product. Subsequently, 10 was protected using Ac₂O to afford acetate 11 (91% yield) as a colorless crystalline solid after reprecipitation. It should be noted that attempts to purify 11 by recrystallization resulted in considerable racemization.

The introduction of the NAPOM group at the π -nitrogen atom was achieved by treating 11 with NAPOMCl14 in the presence of MS5A at room temperature, and a subsequent saponification afforded $N(\alpha)$ -Boc-, $N(\pi)$ -NAPOM-protected His 7 in 50% yield over two steps with 99.7% ee¹⁵ after recrystallization. Here, a special purification process was required to obtain a pure specimen of 7: i) After concentrating the organic solvent mixture from the saponification in vacuo, the reagent-derived organic impurities were removed by washing the aqueous layer with Et2O under basic conditions, followed by ii) a back extraction at pH \approx 4, which recovered 7 in the organic layer; iii) the organic layer was then evaporated to dryness; iv) the residual crude material (84% purity, 90.2% ee) was dissolved in acetone and the undissolved solid, which is mainly a racemate of 7, was removed by filtration; v) the filtrate was evaporated in vacuo, and the residue was recrystallized from hexane/acetone. Next, we moved on to the synthesis of Fmoc-protected His 6. The remaining task to prepare 6 was a seemingly easy manipulation of the protecting group (Boc \rightarrow Fmoc), which turned out to be more complicated than anticipated. For instance, a known procedure using TMSOTf/2,6-lutidine for the removal of Boc was not suitable given that it requires the use of a halogenated solvent (CH₂Cl₂) and gave impure 13 and thus 6 after introducing the Fmoc group, which were difficult to purify; nevertheless, this procedure could be successfully applied to the synthesis of the PMBOM counterpart 5.10ab After considerable experimentation, we ultimately found that the use of HCl in ethyl acetate to give 14 and the use of N-(9-fluorenylmethoxycarbonyloxy)succinimide (FmocOSu) with Na₂CO₃ furnishes 6 (61% over 2 steps) without any byproducts detectable by NMR analysis after workup. Indeed, this material showed, without further purification, 97.7% purity and 99.7% ee15 via HPLC analysis.16

Scheme 2. Chromatography-free synthesis of $N(\pi)$ -NAPOM-protected histidines 6 and 7.

Scheme 3. Racemization test: Liquid-phase synthesis of (A) Boc-His(π-NAPOM)-Pro-NH₂ and (B) Fmoc-Ala-His-Pro.

As chromatographic purification steps and halogenic solvents are not required in this approach, our synthesis of $N(\pi)$ -NAPOMprotected His 6 and 7 could potentially be useful for the large-scale (e.g. industrial) synthesis of such synthons. Indeed, the reproducibility of this process was very good, at least on the gram scale. With building blocks 6 and 7 in hand, we turned our attention to applying them to the Boc- and Fmoc-based synthesis of peptides. To examine the racemization rate during Boc-based peptide synthesis (Scheme 3A), we selected Boc-His(π -NAPOM)-Pro-NH₂ (15) as a model peptide, considering that the His-Pro-NH₂ sequence has previously been reported to racemize easily at the His residue during its synthesis.^{6,7} When $N(\alpha)$ -Z- $N(\tau)$ -phenacyl-His (Z: benzyloxycarbonyl) or $N(\alpha)$ -Z- $N(\pi)$ -phenacyl-His were coupled with Pro-NH₂ (16) using dicyclohexylcarbodiimide (DCC) in the presence of Et₃N by Fletcher and co-workers, the target dipeptides were obtained in 30% and 96% de, respectively.⁶ In contrast, our N-(π)-NAPOM-protected His derivative 7 suppresses the racemization significantly and affords the corresponding dipeptide 15 with 99.3% de.15

For a demonstration of the synthetic utility in Fmoc-based liquidphase peptide synthesis (Scheme 3B), we chose Ala-His-Pro-OH as a model peptide, as this sequence has previously been used in a study to examine the racemization of PMBOM counterpart 5.^{10ab}

Fmoc-His(π)-NAPOM-OH 6 and Pro-O-*t*-Bu 17 were coupled using hexafluorophosphate azabenzotriazole tetramethyl uranium

60

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

(HATU) and diisopropylethylamine (DIPEA) to give Fmoc-protected dipeptide 18. After deprotection, free amine 19 was coupled with Fmoc-Ala-OH 20 to yield protected tripeptide 21.

Finally, removal of both the NAPOM and *t*-Bu groups from 21 via treatment with refluxing TFA in the presence of i-Pr₃SiH and water furnished tripeptide 22. Judging from the observed 99.7% de of 22, ¹⁵ which was identical to the ee of amino-acid building block 6, $N(\pi)$ -NAPOM-protected His perfectly prevents the racemization, even in the Fmoc-based strategy. It is noteworthy that when $N(\tau)$ -Trt-protected His counterpart 4 was subjected to the same peptide synthesis conditions, the de of 22 decreased to 98.2% de (data not 10 shown).

CONCLUSION

Herein, we have reported a chromatography-free synthesis of $N(\pi)$ -NAPOM-protected histidine derivatives and demonstrated their extremely high ability to prevent racemization, both in the Boc- and Fmoc-based synthesis of peptides. So far only very few $N(\pi)$ -protecting groups are known to be compatible with both the Boc and Fmoc strategies, despite continued demand of the Boc-based strategy in the base-sensitive synthesis of peptides.¹⁷ The BOM group is one of these rare examples, albeit that it requires potentially explosive hydrogenolysis or corrosive HF, which may be problematic in the context of a large-scale synthetic operation. Based on the results shown herein, it is feasible to expect a significantly increased number of applications for the NAPOM protecting group.

EXPERIMENTAL SECTION

Amino acids, derivatives of amino acids, protecting and condensation agents were purchased from Watanabe Chemical Industries, LTD, and used as supplied. Dehydrated toluene, MeOH, and N.Ndimethylformamide (DMF) were purchased from Kanto Chemical Co. Inc. or Wako Pure Chemical Industries Ltd., and used without further dehydration. Molecular sieves 5A (MS5A) were preactivated by heating in vacuo. All other chemicals were obtained from local venders, and used as supplied. Thin-layer chromatography (TLC) was performed using precoated TLC grass plates (silica gel 60 F_{254} , 0.25 mm thickness) for the reaction analyses. Silica gel (spherical, neutral, 100–210 µm) was used for column chromatography. IR spectra were recorded on an FT/IR equipment. ¹H and ¹³C NMR spectra were recorded at 400 MHz. Chemical shifts are reported in ppm from tetramethylsilane (TMS) with reference to internal residual solvent [¹H NMR, CDCl₃ (7.26), CD₃OD (3.31), DMSO-d6 (2.50); ¹³C NMR, CDCl₃ (77.16), CD₃OD (49.00), DMSO-d6 (39.52)]. The following abbreviations are used to designate the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet. High resolution mass spectra (HRMS) were recorded on an ESI-TOF equipment.

Boc-L-His-OMe 10. In the air, SOCl2 (9.00 mL, 125 mmol) was added to a solution of L-histidine 1 (15.0 g, 96.7 mmol) in dehydrated MeOH (390 mL) at 0 °C. After being stirred at 80 °C for 16 h, the reaction mixture was concentrated, and the residue was coevaporated with MeOH for 3 times to give crude methyl ester 8 (23.42 g, colorless solid). The crude material was used directly in the next reaction without further purification. In the air, to a solution of the above crude methyl ester 8 (23.42 g) in dehydrated MeOH (390 mL), (Boc)₂O (46.4 g, 212 mmol) and triethylamine (27.0 mL, 193 mmol) were added at 0 °C. After stirred at rt for 2.5 h, full consumption of methyl ester 8 was confirmed by TLC. The reaction was quenched with saturated aqueous solution of NH₄Cl (150 mL). The mixture was concentrated, and the residue was extracted with EtOAc. The organic layer was washed with saturated aqueous solution of NH₄Cl, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a crude mixture (33.5 g) of diBOC compounds 9a and 9b, and a monoBoc compound 10. This crude material was used directly in the next reaction without further purification. In the air, K₂CO₃ (1.26 g, 9.12 mmol) was added to the above crude mixture (33.5 g) in MeOH (360 mL) at rt. After stirred under reflux for 1 h, the reaction mixture was cooled to 0 °C, and quenched with saturated aqueous solution of KHSO₄ (7.50 mL). The mixture was concentrated and H₂O (150 mL) was added. The mixture was extracted with EtOAc (140 mL \times 9 times). The organic layer was washed with H₂O for 3 times, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give crude Boc-His-OMe 10 as a gum. To this gummy crude material, a mixture of hexane and EtOAc (10:1) was added and triturated to form powder material in the solvent. The powder was collected by suction filteration to afford Boc-L-His-OMe 10 (19.08 g, 70.9 mmol, 73% for 3 steps) as a colorless powder. Despite the absence of a purification process, the obtained powder showed fully identical physical data to those reported in the literature,¹⁸ except for optical rotation. In our case, **10** showed $[\alpha]_D^{25}$ +13.1 (c 1.02, CHCl₃), whereas the literature value was $[\alpha]_D^{25}$ -9.70 (c 1.00, CHCl₃).¹⁸ We also measured the $[\alpha]_D$ value of a commercially available Boc-L-His-OMe (Watanabe Chemical Industries, LTD., Japan), whose ee had been confirmed as >99.9% ee by HPLC (personal communication). The result was $\left[\alpha\right]_{D^{26}}$ +13.0 (c 1.00, CHCl₃), which is almost identical to ours.

Boc-L-His(τ -Ac)-OMe 11. In the air, Boc-L-His-OMe 10 (18.0 g, 66.8 mmol) was added to Ac₂O (90 mL) at 0 °C. After being stirred at 0 °C for 1 h, the reaction mixture was concentrated, coevaporated with toluene (5 times), and triturated in Et_2O /hexane = 1/5. The powder was collected by suction filtration to afford 11 (18.9 g, 60.7 mmol, 91%) as a colorless powder. Despite the absence of a purification process, the obtained powder showed clean ¹H NMR. [α]_D²⁹ +28.8 (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 1.6 Hz, 1H), 7.25 (s, 1H), 5.65 (broad d, J = 7.6 Hz, 1H) 4.58-4.61 (m, 1H), 3.73 (s, 3H), 3.02-3.07 (m, 2H), 2.56 (s, 3H), 1.43 (s, 9H); HRMS (ESI-TOF) m/z [M+Na]⁺ calcd for C14H21N3NaO5⁺ 334.1373, found 334.1359. Comment: An attempt to recrystallize 11, via a procedure accompanied by heating, resulted in the severe racemization. Because compound 11 seemed unstable, it was soon used in the next reaction.

Boc-L-His(π -NAPOM)-OH 7. After the moisture was removed from Boc-L-His(τ-Ac)-OMe 11 (5.25 g, 16.9 mmol) by azeotropy with dehydrated toluene (3 times), under argon atmosphere, dehydrated toluene (79.1 g) and MS5A (1.70 g, powder) were added and the reaction mixture was cooled to 0 °C. To the mixture was added NAPOMCl (5.23 g, 25.3 mmol) and the reaction was stirred at 0 °C for 10 min, and at rt for 22 h. The reaction mixture was filtered and the filtrate was evaporated under reduced pressure. The solid residue, which was poorly soluble in Et₂O, was washed with Et₂O (4 times) to give crude Boc-L-His(π -NAPOM)-OMe 12 (8.03 g) as a colorless solid. The crude material was used directly in the next reaction without further purification. In a stoppered flask, 2 M aqueous solution of NaOH (21.1 mL) was added to a solution of the above crude Boc-L-His(π -NAPOM)-OMe **12** (8.03 g) in MeOH (68 mL) at rt. After stirred at rt for 1.5 h, the reaction mixture was diluted with H₂O (68 mL), and concentrated under reduced pressure to remove MeOH. The residual aqueous mixture was washed with Et₂O (70 mL \times 3 times), and the pH of the aqueous layer was adjusted to 4 using saturated aqueous solution of KHSO₄ (6.2 mL). The acidified aqueous mixture was extracted with AcOEt (70 mL \times 5 times). The combined organic layers were washed with H₂O (100 mL \times 2 times) and dried over anhydrous Na₂SO₄. The mixture was filtered and the filtrate was concentrated under reduced pressure to give crude Boc-L-His(π -NAPOM)-OH 7 (6.76 g). To the crude material was added acetone (338 mL) and the insoluble material after sonication was filtered off. The filtrate was evaporated and the resultant gummy residue was recrystallized from hexane / acetone (2/3, 250 mL) to give Boc-L-His(π-NAPOM)-OH 7 (3.63

g, 8.53 mmol, 50% for 2 steps) as colorless needles. The purity and the enantiomeric excess of 7 at this stage were determined by HPLC as 97.7% (Figure S1) and 99.7% ee (Figure S2), respectively. **Comment:** Although these purity and enantiomeric excess were satisfactory to us, to ensure its commercialization, another recrystallization using hexane / acetone (1/4, 150 mL) was examined. As a result, purer specimen of 7 (2.80 g, 39%) was obtained as colorless needles, whose purity and ee were 99.5% and 99.7% ee, respectively (charts not shown). M.p. 148–149 °C; $[\alpha]_D^{22}$ +35.9 (c 0.80, CHCl₃); IR (neat) 3319 (broad), 3123, 2976, 2931, 1696 cm⁻ ¹; ¹H NMR (400 MHz, CD₃OD) δ 8.18 (s, 1H), 7.87–7.77 (m, 4H), 7.50–7.40 (m, 3H), 7.00 (s, 1H), 5.63 (d, J = 11.2 Hz, 1H), 5.59 (d, *J* = 11.2 Hz, 1H), 4.75 (d, *J* = 12.0 Hz, 1H), 4.71 (d, *J* = 12.0 Hz, 1H), 4.39 (broad m, 1H), ca. 3.38-3.30 (m, 1H, overlapped with a solvent peak); 3.08 (dd, J = 15.6, 8.4 Hz, 1H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CD₃OD) δ 175.4, 157.6, 138.4, 135.5, 134.7, 134.6, 131.1, 129.4, 129.0, 128.7, 127.9, 127.3, 127.2, 126.7, 125.3, 80.5, 76.1, 72.2, 54.8, 28.7, 27.7; HRMS (ESI-TOF) m/z [M+H]+ calcd for C23H28N3O5+ 426.2023, found 426.2027. Through an identical method, ent-7 was synthesized from D-histidine. The physical data of ent-7 were completely identical, except that it showed negative optical rotation with keeping the absolute value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Fmoc-L-His(π-NAPOM)-OH 6. In the air, 4 M HCl in EtOAc (31.0 mL, 124 mmol) was added to a solution of Boc-L-His(π -NAPOM)-OH 7 (2.00 g, 4.70 mmol) in EtOAc (16 mL) at 0 °C. After stirred at rt for 1.5 h, the reaction mixture was concentrated under reduced pressure. The residue was washed with EtOAc, and concentrated to give crude L-His(π -NAPOM)-OH·HCl 14 (2.03 g), which was used directly in the next reaction without further purification. In the air, saturated aqueous solution of Na₂CO₃ (11.8 mL, 24.4 mmol) and FmocOSu (2.39 g, 7.05 mmol) were added to a solution of the above-mentioned crude L-His(π-NAPOM)-OH·HCl 14 (2.03 g) in THF (11.8 mL) at 0 °C. After stirred at rt for 16 h, the reaction mixture was concentrated under reduced pressure. The resulting aqueous mixture was washed with EtOAc (5 times), and the pH was adjusted to 5.0 with saturated aqueous solution of KHSO₄. The acidified solution was extracted with EtOAc (10 times). The combined organic layers were washed with H₂O (4 times) and dried over anhydrous Na2SO4. The mixture was filtered and the filtrate was concentrated under reduced pressure to give crude Fmoc-L-His(π-NAPOM)-OH (2.65 g, colorless amorphus). The crude material was triturated in Et2O and the formed precipitate was collected by suction filtration to furnish Fmoc-L-His(π -NAPOM)-OH 6 (1.57 g, 2.87 mmol, 61%, 2 steps). The purity and the ee were determined to be 97.7% and 99.7% ee, respectively, via HPLC analyses (Figures S3 and S4). M.p. 171–172 °C; $[\alpha]_D^{20}$ -14.2 (c 0.30, DMF); IR (neat) 3407 (broad), 3132, 3056, 1710 cm⁻ ¹; ¹H NMR (400 MHz, DMSO-d6) δ 7.92–7.65 (m, 9H), 7.54–7.28 (m, 7H), 6.80 (s, 1H), 5.51 (d, J = 11.0 Hz, 1H); 5.46 (d, J = 11.0 Hz, 1H), 4.59 (s, 2H), 4.39-4.16 (m, 3H), 3.45-3.27 (broad, 1H), 3.24–3.11 (m, 1H), 3.01 (m, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 173.0, 155.9, 143.8, 140.7, 138.5, 134.8, 132.8, 132.5, 127.9, 127.8, 127.7, 127.6, 127.1, 126.2, 126.0, 125.8, 125.3×2 , 120.1, 73.4, 69.4, 65.7, 53.4, 46.6, 25.3; HRMS (ESI-TOF) m/z [M+H]+ calcd for $C_{33}H_{30}N_3O_5{}^+$ 548.2180, found 548.2196. Through an identical method, ent-6 was synthesized from D-histidine. The physical data of *ent-6* were completely identical, except that it showed positive optical rotation with keeping the absolute value.

Boc-His(π -NAPOM)-Pro-NH₂ 15. In a stoppered flask, Pro-NH₂ (13.9 mg, 0.117 mmol) was added to a solution of Boc-His (π -NAPOM)-OH 7 (50.1 mg, 0.117 mmol), anhydrous HOBt (16.0 mg, 0.117 mmol) and DCC (24.4 mg, 0.117 mmol) in dehydrated DMF (1.8 mL) at 0 °C. After stirred at rt for 16 h, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. After added water, the mixture was extracted with CHCl₃. The organic portions were combined and washed with saturated aqueous Na₂CO₃. The organic layer was dried over Na₂SO₄ and filtered,

and the filtrate was evaporated *in vacuo* to give crude Boc-His(π -NAPOM)-Pro-NH₂ **15** (100.0 mg). After keeping a part of this crude material (ca. 20 mg) for racemization analysis, the residue was roughly purified by silica gel column chromatography, using CHCl₃ and MeOH (50/1 to 10/1) as eluents, to give impure Boc-His(π -NAPOM)-Pro-NH₂ **15** to use as a reference of **15** in HPLC analysis. In the same procedure, *epi-15*, whose His residue has D-configuration, was synthesized from *ent-7*, and used in HPLC analysis (Figure S5A).

Fmoc-Ala-His-Pro-OH 22. In a stoppered flask, a solution of Pro-OtBu 17 (94.0 mg, 0.548 mmol) in dehydrated DMF (1.65 mL) was added to a solution of Fmoc-L-His(π -NAPOM)-OH 6 (200 mg, 0.365 mmol), HATU (278 mg, 0.731 mmol) and DIEA (63.6 µL, 0.365 mmol) in dehydrated DMF (2.0 mL) at rt. After stirred at rt for 1 h, the reaction mixture was diluted with CHCl3. The resultant solution was washed with saturated aqueous solution of KHSO4, and then with that of Na₂CO₃. The organic layer was separated and dried over anhydrous Na₂SO₄. The mixture was filtered and the filtrate was concentrated under reduced pressure to give crude Fmoc-His(π -NAPOM)-Pro-OtBu **18** (281 mg), which was used directly in the next reaction without further purification. 20% piperidine solution in dehydrated DMF (3.7 mL) was added to a solution of the above crude Fmoc-His(π-NAPOM)-Pro-OtBu 18 (281 mg) in dehydrated DMF (0.3 mL) at rt. After stirred for 30 min, the reaction mixture was concentrated under reduced pressure to give crude His(π -NAPOM)-Pro-OtBu **19** (244 mg), which was used directly in the next reaction without further purification. A solution of the above crude His(π-NAPOM)-Pro-OtBu 19 (244 mg) in dehydrated DMF (1.8 mL) was added to a solution of Fmoc-Ala-OH 20 (171 mg, 0.548 mmol), HATU (277.5 mg, 0.730 mmol) and DIEA (63.6 µL, 0.365 mmol) in dehydrated DMF (1.8 mL) at rt. After being stirred at room temperature for 1.5 h, the reaction mixture was diluted with CHCl3. The resultant solution was washed with saturated aqueous solution of KHSO₄, and then with that of Na₂CO₃. The organic layer was separated and dried over anhydrous Na₂SO₄. The mixture was filtered and the filtrate was concentrated under reduced pressure to give crude Fmoc-Ala-His(π-NAPOM)-Pro-OtBu 21 (305 mg), which was used in the next reaction without further purification. To the above crude material 21 (69.5 mg) was added a cocktail of i-Pr₃SiH (0.05 mL), H₂O (0.05 mL) and TFA (0.90 mL) at rt. After stirred under reflux for 1.5 h, the reaction was cooled to rt and evaporated. The residual amorphus was washed with Et₂O (3 times), to give crude Fmoc-Ala-His-Pro-OH 22 (48.0 mg). In the same procedure, crude material of epi-22, whose His residue has D-configuration, was synthesized from ent-6, and used as a reference in HPLC analysis (Figure S6A).

ASSOCIATED CONTENT

Supporting Information

HPLC charts to determine ee values, ¹H and ¹³C NMR charts of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: torikai@chem.kyushu-univ.jp

ORCID

Kohei Torikai: 0000-0002-9928-4300

Notes

The authors declare that a patent regarding the use of NAPOMC1 has been granted in the USA (Kyushu University, Agent for Introducing Protecting Group for Hydroxy group and/or Mercapto 1

2

3

4

5

6

7

8

9

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43 44 45

46 47 48

49

50

51

52

53

60

Group, Patent No. US10160694, December 25, 2018), and is pending in several other countries (Kyushu University, Agent for Introducing Protecting Group for Hydroxy group and/or Mercapto Group, Publication No. 20170305809, October 26, 2017).

ACKNOWLEDGMENTS

This work was financially supported by JSPS KAKENHI grant JP15K21210 for Young Scientists (B) (to K.T.), and a grant from Wako Pure Chemical Industries (to K.T.) related to a Wako Award in Synthetic Organic Chemistry (Japan).

10 **REFERENCES**

11 (1) For selected examples, see: (a) Dickmson, C.; Dickinson, F. M. The 12 Role of an Essential Histidine Residue of Yeast Alcohol Dehydrogenase, 13 Eur. J. Biochem. 1975, 52, 595-603.; (b) Schneider, F. Histidine in Enzyme Active Centers, Angew. Chem., Int. Ed., Engl. 1978, 17, 583-592.; (c) 14 Jovanovich, G.; Kostic, T.; Jankovic, M.; Savic, D. J. Nucleotide Sequence 15 of the Escherichia coli K12 Histidine Operon Revisited, J. Mol. Biol. 1994, 16 239, 433-435.; (d) Alifano, P.; Fani, R.; Lio, P.; Lazcano, A.; Bazzicalupo, 17 M.; Carlomangono, M. S.; Bruni, C. B. Histidine Biosynthetic Pathway and Genes: Structure, Regulation and Evolution, Microbiol. Rev. 1996, 60, 44-18 69.; (e) Carlomagno, M. S. L.; Chiariotti, P.; Alifano, A.; Nappo, G.; Bruni, 19 C. B. Structure and Function of the Salmonella typhimurium and Escherichia coli K-12 Histidine Operons, J. Mol. Biol. 1988, 203, 585-20 606.; (f) Eriksson, A. E.; Jones, T.A.; Liljas, A. Refined Structure of Human 21 Carbonic Anhydrase II at 2.0 Å Resolution, Proteins 1988, 4, 274-282.; (g) 22 Parkin, G. Synthetic Analogues Relevant to the Structure and Function of 23 Zinc Enzymes, Chem. Rev, 2004, 104, 699-767.

(2) Jones, J. H. Protection of the Imidazole Group. In Synthesis of Peptides and Peptidomimetics (Houben-Weyl E22a: Methods of Organic Chemistry); Goodman, M.; Felix. A. M.; Moroder, L.; Toniolo, C.; Eds.; Georg Thieme Verlag: Stuttgart and New York, 2002; pp 334–346.

27 (3) Isidro-Llobet, A.; Álvarez, M.; Albericio, F. Amino Acid-Protecting
28 Groups, *Chem. Rev.* 2009, 109, 2455–2504.
(4) Chem. Rev. 2009, 109, 2455–2504.

(4) (a) Stelakatos, G. C.; Theodoropouls, D. M.; Zervas, L. On the Trityl Method for Peptide Synthesis, J. Am. Chem. Soc. 1959, 81, 2884-2887. (b) Sieber, P.; Riniker, B. Protection of Histidine in Peptide Synthesis: A Reassessment of the Trityl Group, Tetrahedron Lett. 1987, 28, 6031-6034. (5) For benzyl groups, see: (a) du Vigneaud, V.; Behrens, O. K. A Method for Protecting the Imidazole Ring of Histidine During Certain Reactions and Its Application to the Preparation of l-Amino-N-methylhistidine, J. Biol. Chem. 1937, 117, 27-36.; for benzyloxycarbonyl groups, see: (b) Patchornik, A.; Berger, A.; Katchalski, E. Carbobenzoxy Derivatives of Histidine, Imidazole, and Benzimidazole, J. Am. Chem. Soc. 1957, 79, 6416-6420.; for adamantyloxycarbonyl groups, see: (c) Haas, W. L.; Krumkalns, E. V.; Gerzon, K. Adamantyloxycarbonyl, a New Blocking Group. Preparation of 1-Adamantyl Chloroformate, J. Am. Chem. Soc. 1966, 88, 1988–1992.; for 2,4-dinitrophenyl groups, see: (d) Shaltiel, S. Thiolysis of Some Dinitrophenyl Derivatives of Amino Acids, Biochem. Biophys. Res. Commun. 1967, 29, 178-183.; for p-toluenesulfonyl groups, see: (e) Sakakibara, S.; Fujii, T. Synthesis and Use of Nim-Tosyl-L-histidine, Bull. Chem. Soc. Jpn. 1969, 42, 1466.; for methyl- and methoxy-trityl groups, see: (f) Barlos, K.; Chatzi, O.; Gatos, D.; Stravropoulos, G.; Tsegenidis, T.

Fmoc-His(Mmt)-OH und Fmoc-His(Mtt)-OH. Zwei Nue Histidinderivative N^{im}-Geschützt mit Säure-hochempfindlichen Gruppen. Darstellung, Eigenschaften und Einsatz in der Peptidsynthese, *Tetrahedron Lett.* **1991**, *32*, 475–478.

(6) Fletcher, A. R.; Jones, J. H.; Ramage, W. I.; Stachulski, A. V. The Use of the $N(\pi)$ -Phenacyl Group for the Protection of the Histidine Side Chain in Peptide Synthesis, *J. Chem. Soc., Perkin Trans. I* **1979**, 2261–2267.

(7) Kimbonguila, A. M.; Boucida, S.; Guibé, F.; Loffet, A. On the Allyl Protection of the Imidazole Ring of Histidine, *Tetrahedron* **1997**, *53*, 12525–12538.

(8) Brown, T.; Jones, J. H.; Richards, J. D. Further Studies on the Protection of Histidine Side Chains in Peptide Synthesis: The Use of the π-Benzyloxymethyl Group, *J. Chem. Soc., Perkin Trans.* 1 1982, 1553–1561.
(9) Colombo, R.; Colombo, F.; Jones, J. H. Acid-labile Histidine Sidechain Protection: The N(π)-t-Butoxymethyl Group, *J. Chem. Soc. Chem. Commun.* 1984, 292–293.

(10) (a) Hibino, H.; Nishiuchi, Y. 4-Methoxybenzyloxymethyl Group as an N^{π} -Protecting Group for Histidine to Eliminate Side-chain-induced Racemization in the Fmoc Strategy, *Tetrahedron Lett.* **2011**, *52*, 4947–4949.; (b) Hibino, H.; Miki, Y.; Nishiuchi, Y. Synthesis and Application of N^{π} -Fmoc- N^{π} -4-Methoxybenzyloxymethylhistidine in Solid Phase Peptide Synthesis. *J. Pept. Sci.* **2012**, *18*, 763–769.; (c) For the preparation of PMBOMCl, see: Benneche, T.; Strande, P.; Undheim, K. A New Synthesis of Chloromethyl Benzyl Ethers, *Synthesis* **1983**, 762–763.

(11) Sato, T.; Oishi, T.; Torikai, K. Naphthylmethoxymethyl as a Mildly Introducible and Oxidatively Removable Benzyloxymethyl-type Protecting Group, *Org. Lett.* **2015**, *17*, 3110–3113.

(12) Karak, M.; Joh, Y.; Suenaga, M.; Oishi, T.; Torikai, K. 1,2-*trans* Glycosylation via Neighboring Group Participation of 2-*O*-Alkoxymethyl Groups: Application to One-pot Oligosaccharide Synthesis, *Org. Lett.* **2019**, *21*, 1221–1225.

(13) The reaction was quenched immediately after the TLC analysis had shown the full consumption of $\mathbf{8}$.

(14) For the preparation of NAPOMCl, see: Stefan, E.; Taylor, R. E. Stereoselective Synthesis of the C9–C19 Fragment of Lyngbyaloside B and C via Ether Transfer, *Org. Lett.* **2012**, *14*, 3490–3493. NAPOMCl is now commercially available from Watanabe Chemical Industries, Ltd. (Japan), Tokyo Chemical Industry, Co., Ltd. (Japan), and Fujifilm Wako Pure Chemical Corporation (Japan), based on the patent license agreement.

(15) For details of the analysis, see the SI.

(16) Recrystallization could be achieved using CHCl₃/MeOH/Et₂O = 4/1/1 (v/v) to give **6** in 23% over two steps, although the purified material showed almost identical purity and ee to the crude material.

(17) For example: Romano, R. L.; Liria, C. W.; Machini, M. T.; Colepicolo, P.; Zambotti-Villela, L. Cadmium Decreases the Levels of Glutathione and Enhances the Phytochelatin Concentration in the Marine Dinoflagellate *Lingulodinium polyedrum, J. Appl. Phycol.* **2017**, *29*, 811–820. For a base catalyzed β -elimination on protected cysteine, see also ref. (3).

(18) Taylor, C. M.; Thabrew De Silva, S. Synthesis of Histidinoalanine: A Comparison of β -Lactone and Sulfamidate Electrophiles, *J. Org. Chem.* **2011**, *76*, 5703–5708.

Table of Contents Graphic

π-N-NAPOM-Protected Histidines 1) Racemization Free
 2) Scalable
 3) Stable