Stereocontrolled General Synthesis of Pyrimidine C-Nucleosides Having Branched-chain Sugar Moieties¹⁾ Tsuneo Sato, Makoto Watanabe, Hiroshi Kobayashi, and Ryoji Noyori* Department of Chemistry, Nagoya University, Chikusa-ku, Nagoya 464 (Received February 23, 1983) A variety of pyrimidine G-nucleosides bearing branched-chain sugars can be synthesized starting from adequately substituted $(1R^*,6S^*,7S^*,8R^*)$ -7,8-isopropylidenedioxy-3,9-dioxabicyclo[4.2.1]nonan-4-ones. The general procedure consists of condensation with t-butoxybis(dimethylamino)methane, giving the corresponding α -dimethylaminomethylene lactones, base-catalyzed heterocycle formation with urea, thiourea, or guanidine, and acid-promoted removal of the isopropylidene protective group. The overall transformation proceeds with retention of the stereochemistry to afford only G- β -glycosyl nucleoside structures. We have recently developed a novel method²⁾ for the synthesis of pseudouridine (1), a component of tRNA, and its analogues such as 2-thiopseudouridine (2) and pseudoisocytidine $(3)^3$ via a common intermediate, (1R,6S,7S,8R) - 7,8 - isopropylidenedioxy - 3,9dioxabicyclo[4.2.1]nonan-4-one (4), which possesses a rigid $C-\beta$ -glycoside structure. Realization of this method relies on the efficiency of the transition metal aided [3+4] annulation using polybromo ketones and furans4) and the stereoregulation of the subsequent oxidative transformation. The great flexibility of this new procedure prompted us to prepare a variety of the synthetic analogues. So far interest in the synthesis of C-nucleoside analogues has centered around the compounds having an arabionsyl or deoxyribosyl residue.5) Being stimulated by the discovery of the antibiotics, angustomycin A and C6) and nucleosidin,7) which exhibit cytostatic or virostatic activity, we were particularly interested in C-nucleosides bearing a branched-chain ribofuranosyl moiety. Although a number of routes to branched-chain sugars have been developed during the past few years,8) there were reported no efficient total syntheses which gave directly and stereospecifically such sugar derivatives. present paper describes a completely stereocontrolled entry to pyrimidine C-nucleosides containing branchedchain sugar moieties. ## **Results and Discussion** Synthesis of 5'-Modified Pyrimidine C-Nucleosides.⁹⁾ The iron carbonyl- or Zn/Ag couple-promoted cyclocoupling of polybromo ketones and furan provides a general way to give the adducts of type 5.⁴⁾ The bicyclic ketone 5a thus obtained can be transformed oxidatively to 6a under perfect stereo- and regiochemical control.¹⁾ Heating of a mixture of the lactone 6a and a Bredereck reagent, t-C₄H₉OCH[N(CH₃)₂]₂¹⁰⁾ (excess), in DMF at 50 °C afforded the dimethylaminomethylene lactone **7a** (Z:E=70:30) in a good yield. Condensation of **7a** and urea with ethanolic sodium ethoxide formed the uracil derivative **8a** in 48% yield. The β stereochemistry at the anomeric 1' position was confirmed by the ¹H NMR analysis in pyridine- d_5 . The isopropylidene methyl signals appeared at δ 1.41 and 1.67 ($\Delta\delta$ =0.26 ppm), in accord with the Imbach's empirical rule.¹¹⁾ The spin-spin coupling constant, $J_{4',5'}$ =3.7 Hz, also supported this assignment.¹²⁾ Subsequent treatment of **8a** with 10% HCl in methanol at 25 °C furnished (\pm)-5',5'-dimethylpseudouridine (**9a**). No pyranose derivatives were formed by this deprotection procedure. When **7a** was treated with thiourea in refluxing ethanolic sodium ethoxide, the thiouracil derivative **10a** was obtained. The glycol protective group was then removed by 10% HCl in methanol to give (\pm)-5′,5′-dimethyl-2-thiopseudouridine (**11a**). The base-catalyzed condensation of **7a** with guanidine furnished the pseudoisocytidine derivative **12a**, which, by treatment with 10% HCl in methanol, afforded (\pm) -5',5'-dimethylpseudoisocytidine (**13a**) in quantitative yield. In a similar manner, the 5'-monoalkylated or -phenylated pseudouridines **9b—d**, the 5'-monosubstituted 2-thiopseudouridines 11b—d, and 5'-monosubstituted pseudoisocytidines 13b—d were prepared from the corresponding ketones 5b-d. In addition to the complete stereochemical control achieved in this synthesis, the configurational relationship between the carbonyl α position in 5 and the 5' carbon of the resulting nucleosides, 9, 11, and 13, is noteworthy. Since the chiral center created in the initial reductive [3+4] cyclocoupling of polybromo ketones and furan remains intact during the subsequent transformation, the stereochemistry inherent in 5b, for example, leads to the 6'-deoxyallofuranosyl structure, 9b, 11b, and 13b. Thus this approach allows a general entry to pyrimidine C-nucleosides possessing various carbon substituents at the 5' position. 13) Synthesis of 1'- and 4'-Modified Pyrimidine C-Nucleosides. A. 4'-Alkylated Pyrimidine C-Nucleosides: 14,15) The readily available lactone 14a¹) was condensed with t-C₄H₉OCH[N(CH₃)₂]₂ to afford the dimethylaminomethylene derivative 15a in 70% yield. Conversion of 15a to a uracil derivative 16a was accomplished by heating 15a with urea (10 equiv) in ethanolic sodium ethoxide in a fair yield. The assignment of β configuration of the uracil base was made on the basis of the ¹H NMR chemical shifts of the isopropylidene methyls (δ 1.40 and 1.66, $\Delta\delta$ =0.26 ppm). ¹¹ Exposure of **16a** to 10% HCl in methanol formed (\pm)-4'-methylpseudouridine (**17a**) in quantitative yield. Preparation of (\pm)-4'-methyl-2-thiopseudouridine (**19a**) was effected by heating **15a** with thiourea in ethanolic sodium ethoxide, followed by acidic removal of the isopropylidene group. Condensation of **15a** with guanidine followed by removal of the isopropylidene protective group produced (\pm)-4'-methylpseudoisocytidine (**21a**) in 64% yield. When an alkylated lactone **14b**¹⁾ was used as the starting material, the 4'-pentyl pyrimidine C-nucleosides, **17b**, **19b**, and **21b**, were obtained according to similar synthetic procedures. The otherwise unaccessible 4'-arylated pyrimidine C-nucleoside analogues, 17c, 19c, and 21c, have been prepared by this completely stereocontrolled recipe starting from the phenylated lactone 14c, derived from 2-phenylfuran and $\alpha,\alpha,\alpha',\alpha'$ -tetrabromoacetone.¹⁸⁾ B. 1'-Alkylated Pyrimidine C-Nucleosides: 14) When the methylated lactone **22a**¹⁾ was treated with t-C₄H₉OCH[N(CH₃)₂]₂ (neat, 90 °C), there was obtained the dimethylaminomethylene lactone **23a**, displaying IR absorptions at 1670 (C=O) and 1590 cm⁻¹ (C=C). This was subjected immediately to the condensation with urea in ethanolic sodium ethoxide to afford 24a. The reaction proceeded only sluggishly and the yield was only 7% based on 22a. The 1H NMR spectrum of 24a indicated that the product has β configuation at C-1' position; the singlets due to the isopropylidene methyls occurred at δ 1.39 and 1.65 ($\Delta\delta$ =0.26 ppm).¹¹⁾ Removal of the isopropylidene block with 10% HCl in methanol yielded (\pm) -1'-methylpseudouridine (25a). The lactone 23a underwent the sodium ethoxide-promoted condensation with thiourea in refluxing ethanol to produce the acetonide 26a. Subsequent deprotection with 10% HCl in methanol liberated (±)-1'methyl-2-thiopseudouridine (27a). Construction of the heterocyclic nucleus with guanidine gave rise to 28a, methanolysis of which catalyzed by HCl afforded hydrochloride salt of 29a. In a like manner, 1'pentyl pyrimidine C-nucleosides, 25b, 27b, and 29b, were obtained by employing the lactone 22b.1) Elaboration of heterocycles onto 22 was achieved less effectively because of the severe steric hindrance caused by the C-1' alkyl substitution. Nevertheless, this method realized the first synthesis of l'-alkylated C-nucleosides.22) C. 1'- and 4'-Hydroxymethylated Pyrimidine C-Nucleosides: Condensation of the lactone 30^{1}) with t- $C_4H_9OCH[N(CH_3)_2]_2$ in DMF at 90 °C provided the dimethylaminomethylene compound 31 in 91% yield. 38, $X = H_2$ 39, $X = CHN(CH_3)_2$ Treatment of 31 with urea in the presence of sodium ethoxide constructed the uracil skeleton and simultaneous removal of the benzoyl moiety gave 32 in a moderate yield. Deprotection of the isopropylidene group by 10% HCl in methanol formed (±)-4'-hydroxymethylpseudouridine (33) in 89% yield. Similarly, treatment of 31 with thiourea under the basic conditions, giving 34, followed by deprotection afforded (±)-4'-hydroxymethyl-2-thiopseudouridine (35). The base-catalyzed cyclization of 31 with guanidine, giving 36, followed by removal of the isopropylidene block furnished (±)-4'-hydroxymethylpseudoisocytidine (37) as hydrochloride salt. 36, $R-R=C(CH_3)_2$ 37, R=H (HCl salt) In a parallel fashion, the lactone 39, derived from 38 by the reaction with t-C₄H₉OCH[N(CH₃)₂]₂, was convertible to l'-hydroxymethylated pyrimidine C-nucleosides such as (\pm) -l'-hydroxymethyl-2-thiopseudouridine (41). Thus the base-promoted condensation of 39 and thiourea affording the acetonide 40 and subsequent removal of the protective group gave the C-nucleoside 41 which consists of psicose and a pyrimidine base.²²⁾ D. 1',4'-Dialkylated Pyrimidine C-Nucleosides:²⁴⁾ Bishydroxylation of **42a**²⁵⁾ using hydrogen peroxide (3 equiv) in the presence of a catalytic amount of osmium tetraoxide in a 10:1:1 mixture of acetone, t-butyl alcohol, and ether, followed by acetonidation with CuSO₄ and p-toluenesulfonic acid in acetone gave 43a. The α stereochemical assignment was made on the basis of the ¹H NMR spectrum which exhibited the H₆ and H_7 signal as a singlet at δ 4.30.26) Then exposure of 43a to trifluoroperacetic acid gave the lactone 44a in 77% yield. Subsequent reaction with neat tris(dimethylamino) methane²⁷⁾ at 90 °C afforded the (Z)dimethylaminomethylene lactone 45a in 38% yield (88% based on consumed 44a) as a single isomer. Condensation of 45a with urea with ethanolic sodium ethoxide formed 46a in 28% yield, which was then treated with 10% methanolic HCl to give $(\pm)-1',4'$ dimethylpseudouridine (47a). The ¹H NMR spectrum giving the isopropylidene methyl signals at δ 1.28 and 1.50 ($\Delta \delta = 0.22$ ppm) confirmed the β heterocycle stereochemistry assigned for 46a.11,28) When thiourea was employed for the analogous cyclization, there was obtained in 60% yield the 2-thiouracil derivative 48a, leading to 49a after deprotection. Use of guanidine in place of urea gave rise to 51a as HCl salt via 50a in 75% yield. **40**, $R-R=C(CH_3)_2$ **41**, R = H In a usual manner, the 1',4'-dipentyl analogues, 47b, 49b, and 51b, have also been prepared starting with 42b. Thus present way appears to provide a facile, general entry to 1',4'-disubstituted pyrimidine C-nucleosides which are not available by the conventional approaches **58a**, $R = CH_2OTBDMS$; $R'-R' = C(CH_3)_2$ **60a**, $R = CH_2OTBDMS$; $R'-R' = C(CH_3)_2$ **58b**, $R = CH_3$; $R'-R' = C(CH_3)_2$ **60b**, $R = CH_3$; $R'-R' = C(CH_3)_2$ **59a**, $R = CH_2OH$; R' = H **61a**, $R = CH_2OH$; R' = H (HCl salt) **59b**, $R = CH_3$; R' = H **61b**, $R = CH_3$; R' = H (HCl salt) reported to date. Synthesis of 2'-Alkylated Pyrimidine C-Nucleosides: ²⁹ Treatment of $52a^{1}$) with excess t-C₄H₉OCH[N(CH₃)₂]₂ at 70 °C afforded the corresponding condensation product 53a in 52% yield. The base-aided reaction with excess urea led to the uracil derivative 54a in 20% yield, deprotection of which by methanolic HCl gave (\pm)-2'-hydroxymethylpseudouridine (55a) in 95% yield. The β stereochemistry at the anomeric position was established chemically by converting the acetonide **54a** to the cyclo-C-nucleoside **57a**. Thus reaction of **54a** and methanesulfonyl chloride in pyridine and subsequent treatment with 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) in acetonitrile gave **57a** in ca. 60% yield. Formation of the expected product was substantiated by comparison of the UV spectrum in methanol (λ_{max} 295 nm, ε 3720) showing a well-known, characteristic bathochromic shift, with that of the starting open-form **54a** (λ_{max} 266 nm, ε 7150). 21 When the lactone 53a was annulated with thiourea, the protected nucleoside 58a was obtained in high yield. Brief treatment of 58a with methanolic HCl afforded $(\pm)-2'$ -hydroxymethyl-2-thiopseudouridine (59a). Similarly, treatment of 53a with guanidine, giving 60a, and acid-assisted deprotection under the standard conditions led to $(\pm)-2'$ -hydroxymethylpseudoisocytidine (61a) as HCl salt. In a like fashion, 2'-methylated pyrimidine C-nucleosides, **55b**, **59b**, and **61b**, were synthesized by use of **52b**.¹⁾ This method allows ready construction of the difficult-to-make hamamelose and 2'-methylribofuranose skeletons and introduction of pyrimidine rings at the 1'-position.³¹⁾ As has been outlined above, this approach is synthetically very flexible and a variety of C-nucleoside analogues can be made by parallel routes. The possibility was examined only with achiral or racemic precursors, but the optical resolution of the intermediates, leading to the "natural" configurations, could be done most conveniently at the stage of the lactones of type 4.2 ## **Experimental** General. All melting and boiling points are uncorrected. IR spectra were recorded on a JASCO IRA-1 spectrometer in CHCl₃ solution unless otherwise stated. ¹H NMR spectra were obtained using a Varian NV-21 or HA-100 spectrometer, and 13C NMR spectra were recorded at 20 MHz on a Varian CFT-20 spectrometer or at 25 MHz on a JEOL FX-100 spectrometer. The chemical shifts are recorded in parts per million relative to tetramethylsilane as an internal standard. Singlet, doublet, triplet, and multiplet are abbreviated to s, d, t, and m, respectively. Exact mass spectra were obtained at Central Research Laboratory of Ono Pharmaceutical Co. Elemental analyses were performed at the Research Laboratory of Fujisawa Pharmaceutical Co. and Faculty of Engineering of Nagoya University. Drying of organic extracts was done over anhydrous Na₂SO₄. For concentration of organic solvents, a vacuum (50-100 mmHg)** rotary evaporator was used. Chromatography. Thin-layer chromatography (TLC) was done using a glass plate coated with 0.25-mm layers of silica gel 60 PF₂₅₄ obtained from E. Merck and for preparative TLC, 20×20 -cm glass plates coated with a 1.0-mm layer of silica gel 60 PF₂₅₄ were employed. Analytical plates were visualized by spraying with a solution of 2% Ce(SO₄)₂ in 5% H₂SO₄ or 2% p-anisaldehyde in 5% ethanolic H₂SO₄ followed by heating on a hot plate. The position of spots are shown by $R_{\rm f}$ values. For column chromatography, E. Merck Kieselgel 60 (70—230 mesh) was used. For separation of the dimethylaminomethylene lactones, silica gel treated with diluted aqueous ammonia was used.³³ Solvents and Materials. DMF, acetonitrile, t-C₄H₉OH, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were used after distillation from CaH₂. Acetone and CH₂Cl₂ were distilled from P₂O₅. Ethanoi was distilled over magnesium ribbons. THF and ether were distilled from sodium benzophenone ketyl. Preparations of Zn/Ag couple,³⁴ Zn/Cu couple,³⁵ 2-pentylfuran,¹⁾ $\alpha,\alpha,\alpha',\alpha'$ -tetrabromoacetone,³⁶ t-butoxybis(dimethylamino)methane,¹⁰⁾ and tris(dimethylamino)methane²⁷⁾ were performed according to the known procedures. Other commercially supplied materials and sol- vents were used as received. Preparation of Methyl [(2S*,3S*,4S*,5R*)-5-Hydroxymethyl-3,4-isopropylidenedioxy-5-phenyltetrahydrofuran-2-yl]acetate. mixture of 14c (111 mg, 0.383 mmol),1) sodium methoxide (31.0 mg, 0.574 mmol), and CH₂OH (3 ml)*** was stirred at 0 °C for 1 h under argon and to this was added oxalic acid (100 mg). Evaporation followed by extraction with chloroform afforded the title compound (115 mg, 91%) as a white solid. $R_f = 0.28$ (1:1 hexane-ethyl acetate); IR 3580 (OH), 1732 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 1.04 and 1.28 (s, isopropylidene CH_3), 2.74 (dd, J=6.0, 14.5 Hz, $\underline{H}_a H_b CC = O$), 2.96 (dd, J = 4.8, 14.5 Hz, $\underline{H}_a \underline{H}_b CC = O$), 3.62 (d, J=12.5 Hz, \underline{H}_aH_bCOH), 3.77 (s, OCH_3), 3.86 (d, $J=12.5 \text{ Hz}, H_a H_b COH), 4.40 \text{ (m, } H_2), 4.56 \text{ (t-like, } J=$ 6.0 Hz, H₃), 5.02 (br, OH), 5.16 (d, J=6.0 Hz, H₄), 7.35 (m, C_6H_5); ¹³C NMR (CDCl₃) δ 25.80, 26.70, 37.21, 51.94, 69.33, 79.65, 83.86, 84.06, 90.23, 114.44, 126.50, 127.27, 127.82, 138.12, 171.69. Found: m/z, 291.1231. Calcd for $C_{16}H_{19}O_5$: (M-OCH₃), 291.1232. Preparation of 2,5-Dipentylfuran. To a mixture of n-C₄H₆Li (1.6 mol dm⁻³ hexane solution, 288 ml, 0.461 mol) and THF (350 ml) was added 2-pentylfuran (60.6 g, 0.439 mol) at -10 °C under argon. After the mixture was stirred at the same temperature for 6 h, pentyl iodide (91.3 g, 0.461 mol) was added. The reaction mixture was stirred at 20 °C for 12 h and then poured into ice-water (200 ml). The organic layer was separated and the aqueous layer was extracted with ether (150 ml×3). The combined organic extracts were dried (MgSO₄) and evaporated to leave a vellow oil, which was distilled under reduced pressure to give 2,5-dipentylfuran (68.2 g, 75%, bp 103—108 °C/9 mmHg (lit,³⁷⁾ 99—100 °C/5 mmHg)) as a colorless oil. ¹H NMR $(CDCl_3)$ δ 0.91 (t, J=6.3 Hz), 1.1—1.8 (m), 2.57 (t, J=7.0 Hz), 5.84 (s); MS m/z 208 (M⁺). 1,5-Dimethyl-8-oxabicyclo [3.2.1] oct-6-en-3-one (42a). a mixture of Zn/Ag couple (26.0 g, 0.40 g-atom) and 2,5dimethylfuran (21.3 ml, 0.20 mol) in THF (150 ml) was added a solution of $\alpha, \alpha, \alpha', \alpha'$ -tetrabromoacetone (224 g, 0.60 mol) in THF (200 ml) over 30 min at -10 °C under argon. The mixture was allowed to warm up to 20 °C and stirred at the same temperature for 12 h. The mixture was evaporated and the residue was dissolved in CH₃OH saturated with NH₄Cl (400 ml). To this was added portionwise Zn/Cu couple (130 g, 2.0 g-atom) over 2 h at 0 °C. The mixture was stirred at 20 °C for an additional 1 h and diluted with water (400 ml) and saturated disodium dihydrogen ethylenediaminetetraacetate (Na₂H₂edta) solution (400 ml). The insoluble material was removed by filtration and the filtrate was extracted with CH₂Cl₂ (300 ml×3). The combined organic layers were dried (Na₂SO₄) and concentrated. Chromatography of the residue on a silica-gel column using a 3:1 hexane-ethyl acetate mixture afforded 42a (20.0 g, 66%) as a white solid. Mp 64—66 °C (hexane-chloroform); R_f = 0.47 (3:1 hexane-ethyl acetate); IR 1715 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 1.50 (s, CH₃), 2.32 (d, J=16.1 Hz, H_{2a} and H_{4a}), 2.51 (d, J=16.1 Hz, H_{2b} and H_{4b}), 5.97 (s, H_{6} and H_7); ¹³C NMR (CDCl₃) δ 23.30, 51.12, 83.83, 136.42, 207.07. Found: C, 71.55, H, 8.06%. Calcd for C₉H₁₂O₂: C, 71.02; H, 7.95%. 7,5-Dipentyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (42b). A mixture of Zn/Ag couple (39.0 g, 0.60 g-atom), 2,5-dipentyl-furan (62.4 g, 0.30 mol), $\alpha,\alpha,\alpha',\alpha'$ -tetrabromoacetone (337 g, 0.9 mol), and THF (400 ml) was stirred at 20 °C for 24 h. Reduction of the reaction mixture with Zn/Cu couple (292 g, 4.50 g-atom) in CH₃OH (500 ml) saturated with NH₄Cl ^{** 1} mmHg≈133.322 Pa. ^{*** 1} ml=0.001 dm³. followed by extractive workup with CH_2Cl_2 gave a brown oil. Chromatography of the residue on a silica-gel column using a 10:1 hexane–ethyl acetate mixture afforded **42b** (32.5 g, 41%) as a colorless oil. $R_{\rm f}{=}0.35$ (10:1 hexane–ethyl acetate); IR (neat) 1720 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 0.90 (t, $J{=}6.5$ Hz, CH₃), 1.1—1.9 (m, CH₂), 2.28 (d, $J{=}16.0$ Hz, H_{2a} and H_{4a}), 2.48 (d, $J{=}16.0$ Hz, H_{2b} and H_{4b}), 5.95 (s, H₆ and H₇); ¹³C NMR (CDCl₃) δ 14.00, 22.59, 23.65, 32.18, 36.65, 50.53, 86.59, 135.42, 207.25. Found: m/z, 264.2092. Calcd for C₁₇H₂₈O₂: M, 264.2089. In addition, unreacted 2,5-dipentylfuran (12.9 g) was recovered. (1S*,5R*,6S*,7R*) - 1,5 - Dimethyl - 6,7 - isopropylidenedioxy-8oxabicyclo[3.2.1]octan-3-one (43a).To a mixture of 42a (25.0 g, 0.164 mol) and OsO₄ (300 mg, 1.18 mmol) in acetone (200 ml), t-C₄H₉OH (20 ml), and ether (20 ml) was added $30\%~H_2O_2~(36.2~\text{ml},~0.329~\text{mol}).$ The mixture was stirred at 19 °C for 15 h and to this was added renewedly 30% H₂O₂ (18.1 ml, 0.165 mol). The mixture was stirred for an additional 12 h and cooled to 0 °C. To this was added powder of Na₂S₂O₃·5H₂O (77 g) and stirring was continued at 20 °C for 3 h. The residue obtained by evaporation was extracted with ethyl acetate (250 ml \times 3). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was dissolved in acetone (250 ml) and to this was added CuSO₄ (30 g) and p-toluenesulfonic acid (250 mg). The resulting mixture was stirred at 20 °C for 12 h. The insoluble material was removed by filtration and the filtrate was concentrated to afford a dark oil, which was chromatographed on a silica-gel column using a 3:1 hexane-ethyl acetate mixture to afford **43a** (22.5 g, 61%). Mp 67—68 °C (hexane-chloroform); $R_f = 0.32$ (3:1 hexane-ethyl acetate); IR 1720 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 1.30 and 1.52 (s, isopropylidene CH_3), 1.41 (s, CH_3), 2.28 (d, J=15.0~Hz, H_{2a} and H_{4a}), 2.50 (d, J=15.0~Hz, H_{2b} and H_{4b}), 4.30 (s, H_6 and H_7); ¹³C NMR (CDCl₃) δ 20.12, 25.00, 26.12, 51.71, 82.59, 85.30, 112.42, 206.90. Found: m/z, 211.0971. Calcd for $C_{11}H_{15}O_4$: $(M-CH_3)$, 221.0970. (1S*,5R*,6S*,7R*)-1,5-Dipentyl-6,7-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3-one (43b). A mixture of 42b (11.8 g, 44.7 mmol), acetone (70 ml), t-C₄H₉OH (7 ml), ether (7 ml), OsO₄ (100 mg), and 30% H₂O₂ (14.7 ml, 134 mmol) was stirred at 20 °C for 12 h and to this was added Na₂S₂O₃. 5H₂O (33.5 g) at 0 °C. The resulting mixture was stirred at 20 °C for 3 h. After the usual workup, the residue was dissolved in acetone (150 ml). To this was added CuSO₄ (15 g) and p-toluenesulfonic acid (100 mg). After stirring at 20 °C for 24 h, the usual workup and chromatographic isolation (silica gel, 10:1 hexane-ethyl acetate) yielded 43b (6.50 g, 43%) as a colorless oil. $R_f = 0.36 (10:1 \text{ hexane})$ ethyl acetate); IR 1720 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 0.90 (t, $J\!=\!6.0~\mathrm{Hz},~\mathrm{CH_3}),~1.28$ and 1.50 (s, isopropylidene CH_3), 1.1—1.9 (m, CH_2), 2.30 (d, J=14.5 Hz, H_{2a} and H_{4a}), 2.48 (d, J=14.5 Hz, H_{2b} and H_{4b}), 4.30 (s, H_{6} and H_7); ¹³C NMR (CDCl₃) δ 16.64, 25.19, 26.12, 27.78, 28.80, 35.03, 36.43, 52.18, 87.39, 87.59, 114.78, 210.07. (1R*,6S*,7R*,8S*) - 1,6 - Dimethyl-7,8-isopropylidenedioxy-3,9-dioxabicyclo[4.2.1]nonan-4-one (44a). Trifluoroperacetic acid prepared from trifluoroacetic anhydride (46.5 ml, 0.328 mol) and 90% $\rm H_2O_2$ (11.8 ml, 0.312 mol) in $\rm CH_2Cl_2$ (150 ml) was added dropwise to a stirred, ice-cooled mixture of $\rm Na_2HPO_4$ (140 g, 0.984 mol), $\rm Na_2H_2edta$ (1 g), and 43a (35.2 g, 0.156 mol) in $\rm CH_2Cl_2$ (200 ml). The mixture was stirred at 20 °C for 13 h and diluted with $\rm CH_2Cl_2$ (200 ml). To this was added $\rm Na_2S_2O_3 \cdot 5H_2O$ (78 g) at 0 °C and the resulting mixture was stirred at 20 °C for 3 h. The insoluble material was removed by filtration and the filtrate was evap- orated. Chromatography of the residue on a silica-gel column using a 3:1 to 2:1 hexane–ethyl acetate mixture afforded **44a** (28.9 g, 77%). Mp 123—124 °C (hexane–chloroform); R_f =0.15 (3:1 hexane–ethyl acetate); IR 1735 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 1.27 and 1.35 (s, CH₃), 1.35 and 1.51 (s, isopropylidene CH₃), 2.83 (d, J=16.0 Hz, H_{5a}), 3.07 (d, J=16.0 Hz, H_{5b}), 4.11 (d, J=13.5 Hz, H_{2a}), 4.33 (d, J=13.5 Hz, H_{2b}), 4.56 (d, J=6.0 Hz, H₇), 4.88 (d, J=6.0 Hz, H₈); ¹³C NMR (CDCl₃) δ 17.95, 22.16, 24.73, 26.01, 49.44, 75.96, 81.12, 83.63, 85.52, 112.57, 172.09. Found: C, 59.47; H, 7.60%. Calcd for C₁₂H₁₈O₅: C, 59.49, H, 7.49%. (1R*,6S*,7R*,8S*) - 1,6 - Dipentyl-7,8-isopropylidenedioxy-3,9dioxabicyclo[4.2.1] nonan-4-one (44b). To a mixture of 43b (15.5 g, 45.9 mmol), Na₂HPO₄ (64.8 g, 0.456 mol), and CH₂Cl₂ (100 ml) was added trifluoroperacetic acid in CH₂Cl₂ (1.08 mol dm⁻³ solution, 128 ml, 0.138 mol) at 0 °C. After stirring at 20 °C for 12 h, the reaction mixture was worked up to give a white solid, which was purified on a silica-gel column (10:1 hexane-ethyl acetate) to give 44b (12.2 g, 77%) as a white solid. Mp 60—62 °C (chloroform-hexane); $R_{\rm f} = 0.37$ (5:1 hexane-ethyl acetate); IR 1736 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 0.89 (t, J=6.0 Hz, CH₃), 1.31 and 1.49 (s, isopropylidene CH₃), 1.1—1.9 (m, CH₂), 2.28 (d, $J=15.5 \text{ Hz}, H_{5a}), 2.99 \text{ (d, } J=15.5 \text{ Hz}, H_{5b}), 4.17 \text{ (d, } J=$ 13.9 Hz, H_{2a}), 4.32 (d, J=13.9 Hz, H_{2b}), 4.52 (d, J=5.9Hz, H₇), 4.98 (d, J=5.9 Hz, H₈); 13 C NMR (CDCl₃) δ 13.96, 22.41, 23.52, 24.57, 25.92, 32.26, 32.86, 35.56, 46.74, 75.06, 83.17, 85.11, 85.30, 112.12, 173.12. Found: C, 67.79; H, 9.76%. Calcd for C₂₀H₃₄O₅: C, 67.76; H, 9.67%. In addition, unreacted ketone 43b (1.90 g) was recovered. Preparation of the α-Dimethylaminomethylene Lactones. General Procedure: Unless otherwise stated, the dimethylaminomethylenation was performed as follows. A mixture of a lactone, t-butoxybis(dimethylamino)methane or tris(dimethylamino)methane, and DMF (in some reactions, DMF was not used) was magnetically stirred at the stated temperature under argon. After stirring for the stated period, the mixture was concentrated under reduced pressure (0.01 mmHg) at 25—50 °C. Chromatography was done on a silica-gel column using the described solvent system as eluent. Elution course of the column chromatography was monitored by TLC and fractions including the desired product were combined and evaporated. A sample for elemental analysis was obtained by recrystallizations of the chromatographed product. (1S*,6R*7R*,8S*) - 2,2-Dimethyl-5-(dimethylaminomethylene)-7,8-isopropylidenedioxy-3,9-dioxabicyclo[4.2.1]nonan-4-one (7a). A mixture of $\bf 6a^{1}$) (520 mg, 1.75 mmol), DMF (5 ml), and t-butoxybis(dimethylamino)methane (2.5 ml) was heated at 50 °C for 3 h. The reaction mixture was subjected to the usual workup. Pure $\bf 7a$ (442 mg, 85%) was obtained by silica-gel column chromatography (5:1 to 1:1 hexane-ethyl acetate). Mp 136.5—137.2 °C (ether); $R_{\rm f}$ =0.35 (ethyl acetate); IR 1670 (C=O), 1590 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.33 and 1.51 (s, isopropylidene CH₃), 1.44 and 1.47 (s, CH₃), 2.93 and 3.14 (s, N(CH₃)₂, 3:7 ratio), 6.58 and 7.39 (s, =CHN(CH₃)₂, 3:7 ratio); MS m/z 297 (M⁺); UV $\lambda_{\rm max}$ (CH₃OH) 300 nm (ε 15850). Found: C, 60.24; H, 7.79; N, 4.55%. Calcd for $C_{15}H_{23}O_{5}N$: C, 60.59; H, 7.80; N, 4.71% (1R*,2R*,6R*,7R*,8R*)-5-(Dimethylaminomethylene)-7,8-iso-propylidenedioxy-2-methyl-3,9-dioxabicyclo[4.2.1]nonan-4-one (7b). A mixture of 6b¹) (35 mg, 0.15 mmol), t-butoxybis(dimethylamino)methane (0.3 ml), and DMF (1 ml) was stirred at 50 °C for 1 h. After the usual workup, the crude product was purified by preparative TLC (ethyl acetate) to give **7b** (20 mg, 47%). Mp 120.1—121.3 °C (ether–hexane); $R_{\rm f}$ =0.33 (ethyl acetate); IR 1680 (C=O), 1590 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.34 and 1.53 (s, isopropylidene CH₃), 1.38 (d, J=7.3 Hz, CH₃), 2.94 and 3.14 (s, N(CH₃)₂, 35:65 ratio), 6.66 and 7.34 (s, =C<u>H</u>N(CH₃)₂, 35:65 ratio); MS m/z 283 (M⁺); UV $\lambda_{\rm max}$ (CH₃OH) 298 nm (ε 16590). Found: C, 59.42; H, 7.64; N, 4.85%. Calcd for C₁₄H₂₁-O₅N: C, 59.35; H, 7.47; N, 4.94%. (1R*,2R*,6R*,7R*,8R*)-5-(Dimethylaminomethylene)-7,8-iso-propylidenedioxy-2-pentyl-3,9-dioxabicyclo [4.2.1]nonan-4-one (7c). A mixture of $6c^{1}$ (2.37 g, 8.36 mmol), t-butoxybis(dimethylamino)methane (12.0 ml), and DMF (15 ml) was stirred at 50 °C for 5 h. After the usual workup, the crude product was chromatographed on silica gel using ethyl acetate as the eluent to give 7c (2.45 g, 86%). Mp 86.2—87.8 °C (ether-hexane); R_f =0.53 (ethyl acetate); IR 1680 (C=O), 1595 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 0.89 (t-like, J=6.0 Hz, CH₃), 1.32 and 1.50 (s, isopropylidene CH₃), 2.94 and 3.12 (s, N(CH₃)₂, 37:63 ratio); MS m/z 339 (M+); UV λ_{max} (CH₃OH) 298 nm (ε 23980). Found: C, 63.62; H, 8.75; N, 4.01%. Calcd for C₁₈H₂₉O₅N: C, 63.69; H, 8.61; N, 4.13%. (1S*,2S*,6R*,7R*,8R*)-5-(Dimethylaminomethylene)-7,8-iso-propylidenedioxy-2-phenyl-3,9-dioxabicyclo[4.2.1]nonan-4-one (7**d**). A mixture of **6d**¹⁾ (98 mg, 0.338 mmol), t-butoxybis(dimethylamino)methane (0.5 ml), and DMF (2 ml) was stirred at 50 °C for 3.5 h. The usual workup and preparative TLC (2:1 ethyl acetate-hexane) yielded **7d** (74.0 mg, 64%) as a foam. R_f =0.51 (ethyl acetate); IR 1680 (C=O), 1590 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.28 and 1.47 (s, isopropylidene CH₃), 2.94 and 3.15 (s, N(CH₃)₂, 38:62 ratio), 6.73 (s, =C<u>H</u>N(CH₃)₂, E-isomer); MS m/z 345 (M⁺); UV λ_{max} (CH₃OH) 299 nm (ε 13810). (1R*,6R*,7S*,8S*)-5-(Dimethylaminomethylene)-7,8-isopropylidenedioxy-1-methyl-3,9-dioxabicyclo[4.2.1]nonan-4-one (15a). A mixture of 14a1) (952 mg, 4.18 mmol), tris(dimethylamino)methane (4.5 ml), and DMF (1 ml) was stirred at 70 °C for 1 h. To this was renewedly added tris(dimethylamino)methane (1.2 ml). After 2 h, tris(dimethylamino)methane (0.5 ml) was added again and stirring was continued for 3 h. The usual workup and chromatography on silica gel with a 1:1 hexane-ethyl acetate mixture to pure ethyl acetate afforded **15a** (831 mg, 70%). Mp 118—120 °C (ether); $R_f = 0.37$ (ethyl acetate); IR 1680 (C=O), 1590 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.26 and 1.51 (s, isopropylidene CH₃), 1.33 (s, CH₃), 2.94 and 3.11 (s, N(CH₃)₂, 33:67 ratio), 6.67 and 7.34 (s, $=CHN(CH_3)_2$, 33:67 ratio); MS m/z 297 (M+); UV λ_{max} (CH₃OH) 297 nm (ε 19800). Found: C, 59.18; H, 7.79; N, 4.92%. Calcd for C₁₄H₂₁O₅N: C, 59.35; H, 7.47; N, 4.92%. (7R*,6R*,7S*,8S*)-5-(Dimethylaminomethylene)-7,8-isopropylidenedioxy-1-pentyl-3,9-dioxabicyclo[4.2.1]nonan-4-one (15b). A mixture of 14b¹) (754 mg, 2.23 mmol), tris(dimethylamino)-methane (2.6 ml) was stirred at 70 °C for 1 h. The reaction mixture was worked up and purified by silica gel column chromatography (1:1 hexane-ethyl acetate to ethyl acetate) to give 15b (683 mg, 91%). Mp 117—118 °C (ether); R_f = 0.46 (ethyl acetate); IR 1680 (C=O), 1595 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 0.89 (t-like, J=6.0 Hz, CH₃), 1.30 and 1.50 (s, isopropylidene CH₃), 2.94 and 3.13 (s, N(CH₃)₂, 31:69 ratio), 6.67 and 7.34 (s, =CHN(CH₃)₂, 31:69 ratio); MS m/z 339 (M⁺); UV λ_{max} (CH₃OH) 297 nm (ε 18500). Found: C, 63.38; H, 8.94; N, 4.09%. Calcd for C₁₈H₂₉O₅N: C, 63.69; H, 8.61; N, 4.09%. (1R*,6R*,7S*,8S*)-5-(Dimethylaminomethylene)-7,8-isopropyl-idenedioxy-1-phenyl-3,9-dioxabicyclo[4.2.1]nonan-4-one (15c). A mixture of 14c¹) (987 mg, 3.40 mmol), tris(dimethylamino)- methane (3.5 ml), and DMF (2 ml) was stirred at 70 °C for 1 h. Purification of the reaction mixture by silica-gel column chromatography (1:1 hexane–ethyl acetate to ethyl acetate) gave **15c** (1.08 g, 92%). Mp 233—235 °C (acetone); $R_{\rm f}$ =0.48 (ethyl acetate); IR 1680 (C=O), 1598 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.30 and 1.33 (s, isopropylidene CH₃), 2.98 and 3.20 (s, N(CH₃)₂, 37:63 ratio), 6.80 (s, =CHN(CH₃)₂, E-isomer); MS m/z 345 (M+); UV $\lambda_{\rm max}$ (CH₃OH) 298 nm (ε 18300). Found: C, 66.21; H, 6.68, N, 4.02%. Calcd for C₁₉H₂₃O₅N: C, 66.07; H, 6.71, N, 4.06%. (1R*,6R*,7S*,8S*)-1-Benzoyloxymethyl-5-(dimethylaminomethylene)-7,8-isopropylidenedioxy-3,9-dioxabicyclo[4.2.1]nonan-4-one (31). A mixture of 30¹¹ (350 mg, 1.00 mmol) and t-butoxybis(dimethylamino)methane (1 ml) in DMF (1 ml) was stirred at 90 °C for 30 min. Workup followed by column chromatography (1:1 hexane-ethyl acetate to pure ethyl acetate) afforded 31 (368 mg, 91%) as a white foam. R_t =0.28 (1:2 hexane-ethyl acetate); IR 1725 and 1683 (C=O), 1590 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.31 and 1.50 (s, isopropylidene CH₃), 2.94 and 3.11 (s, N(CH₃)₂, 37:63 ratio), 6.70 (s, =CHN(CH₃)₂, E-isomer). (1R*,6R*,7R*, θ R*) - 6 - Benzoyloxymethyl - 5 - (dimethylaminomethylene) -7,8 - isopropylidenedioxy - 3,9 - dioxabicyclo [4.2.1] nonan-4-one (39). A mixture of 38¹¹ (696 mg, 2.0 mmol), t-butoxybis(dimethylamino)methane (2 ml), and DMF (1.5 ml) was stirred at 60 °C for 4 h. Chromatography on a silica-gel column using a 1:1 to 3:1 ethyl acetate-hexane mixture gave 39 (223 mg, 29%, 57% based on consumed starting material) as a white foam. R_f =0.46 (ethyl acetate); IR 1722 and 1690 (C=O), 1600 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.32 and 1.51 (s, isopropylidene CH₃), 2.84 and 3.16 (s, N(CH₃)₂, 80:20 ratio), 6.75 (s, =CHN(CH₃)₂, E-isomer). In addition, unreacted 38 was recovered (340 mg). (1R*,5Z,6R*,7R*,8S*)-5-(Dimethylaminomethylene)-1,6-dimethyl - 7,8 - isopropylidenedioxy - 3,9 - dioxabicyclo [4.2.1] nonan-4-one A mixture of **44a** (7.92 g, 32.7 mmol) and tris(dimethylamino)methane (30 ml) was stirred at 90 °C for 8 h. Workup gave a solid, which was purified on a silicagel column (1:1 hexane-ethyl acetate to pure ethyl acetate) to give **45a** (3.70 g, 38%). Mp 116—118 °C (ether); R_f = 0.41 (ethyl acetate); IR 1680 (C=O), 1595 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.25 and 1.47 (s, CH₃), 1.33 and 1.53 (s, isopropylidene CH_3), 2.87 (s, $N(CH_3)_2$), 3.97 (d, J=13.0 Hz, H_{2a}), 4.16 (d, J=13.0 Hz, H_{2b}), 4.59 (d, J=5.9Hz, H₇), 4.72 (d, J=5.9 Hz, H₈), 6.79 (s, $=C\underline{H}N(CH_3)_2$); 13 C NMR (CDCl₃) δ 17.48, 20.41, 24.69, 26.04, 44.22, 75.17, 82.15, 84.26, 84.87, 88.33, 100.57, 112.10, 149.13, 170.40. Found: C, 60.25; H, 7.87; N, 4.57%. Calcd for C₁₅H₂₃O₅N: C, 60.59; H, 7.80; N, 4.71%. In addition, unreacted 44a (4.51 g) was recovered. (1R*,5Z,6R*,7R*,8S*)-5-(Dimethylaminomethylene)-1,6-dipentyl - 7.8 - isopropylidenedioxy - 3.9 - dioxabicyclo[4.2.1] nonan-4-one(45b).A mixture of **44b** (1.76 g, 4.97 mmol) and tris(dimethylamino)methane (5 ml) was stirred at 90 °C for 4 h. The usual workup of the reaction mixture gave an oily product, which was subjected to silica-gel chromatography with a 1:1 hexane-ethyl acetate mixture to pure ethyl acetate to afford 45b (1.23 g, 61%) as a yellow oil. $R_{\rm f}$ =0.39 (1:1 hexane-ethyl acetate); IR 1688 (C=O), 1601 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 0.88 (t, J=6.0 Hz, CH₃), 1.33 and 1.51 (s, isopropylidene CH₃), 1.1—1.9 (m, CH₂), 2.84 (s, N(CH₃)₂), 3.88 (d, J=13.1 Hz, H_{2a}), 4.15 (d, J=13.1 Hz, H_{2b}), 4.52 (s, H_7 and H_8), 6.39 (s, $=C\underline{H}N(CH_3)_2$); 13 C NMR (CDCl₃) δ 14.03, 22.41, 23.37, 24.87, 26.09, 32.44, 33.00, 35.19, 43.61, 71.50, 83.22, 85.29, 86.45, 88.98, 99.58, 112.03, 146.50, 171.43. (1R*,6S*,7R*,8R*)-5-(Dimethylaminomethylene)-7,8-isopropylidenedioxy-7-methyl-3,9-dioxabicyclo [4.2.1]nonan-4-one (53b). A mixture of 52b¹) (1.00 g, 4.41 mmol), t-butoxybis(dimethylamino)methane (11 ml), and DMF (1 ml) was stirred at 70 °C for 1 h. Purification of the crude product by silica-gel chromatography (1:1 hexane–ethyl acetate to pure ethyl acetate) afforded 53b (789 mg, 63%). Mp 137—138 °C (hexane–ethyl acetate); R_f =0.45 (ethyl acetate); IR 1672 (C=O), 1592 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 3.44 and 3.52 (s, N(CH₃)₂, 3:2 ratio), 6.64 and 7.46 (s, =C<u>H</u>N-(CH₃)₂, 3:2 ratio); $UV \lambda_{max}$ (CH₃OH) 300 nm (ε 16400). Found: C, 59.18; H, 7.41; N, 4.86%. Calcd for $C_{14}H_{21}$ - O_5N : C, 59.35; H, 7.47; N, 4.94%. (1R*,6S*,7R*,8R*)-7-t-Butyldimethylsiloxymethyl-5- (dimethylaminomethylene) -7,8-isopropylidenedioxy -3,9-dioxabicyclo-[4.2.1] nonan-4-one (53a). A mixture of 52a¹) (1.86 g, 5.20 mmol), t-butoxybis(dimethylamino)methane (14.7 ml), and DMF (1.2 ml) was stirred at 70 °C for 1 h. Usual workup followed by silica-gel chromatography (2:1 to 1:2 hexane-ethyl acetate) afforded 53a (1.12 g, 52%). Mp 139—142 °C (hexane-ethyl acetate); R_f =0.37 (1:2 hexane-ethyl acetate); IR 1675 (C=O), 1581 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 2.95 and 3.14 (s, N(CH₃)₂, 1:2 ratio), 6.68 and 7.50 (s, =CHN(CH₃)₂, 1:2 ratio). Found: C, 57.64; H, 8.57; N, 3.21%. Calcd for C₂₀H₃₅O₆NSi: C, 58.08; H, 8.53; N, 3.39%. Reaction of Dimethylaminomethylene Lactones with Urea, Thiourea, and Guanidine. General Procedure: Method A: A mixture of a dimethylaminomethylene lactone, urea, and a C₂H₅ONa in C₂H₅OH solution was heated at reflux under argon until the reaction completed. The mixture was cooled to room temperature and evaporated to dryness. The resulting residue was dissolved in H2O. After careful neutralization with diluted hydrochloric acid, the aqueous solution was extracted with ethyl acetate. The organic layer was dried over anhydrous Na₂SO₄. The organic solution was concentrated under reduced pressure (50-90 mmHg), giving a crude material. The residue was subjected to preparative TLC. In TLC separation, silica-gel layer of the product area absorbing the 254-nm light was collected and extracted with a 1:1 chloroform-CH₃OH mixture. A sample for elemental analysis was obtained by repeated preparative TLC or recrystallization of the chromatographed product. Method B: The reaction was carried out according to Method A. After the reaction was complete, the mixture was cooled to room temperature. The reaction mixture was evaporated and the resulting residue was taken up in water. To this was carefully added diluted hydrochloric acid until the solution was neutralized by monitoring with a pH test paper. The aqueous solution was concentrated and the resulting residue was diluted with ethanol. The insoluble material was removed by the filtration through a short column of Celite 545 and concentrated with a rotary evaporator under reduced pressure (50—90 mmHg) at 25—50 °C. The residue was subjected to preparative TLC and worked up as described above. The same procedure was applied for the reaction using thiourea and guanidine hydrochloride instead of urea. With Urea. 5-[(2R*,3R*,4S*,5S*)-5-(1-Hydroxy-1-methylethyl)-3,4-isopropylidenedioxytetrahydrofuran-2-yl]uracil (8a): A mixture of **7a** (906 mg, 3.05 mmol), urea (1.90 g, 30.5 mmol), and 2.3 mol dm⁻³ C_2H_5ONa in C_2H_5OH solution (13 ml) was stirred for 5 h. The reaction mixture was subjected to the usual workup according to Method A. Pure **8a** (438 mg, 48%) was obtained by preparative TLC (5:1 chloroform-CH₃OH). Mp 153.1—156.8 °C (CH₃OH); R_f = 0.42 (7:1 chloroform-CH₃OH); ¹H NMR (C_5D_5N) δ 1.41 and 1.67 (s, isopropylidene CH₃), 1.48 and 1.53 (s, CH₃), 4.12 (d, J=3.7 Hz, H₅), 5.08 (d, J=3.7 Hz, H₂), 5.30 (m, H₃ and H₄), 7.93 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 263 nm (ε 3890), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 286 nm (ε 5370). Found: C, 53.96; H, 6.40; N, 9.05%. Calcd for C₁₄H₂₀O₆N₂: C, 53.84; H, 6.45; N, 8.97%. 5-[(2R*,3R*,4R*,5R*)-5-[(R*)-1-Hydroxyethyl]-3,4-isopropylidenedioxytetrahydrofuran-2-yl]uracil (8b): A mixture of 7b (975 mg, 3.45 mmol), urea (2.10 g, 34.5 mmol), and 2.30 mol dm⁻³ C_2H_5ONa in C_2H_5OH (15 ml) was stirred for 5 h. After the usual workup according to Method A, the crude product was purified by preparative TLC (5:1 chloroform–CH₃OH) to afford 8b (464 mg, 47%). Mp 264.5—266 °C (CH₃OH); R_f =0.37 (7:1 chloroform–CH₃OH); ¹H NMR (C_5D_5N) δ 1.40 and 1.66 (s, isopropylidene CH₃), 1.43 (d, J=5.2 Hz, CH₃), 4.27 (dd, J=3.0, 3.5 Hz, H₅), 4.30 (m, CHOH), 4.90 (br, OH), 5.10 (d, J=3.6 Hz, H₂), 5.30 (m, H₃ and H₄), 7.90 (s, =CH); UV λ_{max} (CH₃OH) 262 nm (ε 8310), λ_{max} (0.1 mol dm⁻³ NaOH) 285 nm (ε 7410). Found: C, 52.10; H, 5.97; N, 9.40%. Calcd for $C_{13}H_{18}O_6N_2$: C, 52.34; H, 6.08; N, 9.39%. 5-[(2R*,3R*,4R*,5R*) - 5-[(R*) - 1-Hydroxyhexyl]-3,4-iso-propylidenedioxytetrahydrofuran-2-yl]uracil (8c): A mixture of 7c (546 mg, 1.61 mmol), urea (981 mg, 16.1 mmol), and 1.6 mol dm⁻³ C_2H_5ONa in C_2H_5OH (10 ml) was stirred for 5 h. The usual workup according to Method A and preparative TLC (5:1 chloroform–CH₃OH) gave 8c (197 mg, 35%). Mp 209.5—212.0 °C (acetone); R_f =0.44 (7:1 chloroform–CH₃OH); ¹H NMR (C_5D_5N) δ 0.83 (t-like, J=6.0 Hz, CH₃), 1.10—1.90 (m, CH₂), 1.42 and 1.67 (s, isopropylidene CH₃), 4.19 (m, CHOH), 4.37 (t, J=3.0 Hz, H₅), 5.10 (d, J=4.5 Hz, H₂), 5.34 (m, H₃ and H₄), 7.91 (s, =CH); UV λ_{max} (CH₃OH) 263 nm (ε 6760), λ_{max} (0.1 mol dm⁻³ NaOH) 286 nm (ε 7400). Found: C, 57.47; H, 7.35; N, 7.98%. Calcd for $C_{17}H_{26}O_6N_2$: C, 57.61; H, 7.40; N, 7.91%. $5 - [(2R*,3R*,4R*,5S*) - 5 - [(S*) - α - Hydroxybenzyl] - 3,4-iso-propylidenedioxytetrahydrofuran-2-yl]uracil (8d): A mixture of 7d (205 mg, 0.594 mmol), urea (361 mg, 5.94 mmol), and 2.0 mol dm⁻³ C₂H₅ONa in C₂H₅OH (3 ml) was stirred for 4 h. The reaction mixture was worked up according to Method A and separated by preparative TLC (5:1 ethyl acetate–hexane) to afford 8d (90 mg, 42%). Mp 250.4—251.5 °C (CH₃OH); <math>R_f$ =0.48 (7:1 chloroform–CH₃OH); ¹H NMR (C₅D₅N) δ 1.27 and 1.55 (s, isopropylidene CH₃), 4.75 (dd, J=2.2, 4.2 Hz, H₅), 5.08 (dd, J=1.9, 4.0 Hz, H₃), 5.40 (m, H₂, H₄, and CHOH), 7.30—7.80 (m, C₆H₅), 7.88 (s, =CH); UV λ_{max} (CH₃OH) 263 nm (ε 2390), λ_{max} (0.1 mol dm⁻³ NaOH) 285 nm (ε 7580). Found: C, 60.09; H, 6.02; N, 7.90%. Calcd for C₁₈H₂₀O₆N₂: C, 59.99; H, 5.59; N, 7.77%. $5-\lceil (2R^*,3S^*,4S^*,5R^*)-5-Hydroxymethyl-3,4-isopropylidenedioxy-1$ 5-methyltetrahydrofuran-2-yl]uracil (16a): A mixture of 15a (537 mg, 1.90 mmol), urea (1.14 g, 19.0 mmol), and 1.58 mol dm⁻³ C₂H₅ONa in C₂H₅OH (12 ml) was stirred for 2 h. The reaction mixture was worked up according to Method A and purified by preparative TLC (10:1 chloroform-CH₃OH) to give **16a** (175 mg, 31%). Mp 200—205 °C (CH₃OH); R_f =0.60 (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.16 (s, CH₃), 1.24 and 1.51 (s, isopropylidene CH_3), 3.55 (br s, $C\underline{H}_2OH$), 4.48—4.86 (m, H_2 , H_3 , and H_4), 7.56 (s, =CH), 10.94 (br, NH); (C_5D_5N) δ 1.40 and 1.66 (s, isopropylidene CH₃), 1.50 (s, CH₃), 3.79 (d, J=11.0 Hz, \underline{H}_aH_bCOH), 3.95 (d, J=11.0 Hz, H_aH_bCOH , 5.07 (d, J=5.5 Hz, H_4), 5.15 (d, J=6.5 Hz, H_2), 5.44 (dd, J=5.5, 6.5 Hz, H_3), 7.92 (s, =CH); ${}^{13}C$ NMR (dimethyl- d_6 sulfoxide) δ 18.18, 25.22, 26.80, 67.19, 79.12, 82.99, 84.28, 85.13, 110.38, 112.70, 140.27, 151.07, 163.61; UV $\lambda_{\rm max}$ (CH₃OH) 266 nm (ε 7230), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 285 nm (ε 7510). Found: C, 52.03; H, 6.14; N, 9.22%. Calcd for C₁₃H₁₈O₆N₂: C, 52.34; H, 6.08; N, 9.39%. $5-\lceil (2R^*,3S^*,4S^*,5R^*)-5-Hydroxymethyl-3,4-isopropylidene$ dioxy-5-pentyltetrahydrofuran-2-yl]uracil (16b): A mixture of **15b** (571 mg, 1.68 mmol), urea (1.01 g, 16.8 mmol), and 1.4 mol dm⁻³ C₂H₅ONa in C₂H₅OH (12 ml) was stirred for 2 h. Workup according to Method A followed by preparative TLC (10:1 chloroform-CH₃OH) gave 16b mg, 28%). Mp 219—221 °C (CH₃OH); $R_f = 0.72$ (5:1 chloroform-CH₃OH); 1 H NMR (dimethyl- d_{6} sulfoxide) δ 0.88 (t, J=5.7 Hz, CH₃), 1.27 and 1.49 (s, isopropylidene CH_3), 1.2—1.9 (m, CH_2), 3.36 (br s, $C\underline{H}_2OH$), 4.55 (d, $J=5.0 \text{ Hz}, H_4$, 4.63 (d, $J=6.2 \text{ Hz}, H_2$), 4.78 (dd, J=5.0, 6.2 Hz, H_3), 7.55 (s, =CH), 11.03 (br, NH); (C_5D_5N) δ 0.84 (t, J=6.0 Hz, CH_3), 1.1—2.2 (m, CH_2), 1.41 and 1.67 (s, isopropylidene CH_3), 3.86 (d, J=11.3 Hz, $\underline{\mathbf{H}}_{a}\mathbf{H}_{b}\mathbf{COH}$), 4.07 (d, $J=11.3~\mathrm{Hz}$, $\mathbf{H}_{a}\underline{\mathbf{H}}_{b}\mathbf{COH}$), 5.03 (d, J=6.0 Hz, H₄), 5.20 (d, J=6.0 Hz, H₂) 5.51 (t, J=6.0 Hz, H_3), 7.96 (s, =CH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 13.71, 21.92, 22.66, 25.30, 26.95, 31.31, 32.15, 64.77, 79.66, 83.68, 86.74, 90.03, 110.30, 112.41, 140.37, 151.00, 163.52; UV $\lambda_{\rm max}$ (CH₃OH) 264 nm (ε 7830), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 285 nm (ε 7930). Found: C, 54.75; H, 7.32; N, 7.45%. Calcd for $C_{17}H_{26}O_6N_2 \cdot H_2O$: C, 54.82; H, 7.58; N, 7.52%. $5-\lceil (2R*,3S*,4S*,5R*) - 5 - Hydroxymethyl - 3,4 - isopropylidene$ dioxy-5-phenyltetrahydrofuran-2-yl]uracil (16c): A mixture of 15c (43.2 mg, 0.125 mmol), urea (75 mg, 1.25 mmol), and 0.83 mol dm⁻³ C₂H₅ONa in C₂H₅OH (1.5 ml, 1.25 mmol) was stirred for 2 h. Workup according to Method A gave an oil, which was purified by preparative TLC (5:1 chloroform-CH₃OH) to give **16c** (13.0 mg, 29%). Mp 282—285 °C (CH₃OH); R_f=0.62 (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.02 and 1.21 (s, isopropylidene CH_3), 3.50 (m, $C\underline{H}_2OH$), 4.78 (d, J=5.1 Hz, H_2), 4.84 (m, H_3), 5.08 (d, J=5.1 Hz, H_4), 7.32 (m, C_6H_5), 7.77 (s, =CH), 11.20 (br, NH); (C_5D_5N) δ 1.24 and 1.35 (s, isopropylidene CH₃), 4.01 (d, J=6.8 Hz, \underline{H}_aH_bCOH), 4.24 (d, $J = 6.8 \text{ Hz}, \text{ H}_a \underline{\text{H}}_b \text{COH}), 5.20 \text{ (m, H}_3), 5.62 \text{ (m, H}_2 \text{ and }$ H_4), 7.2—7.8 (m, C_6H_5), 8.13 (s, =CH); ¹³C NMR (dimethyl d_6 sulfoxide) δ 25.59, 26.72, 68.29, 80.40, 83.38, 83.81, 89.50, 109.64, 112.51, 126.43, 127.24, 139.90, 141.34, 151.01, 164.00; UV $\lambda_{\rm max}$ (CH₃OH) 263 nm (ε 7990), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 285 nm (ε 7640). Found: C, 59.62; H, 5.50; N, 7.64%. Calcd for $C_{18}H_{20}O_6N_2$: C, 59.99; H, 5.59; N, $5-\lceil (2R^*,3R^*,4R^*,5R^*) - 5 - Hydroxymethyl - 3,4 - isopropylidene$ dioxy-2-methyltetrahydrofuran-2-yl]uracil (24a): A mixture of 22a (619 mg, 2.72 mmol), and t-butoxybis(dimethylamino)methane (2.8 ml) was stirred at 90 °C for 5 h under argon. The resulting solution was evaporated to give $(1R^*, 6S^*,$ 7R*,8R*) - 5 - (dimethylaminomethylene) - 7,8 - isopropylidenedioxy-6-methyl-3,9-dioxabicyclo[4.2.1]nonan-4-one (23a) as a brown oil, which was used to the next step without purification. A mixture of crude 23a, urea (2.45 g, 40.9 mmol), and 2 mol dm $^{-3}$ $\rm C_2H_5ONa$ in $\rm C_2H_5OH$ (20 ml) was stirred. After 2 h, the reaction mixture was worked up according to Method A to give a brown solid, which was purified by preparative TLC (10:1 chloroform-CH₃OH) to give 24a (54.2 mg, 7% based on 22a) as a yellow foam. $R_f = 0.42$ (5:1 chloroform-CH₃OH); ¹H NMR (C₅D₅N) δ 1.39 and 1.65 (s, isopropylidene CH₃), 1.94 (s, CH₃), 4.02 (m, CH_2OH , 4.56 (m, H_5), 5.00 (dd, J=4.1, 6.2 Hz, H_4), 5.31 (d, J=6.2 Hz, H_3), 8.19 (s, =CH); UV λ_{max} (CH₃OH) 263 nm (ε 8450), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 288 nm (ε 10790). Found: m/z, 298.1156. Calcd for $\rm C_{13}H_{18}O_6N_2$: M, 298.1149. 5-[(2R*,3R*,4R*,5R*)-5-Hydroxymethyl-3,4-isopropylidene-dioxy-2-pentyltetrahydrofuran-2-yl]uracil (24b): A mixture of 23b prepared from 22b (963 mg, 3.39 mmol) and t-butoxybis-(dimethylamino)methane (3.4 ml), urea (2.03 g, 33.9 mmol), and 2.26 mol dm⁻³ C₂H₅ONa in C₂H₅OH (15 ml) was stirred for 2 h. Workup according to Method A and preparative TLC (7:1 chloroform-CH₃OH) afforded 24b (45.8 mg, 4% based on 22b) as a yellow foam. R_f =0.43 (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl-d₆ sulfoxide) δ 0.81 (t, J=6.0 Hz, CH₃), 1.0—1.7 (m, CH₂), 1.28 and 1.46 (s, isopropylidene CH₃), 3.44 (m, CH₂OH), 3.89 (m, H₅), 4.50 (dd, J=4.3, 5.8 Hz, H₄), 4.72 (d, J=5.8 Hz, H₃), 7.44 (s, =CH); UV λ_{max} (CH₃OH) 264 nm (ε 7930), λ_{max} (0.1 mol dm⁻³ NaOH) 289 nm (ε 5670). Found: m/z, 336.1731. Calcd for C₁₇H₂₄O₅N₂: (M−H₂O), 336.1777. $5-[(2R*,3S*,4S*)-5,5-Bis(hydroxymethyl)-3,4-isopropylidene-dioxytetrahydrofuran-2-yl]uracil (32): A mixture of 31 (594 mg, 1.47 mmol), urea (442 mg, 7.37 mmol), and 1 mol dm⁻³ C₂H₅ONa in C₂H₅OH (7 ml) was stirred for 5 h. After workup according to Method B, the residue was subjected to preparative TLC (5:1 chloroform–CH₃OH) to afford 32 (164 mg, 39%) as a white foam. <math>R_{\rm f}$ =0.37 (3:1 chloroform–CH₃OH); ¹H NMR (dimethyl- $d_{\rm f}$ sulfoxide) δ 1.23 and 1.46 (s, isopropylidene CH₃), 3.50 (m, CH₂OH), 4.53—4.86 (m, H₂, H₃, and H₄), 7.51 (s, =CH); ¹³C NMR (dimethyl- $d_{\rm f}$ sulfoxide) δ 25.11 26.86, 60.39, 63.19, 79.81, 82.87, 84.00, 86.76, 110.19, 112.54, 140.54, 151.05, 163.55; UV $\lambda_{\rm max}$ (CH₃OH) 263 nm (ε 4910), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 284 nm (ε 4670). Found: m/z, 299.0879. Calcd for C₁₂H₁₅-O₇N₂: (M—CH₃), 299.0880. $5 - [(2R^*, 3R^*, 4S^*, 5R^*) - 2, 5 - Dimethyl - 5 - hydroxymethyl - 3, 4$ isopropylidenedioxytetrahydrofuran-2-yl]uracil (46a): A mixture of 45a (118 mg, 0.397 mmol), urea (119 mg, 1.99 mmol), and 1 mol dm⁻³ C₂H₅ONa in C₂H₅OH (2 ml) was stirred for 24 h. The workup of the reaction product according to Method A gave an oil, which was subjected to preparative TLC (8:1 chloroform-CH₃OH) to afford 46a (35.1 mg, 28%) as a white foam. Mp 126—134 °C (CH₃OH); R_f = 0.51 (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl-d₆ sulfoxide) δ 1.18 and 1.28 (s, CH₃), 1.28 and 1.50 (s, isopropylidene CH₃), 3.19 (m, C $\underline{\text{H}}_{2}$ OH), 4.45 (d, J=6.2 Hz, H₃), 4.82 (d, J=6.2 Hz, H_4), 4.95 (br, OH), 7.47 (s, =CH), 10.80 (br, NH); (C_5D_5N) δ 1.42 and 1.70 (s, isopropylidene CH_3), 1.70 and 1.92 (s, CH_3), 3.78 (s, $C\underline{H}_2OH$), 4.85 (d, $J=6.2 \text{ Hz}, H_3$), 5.46 (d, $J=6.2 \text{ Hz}, H_4$), 8.32 (br s, =CH), 12.45 (br, NH), 13.04 (br, NH); 13 C NMR (dimethyl- d_6 sulfoxide) δ 19.65, 24.41, 24.94, 25.59, 66.30, 82.95, 83.12, 84.71, 85.18, 111.36, 117.30, 138.01, 151.48, 163.18; UV λ_{max} (CH₃OH) 264 nm (ϵ 6680), λ_{max} (0.1 mol dm⁻³ NaOH) 217 nm (ε 10070), 287 (7610). Found: C, 53.29; H, 6.61; N, 8.24%. Calcd for $C_{14}H_{20}O_6N_2$: C, 53.84; H, 6.45; N, 8.97%. $5 - [(2R*,3R*,4S*,5R*) - 2,5 - Dipentyl - 5 - hydroxymethyl - 3,4-isopropylidenedioxytetrahydrofuran-2-yl]uracil (46b): A mixture of 45b (2.00 g, 4.89 mmol), urea (2.93 g, 48.9 mmol), and 1 mol dm⁻³ C₂H₅ONa in C₂H₅OH (49 ml) was stirred for 5 h. The reaction mixture was worked up according to Method A and the crude product was purified by preparative TLC (8:1 chloroform–CH₃OH) to give 46b (472 mg, 23%) as a white foam. Mp>250 °C (CH₃OH); <math>R_t$ =0.53 (10:1 chloroform–CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.84 (m, CH₃), 1.0—1.7 (m, CH₂), 1.26 and 1.46 (s, isopropylidene CH₃), 3.22 (m, CH₂OH), 4.47 (d, J=6.6 Hz, H₃), 4.63 (br, OH), 4.77 (d, J=6.6 Hz, H₄), 7.37 (s, =CH), 10.82 (br, NH); $^{13}{\rm C~NMR}$ (dimethyl- d_6 sulfoxide) δ 13.66, 21.96, 22.93, 31.73, 32.15, 24.44, 25.35, 63.89, 83.49, 84.90, 86.17, 111.16, 114.96, 138.88, 151.47, 162.89; UV $\lambda_{\rm max}$ (CH₃OH) 265 nm (\$\epsilon\$ 5820), $\lambda_{\rm max}$ (0.1 mol dm $^{-3}$ NaOH) 289 nm (\$\epsilon\$ 4240). Found: C, 62.02; H, 8.57; N, 6.33%. Calcd for C₂₂H₃₆O₆N₂: C, 62.24; H, 8.55; N, 6.60%. $5-\lceil (2S^*,3R^*,4R^*,5R^*)-3-t-Butyldimethylsiloxymethyl-5-hydroxy-1$ methyl-3,4-isopropylidenedioxytetrahydrofuran-2-yl]uracil (54a): A mixture of 53a (1.18 g, 2.86 mmol), urea (1.20 g, 8.58 mmol), and 0.41 mol dm⁻³ C₂H₅ONa in C₂H₅OH (21 ml) was stirred for 3 h. Workup according to Method B and preparative TLC (10:1 chloroform-CH₂OH) afforded 54a (246 mg, 20%). Mp 238-242 °C (CH₃OH-acetone-petroleum ether); $R_f = 0.27$ (10:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.06 (s, t-C₄H₉(CH₃)₂Si), 0.84 (s, $t-C_4H_9(CH_3)_2Si$, 1.33 and 1.51 (s, isopropylidene CH_3), 3.49 (s, CH_2OSi), 3.57 (m, $C\underline{H}_2OH$), 3.96 (m, H_5), 4.52 (d, $J=2.8 \text{ Hz}, H_4$), 4.82 (s, H_2), 7.34 (br, =CH), 10.86 (br, NH), 11.02 (br s, NH); 13 C NMR (dimethyl- $d_{\rm s}$ sulfoxide) δ 17.74, 25.49, 26.84, 28.31, 61.01, 61.60, 80.44, 82.73, 83.02, 91.54, 107.86, 113.08, 138.68, 150.78, 162.56; UV λ_{max} (CH₃OH) 266 nm (ε 7150), λ_{max} (0.1 mol dm⁻³ NaOH) 289 nm (ε 6150). Found: C, 53.40; H, 7.54; N, 6.78%. Calcd for C₁₉H₃₂N₂O₇Si: C, 53.25; H, 7.53; N, 6.54%. $5-\lceil (2S^*,3R^*,4R^*,5R^*)-5-Hydroxymethyl-3,4-isopropylidene-superscript{1}{2}$ dioxy-3-methyltetrahydrofuran-2-yl]uracil (54b): A mixture of **53b** (730 mg, 2.58 mmol), urea (1.08 g, 18.1 mmol), and $0.9 \text{ mol dm}^{-3} \text{ C}_2\text{H}_5\text{ONa}$ in $\text{C}_2\text{H}_5\text{OH}$ (20 ml, 18 mmol) was stirred for 3 h. Workup according to Method B followed by preparative TLC (4:1 chloroform-CH₂OH) gave 54b (245 mg, 32%). Mp $126-128 \,^{\circ}\text{C}$; $R_f = 0.50 \, (4:1 \text{ chloro-}$ form-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.12 (s, CH₃), 1.32 and 1.51 (s, isopropylidene CH₃), 3.52 (d-like, $J=4.0 \text{ Hz}, \text{ C}\underline{\text{H}}_2\text{OH}) 3.92 \text{ (m, H}_5), 4.30 \text{ (d, } J=3.0 \text{ Hz}, \text{ H}_4),$ 4.80 (s, H_2), 7.34 (s, =CH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 20.37, 27.16, 28.38, 61.53, 81.39, 82.68, 87.28, 89.36, 109.17, 112.79, 139.33, 151.13, 162.89; UV $\lambda_{\rm max}$ (CH₃OH) 265 nm (\$\varepsilon\$ 7430), \$\lambda_{max}\$ (0.1 mol dm^{-3} NaOH) 289 nm (\$\varepsilon\$ 7750). Found: m/z, 283.0939. Calcd for $C_{12}H_{15}N_2O_6$: $(M-CH_3)$, 283.0930. 5-[(2R*,3R*,4S*,5S*)-5-(1-Hydroxy-1-With Thiourea. methylethyl) - 3,4-isopropylidenedioxytetrahydrofuran-2-yl]-2-thiouracil(10a): A mixture of 7a (423 mg, 1.42 mmol), thiourea (868 mg, 9.94 mmol), and $1.14 \text{ mol dm}^{-3} \text{ C}_2\text{H}_5\text{ONa}$ in C₂H₅OH (10 ml) was stirred for 5 h. The reaction mixture was worked up according to Method A. Pure 10a (332 mg, 71%) was obtained by preparative TLC chloroform-CH₂OH). Mp 161.0—162.0 °C (ethyl acetate); ¹H NMR (acetone- d_6) δ 1.20 (s, CH₃), 1.32 and 1.51 (s, isopropylidene CH_3), 3.79 (d, J=3.1~Hz, H_5), 4.68 (dd, J=3.3, 4.5 Hz, H₃), 4.80 (d, J=3.3 Hz, H₂), 4.82 (dd, J=3.1, 4.5 Hz, H₄), 7.71 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 213 nm (ε 11100), 276 (13800), 290 (13000), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 222 nm (ε 14700), 264 (12000), 285 (9490). Found: C, 48.07; H, 6.29; N, 8.00%. Calcd for C₁₄H₂₀- $O_5N_2S \cdot 1.2H_2O$: C, 48.04; H, 6.45; N, 8.00%. 5-[(2R*,3R*,4R*,5R*)-5-[(R*)-1-Hydroxyethyl]-3,4-isopropylidenedioxytetrahydrofuran-2-yl]-2-thiouracil (10b): A mixture of 7b (305 mg, 1.08 mmol), thiourea (660 mg, 8.64 mmol), and 1.23 mol dm⁻³ C_2H_5ONa in C_2H_5OH (7 ml) was stirred for 5 h. The reaction mixture was subjected to the Method A workup and preparative TLC (7:1 chloroform-CH₃OH) afforded 10b (277 mg, 82%). Mp 201.2—202.5 °C (ether-CH₃OH); ¹H NMR (acetone- d_6) δ 1.19 (d, J=7.0 Hz, CH₃), 1.32 and 1.52 (s, isopropylidene CH₃), 3.87 (m, H_5 and HCOH), 4.66 (d, J=4.2 Hz, H_2), 4.82 (m, H₃ and H₄), 7.66 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 213 nm (ε 12500), 274 (14400), 286 (13100), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 223 nm (ε 16220), 264 (15140), 284 (11480). Found: C, 49.06; H, 5.85; N, 8.44%. Calcd for C₁₃H₁₈-O₅N₂S: C, 49.67; H, 5.77; N, 8.91%. 5-[(2R*,3R*,4R*,5R*)-5-[(R*)-1-Hydroxyhexyl]-3,4-isopropylidenedioxytetrahydrofuran-2-yl]-2-thiouracil (10c): A mixture of 7c (491 mg, 1.45 mmol), thiourea (776 mg, 10.2 mmol), and 1.16 mol dm^{-3} C_2H_5ONa in C_2H_5OH (10 ml) was stirred for 5 h. After the Method A workup, the crude product was purified by preparative TLC (7:1 chloroform-CH₃OH) to give **10c** (365 mg, 68%). Mp 203.0—204.5 °C (ether); ¹H NMR (acetone- d_6) δ 0.91 (t, J=6.0 Hz, CH₃), 1.10-1.70 (m, CH₂), 1.31 and 1.51 (s, isopropylidene CH_3), 3.76 (m, $\underline{H}COH$), 3.95 (dd, J=3.1, 6.1 Hz, H_5), 4.65 (d, J=4.1 Hz, H_2), 4.86 (m, H_3 and H_4), 7.67 (s, =CH), 11.23 (br, NH); $UV \lambda_{max}$ (CH₃OH) 214 nm (ε 12880), 276 (15850), 291 (14800), λ_{max} (0.1 mol dm⁻³ NaOH) 222 nm (ε 16990), 264 (13490), 283 (10960). Found: C, 54.56; H, 7.04; N, 7.39; S, 8.68%. Calcd for $C_{17}H_{26}O_5N_2S$. 0.25H₂O: C, 54.45; H, 7.12; N, 7.46; S, 8.55%. 5-[(2R*,3R*,4R*,5S*) - 5-[(S*) - α - Hydroxybenzyl]-3,4-isopropylidenedioxytetrahydrofuran-2-yl]-2-thiouracil (10d): A mixture of 7d (74 mg, 0.214 mmol), thiourea (115 mg, 1.50 mmol), and 0.85 mol dm⁻³ C_2H_5ONa in C_2H_5OH (2 ml) was stirred. After stirring for 5 h, the workup according to Method A and preparative TLC (5:1 chloroform-CH₃OH) afforded 10d (59 mg, 73%). Mp 240—241 °C; ¹H NMR (C_5D_5N) δ 1.29 and 1.55 (s, isopropylidene CH₃), 4.75 (dd, J=3.9, 5.0 Hz, H_5), 5.17 (d, J=4.0 Hz, H_2), 5.38 (m, H_3 , H_4 , and HCOH), 7.3—7.9 (m, C_6H_5), 7.94 (s, =CH); UV λ_{max} (CH₃OH) 276 nm (ε 7940), 289 (7240), λ_{max} (0.1 mol dm⁻³ NaOH) 264 nm (ε 10970), 280 (8510). Found: C, 50.29; H, 5.57; N, 6.36%. Calcd for $C_{18}H_{20}O_5N_2S \cdot 3H_2O$: C, 50.22; H, 6.09; N, 6.51%. 5 - [(2R*,3S*,4S*,5R*) - 5 - Hydroxymethyl-3,4 - isopropylidenedioxy-5-methyltetrahydrofuran-2-yl]-2-thiouracil (18a): A mixture of 15a (284 mg, 1.00 mmol), thiourea (532 mg, 7.0 mmol), and 1.4 mol dm⁻³ C₂H₅ONa in C₂H₅OH (5 ml) was stirred for 2 h. The Method A workup and preparative TLC (5:1 chloroform-CH₃OH) gave **18a** (248 mg, 79%) as a yellow foam. $R_f = 0.67$ (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.17 (s, CH₃), 1.28 and 1.50 (s, isopropylidene CH_3), 3.35 (br s, $C\underline{H}_2OH$), 4.54— 4.86 (m, H_2 , H_3 , and H_4), 7.56 (s, =CH); (C_5D_5N) δ 1.40 and 1.65 (s, isopropylidene CH₃), 1.55 (s, CH₃), 3.77 (d, $J=11.5 \text{ Hz}, \underline{H}_a \underline{H}_b \text{COH}), 3.93 \text{ (d, } J=11.5 \text{ Hz, } \underline{H}_a \underline{H}_b \text{COH}),$ 5.09 (d, J=6.0 Hz, H_4), 5.17 (d, J=5.0 Hz, H_2), 5.36 (dd, $J=5.0, 6.0 \text{ Hz}, H_3$), 8.05 (s, =CH); ¹³C NMR (dimethyl d_6 sulfoxide) δ 18.20, 25.21, 26.70, 67.06, 78.93, 82.97, 84.56, 85.64, 112.69, 116.16, 139.44, 160.57, 175.38; UV λ_{max} (CH₃OH) 215 nm (ε 9490), 276 (14390), 290 (13190), λ_{max} (0.1 mol dm⁻³ NaOH) 223 nm (ε 9640), 264 (8700), 289 (6740). Found: C, 47.89; H, 5.67; N, 8.40%. Calcd for $C_{13}H_{18}O_5N_2S \cdot 0.7H_2O$: C, 47.75; H, 5.98; N, 8.57%. 5-[(2R*,3S*,4S*,4S*,5R*)- 5-Hydroxymethyl- 3,4- isopropylidenedioxy- 5- pentyltetrahydrofuran- 2-yl]- 2-thiouracil (18b): A mixture of 15b (330 mg, 0.973 mmol), thiourea (517 mg, 6.81 mmol), and 0.85 mol dm⁻³ C_2H_5ONa in C_2H_5OH (8 ml) was stirred for 2 h. The reaction mixture was worked up according to Method A. Preparative TLC (10:1 chloroform–CH₃OH) gave 18b (247 mg, 69%). Mp 181–183 °C (ether); R_f =0.64 (5:1 chloroform–CH₃OH); 1 H NMR (dimethyl- d_6 sulfoxide) δ 0.89 (t, J=5.7 Hz, CH₃), 1.28 and 1.50 (s, isopropylidene CH₃), 1.1—1.7 (m, CH₂), 3.38 (br s, CH₂OH), 4.56—4.94 (m, H₂, H₃, and H₄), 7.55 (s, =CH), 12.40 (br, NH); (C_5D_5N) δ 0.89 (t, J=6.0 Hz, CH₃), 1.2—2.2 (m, CH₂), 1.45 and 1.70 (s, isopropylidene CH₃), 3.90 (d, $J\!=\!11.2$ Hz, $\underline{\mathrm{H}_a}\mathrm{H_b}\mathrm{COH})$, 4.06 (d, $J\!=\!11.2$ Hz, $\mathrm{H_a}\underline{\mathrm{H}_b}\mathrm{COH})$, 5.16 (d, $J\!=\!6.0$ Hz, $\mathrm{H_4}$), 5.18 (d, $J\!=\!5.0$ Hz, $\mathrm{H_2}$), 5.46 (dd, $J\!=\!5.0$, 6.0 Hz, $\mathrm{H_3}$), 8.14 (s, =CH); $^{13}\mathrm{C}$ NMR (dimethyl- d_6 sulfoxide) δ 13.80, 21.93, 22.78, 25.42, 27.30, 31.67, 32.15, 65.62, 81.68, 82.99, 83.87, 86.52, 111.67, 112.39, 154.54, 156.20, 163.03; UV λ_{max} (CH₃OH) 213 nm (\$\epsilon\$ 13640), 276 (17330), 290 (sh, 15820), λ_{max} (0.1 mol dm $^{-3}$ NaOH) 220 nm (\$\epsilon\$ 17230), 264 (13530), 282 (sh, 10910). Found: C, 55.06; H, 7.24; N, 7.56; S, 8.70%. Calcd for $\mathrm{C_{17}H_{26}}$ - $\mathrm{O_5N_2S}$: C, 55.12; H, 7.07; N, 7.56; S, 8.65%. $5-\lceil (2R*,3S*,4S*,5R*)-5-Hydroxymethyl-3,4-isopropylidene$ dioxy-5-phenyltetrahydrofuran-2-yl]-2-thiouracil (18c): A mixture of **15c** (36.8 mg, 0.107 mmol), thiourea (57 mg, 0.749 mmol), and 0.38 mol dm⁻³ C₂H₅ONa in C₂H₅OH (2 ml) was stirred for 2 h. The reaction mixture was worked up according to Method A. Preparative TLC (5:1 chloroform-CH₃OH) afforded **18c** (23.5 mg, 58%). Mp 210—213 °C; $R_f = 0.64$ (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.01 and 1.21 (s, isopropylidene CH₃), 3.45 (d, $J=11.1 \text{ Hz}, \ \underline{H}_aH_bCOH), \ 3.72 \ (d, \ J=11.1 \text{ Hz}, \ H_a\underline{H}_bCOH),$ 4.86 (m, H_2 and H_3), 5.05 (m, H_4), 7.33 (m, C_6H_5), 7.76 (s, =CH); (C_5D_5N) δ 1.20 and 1.34 (s, isopropylidene CH₃), 4.04 (d, J=12.0 Hz, \underline{H}_aH_bCOH), 4.25 (d, J=12.0 Hz, H_aH_bCOH), 5.36 (m, H_3), 5.60 (m, H_2 and H_4), 7.2—7.9 (m, C_6H_5), 8.30 (s, =CH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 25.42, 26.47, 67.94, 80.05, 83.23, 83.92, 89.72, 112.35, 114.97, 126.31, 126.65, 127.09, 139.62, 141.23, 160.83, 175.59; UV λ_{max} (CH₃OH) 275 nm (ε 12780), 291 (sh, 11250), λ_{max} (0.1 mol dm⁻³ NaOH) 264 nm (ε 11530), 281 (sh, 9880). Found: C, 53.98; H, 5.78; N, 6.62; S, 7.70%. Calcd for C₁₈H₂₀O₅N₂S·1.2H₂O: C, 54.31; H, 5.67; N, 7.04; S, 8.06%. $5 - \lceil (2R^*, 3R^*, 4R^*, 5R^*) - 5 - Hydroxymethyl - 3, 4-isopropylidene$ dioxy-2-methyltetrahydrofuran-2-yl]-2-thiouracil (26a): A mixture of 23a obtained from 1.03 g (4.50 mmol) of 22a and t-butoxybis(dimethylamino)methane (4.5 ml) as described above and thiourea (2.39 g, 31.5 mmol) in 1 mol dm⁻³ C_2H_5ONa in C_2H_5OH (31.5 ml) was stirred for 2 h. Workup according to Method A followed by column chromatography (20:1 to 15:1 chloroform-CH₃OH) afforded 26a (268 mg, 20% based on **22a**) as a yellow foam. $R_f = 0.60$ (5:1 chloroform-CH₃OH); 1 H NMR (C₅D₅N) δ 1.95 (s, CH₃), 1.42 and 1.66 (s, isopropylidene CH_3), 3.90 (dd, J=5.0, 11.0 Hz, $\underline{H}_a H_b COH$), 4.07 (dd, J = 4.0, 11.0 Hz, $H_a \underline{H}_b COH$) 4.59 (ddd, J=4.0, 4.0, 5.0 Hz, H₅), 4.99 (dd, J=4.0, 6.0 Hz, H₄), 5.27 (d, J=6.0 Hz, H₃), 8.29 (s, =CH); UV λ_{max} (CH_3OH) 214 nm (ε 9540), 275 (12850), 290 (11920), λ_{max} (0.1 mol dm⁻³ NaOH) 223 nm (ε 11880), 261 (11680), 292 (6800). Found: m/z, 314.0930. Calcd for $C_{13}H_{18}N_2O_5S$: M, 314.0936. 5-[(2R*,3R*,4R*,5R*)-5-Hydroxymethyl-3,4-isopropylidenedioxy-2-pentyltetrahydrofuran-2-yl]-2-thiouracil (26b): A mixture of 23b obtained from 22b (577 mg, 2.03 mmol) and t-butoxybis(dimethylamino)methane (3 ml), thiourea (1.08 g, 14.2 mmol), and 2.0 mol dm⁻³ C₂H₅ONa in C₂H₅OH (7 ml) was stirred for 2 h. Workup according to Method A followed by column chromatography (30:1 to 20:1 chloroform-CH₃OH) gave **26b** (88.1 mg, 12% based on **22b**) as a foam. $R_{\rm f}$ =0.62 (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.80 (t, J=6.5 Hz, CH₃), 1.0—1.8 (m, CH₂), 1.25 and 1.45 (s, isopropylidene CH₃), 3.91 (m, H_5), 4.50 (dd, J=4.5, 6.0 Hz, H_4), 4.70 (d, J=6.0 Hz, H₃), 7.40 (s, =CH), CH₂OH peaks obscured by H₂O peak; UV λ_{max} (CH₃OH) 214 nm (ϵ 9430), 276 (13690), 289 (12700), $\lambda_{\rm max}$ (0.1 mol dm^-3 NaOH) 232 nm (ε 13400), 261 (16840), 303 (8480). Found: C, 53.19; H, 6.90; N, 7.50%. Calcd for $C_{17}H_{26}O_5N_2S\cdot H_2O$: C, 52.56; H, 7.26; N, 7.21%. 5-[(2R*,3S*,4S*)-5,5-Bis(hydroxymethyl)-3,4-isopropylidenedioxytetrahydrofuran-2-y[]-2-thiouracil (34).A mixture of 31 (337 mg, 0.84 mmol), thiourea (447 mg, 5.88 mmol), and 1 mol dm⁻³ C₂H₅ONa in C₂H₅OH (6 ml) was stirred for 3 h. The Method B workup gave a solid, which was purified by preparative TLC (5:1 chloroform-CH₃OH) to give 34 (160 mg, 63%) as a white foam. R_f =0.39 (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.24 and 1.46 (s, isopropylidene CH₃), 3.50 (d-like, J=7.5 Hz, CH₂OH), 4.67 (m, H₂, H₃, and H₄), 5.5—8.0 (br, HN and OH), 7.56 (s, =CH); 13 C NMR (dimethyl- d_6 sulfoxide) δ 25.11, 26.84, 60.42, 63.07, 79.80, 82.85, 84.25, 87.23, 127.89, 140.77, 160.68; UV λ_{max} (CH₃OH) 276 nm (ε 12770), 297 (11540), λ_{max} (0.1 mol dm⁻³ NaOH) 213 nm (ϵ 11320), 265 (9060), 292 (7320). Found: m/z, 330.0890. Calcd for $C_{13}H_{18}O_{6}$ -N₂S: M, 330.0884. 5-[(2R*,3R*,4R*,5R*)-2,5-Bis(hydroxymethyl)-3,4-isopropylidenedioxytetrahydrofuran-2-yl]-2-thiouracil (40): A mixture of 39 (220 mg, 0.57 mmol), thiourea (303 mg, 3.99 mmol), and $1~\text{mol}~\text{dm}^{-3}~\text{C}_2\text{H}_5\text{ONa}$ in $\text{C}_2\text{H}_5\text{OH}$ (5 ml) was stirred for 3 h. The reaction mixture was worked up according to Method B to give a yellow solid, which was purified by preparative TLC (5:1 chloroform-CH₃OH) to afford 40 (93.0 mg, 51%) as a white foam. $R_f = 0.50 (5:1 \text{ chloroform} - 1.50)$ CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.26 and 1.48 (s, isopropylidene CH₃), 3.3—3.8 (br, OH), 3.52 (d-like, J=7.5 Hz, CH₂OH), 4.56-4.88 (m, H₃, H₄, and H₅), 7.52(s, =CH); UV λ_{max} (CH₃OH) 214 nm (ε 8780), 276 (11350), 293 (10040), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 223 nm (ε 12910), 264 (8430), 289 (7080). Found: C, 44.63; H, 5.54; N, 8.00%. Calcd for $C_{13}H_{18}O_7N_2S$: C, 45.08; H, 5.24; N, 8.09%. $5-\lceil (2R^*,3R^*,4S^*,5R^*)-2,5-Dimethyl-5-hydroxymethyl-3,4-iso$ propylidenedioxytetrahydrofuran-2-yl]-2-thiouracil (48a): A mixture of 45a (621 mg, 2.09 mmol), thiourea (1.11 g, 14.6 mmol), and 1 mol dm⁻³ C₂H₅ONa in C₂H₅OH (14 ml) was stirred for 5 h. After workup according to Method A, the residue was subjected to preparative TLC (8:1 chloroform- CH_3OH) to give **48a** (426 mg, 61%). Mp 90—95 °C (CH₃OH); $R_f = 0.67$ (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.20 and 1.30 (s, CH₃), 1.30 and 1.50 (s, isopropylidene CH_3), 3.22 (m, $C\underline{H}_2OH$), 4.46 (d, $J=6.2 \text{ Hz}, H_3$, 4.83 (d, $J=6.2 \text{ Hz}, H_4$), 4.96 (t-like, J=4.2 Hz, OH), 7.49 (s, =CH), 12.16 and 12.34 (br, NH); (C_5D_5N) δ 1.42 and 1.70 (s, isopropylidene $CH_3),\ 1.70$ and 1.84 (s, CH₃), 3.72 (br s, C $\underline{\text{H}}_{2}$ OH), 4.77 (d, J=6.2 Hz, H_3), 5.37 (d, J=6.2 Hz, H_4), 8.41 (s, =CH); $^{13}\text{C NMR}$ (dimethyl- d_6 sulfoxide) δ 19.47, 24.41, 24.59, 25.59, 66.18, 83.00, 83.12, 84.89, 111.36, 122.89, 137.78, 160.25, 175.13; UV $\lambda_{\rm max}$ (CH₃OH) 215 nm (ε 12560), 276 (16180), 290 (14820), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 223 nm (ε 14860), 261 (14270), 292 (8650). Found: C, 51.02; H, 6.24; N, 8.67; S, 9.60%. Calcd for $C_{14}H_{20}O_5N_2S$: C, 51.21; H, 6.14; N, 8.53; S, 9.76%. 5-[(2R*,3R*,4S*,5R*) - 2,5 - Dipentyl-5-hydroxymethyl-3,4-isopropylidenedioxytetrahydrofuran-2-yl]-2-thiouracil (48b): A mixture of 45b (1.23 g, 2.80 mmol), thiourea (1.49 g, 19.6 mmol), and 1 mol dm⁻³ C_2H_5ONa in C_2H_5OH (20 ml) was stirred. After 5 h, the reaction mixture was worked up according to Method A and the crude product was purified by preparative TLC (10:1 chloroform-CH₃OH) to give 48b (798 mg, 64%). Mp 207—210 °C (CH₃OH); R_f =0.47 (10:1 chloroform-CH₃OH); ¹H NMR (C_5D_5N) δ 0.84 (m, CH₃), 1.1—1.7 (m, CH₂, 14H), 1.44 and 1.74 (s, isopropylidene CH₃), 2.1—2.3 (m, CH₂, 2H), 3.73 (d, J=12.2 Hz, $\underline{H}_a\underline{H}_bCOH$), 3.94 (d, J=12.2 Hz, $\underline{H}_a\underline{H}_bCOH$), 4.81 (d, $J{=}6.5~\rm{Hz},~\rm{H_3}),~5.37$ (d, $J{=}6.5~\rm{Hz},~\rm{H_4}),~8.51$ (s, =CH); $^{13}{\rm C}~\rm{NMR}$ (dimethyl- d_6 sulfoxide) δ 13.82, 22.06, 23.12, 24.41, 25.35, 31.71, 32.18, 63.59, 83.36, 84.95, 85.71, 86.36, 111.24, 120.77, 138.77, 160.13, 175.18; UV $\lambda_{\rm max}$ (CH₃OH) 215 nm (ε 12820), 276 (16450), 290 (sh, 15290), $\lambda_{\rm max}$ (0.1 mol dm $^{-3}$ NaOH) 227 nm (ε 9570), 261 (10640), 305 (6030). Found: C, 59.03; H, 8.06; N, 5.93%. Calcd for $\rm{C_{22}H_{36}O_5N_2S}$ 0.5H₂O: C, 58.76; H, 8.29; N, 6.23%. 5 - [(2S*, 3R*, 4R*, 5R*) - 3 - t - Butyldimethylsiloxymethyl - 5 - hydroxymethyl - 3,4 - isopropylidenedioxytetrahydrofuran-2-yl]-2-thiouracil (58a): A mixture of 53a (500 mg, 1.21 mmol), thiourea (645 mg, 8.47 mmol), and 0.94 mol dm⁻³ C₂H₅ONa in C₉H₅OH (9 ml) was stirred for 3 h. The Method B workup gave a crude product which was subjected to preparative TLC (10:1 chloroform-CH₃OH) to afford 58a (333 mg, 62%). Mp 208—210 °C (acetone-hexane); $R_f = 0.27$ (10:1 chloroform-CH₃OH); ¹H NMR (dimethyl-d₆ sulfoxide) $\delta = 0.06$ (s, $t-C_4H_9(CH_3)_2Si$), 0.84 (s, $t-C_4H_9(CH_3)_2Si$), 1.34 and 1.51 (s, isopropylidene CH₃), 3.30 (br, OH), 3.4-3.7 (m, CH_2OH and CH_2OSi), 4.00 (m, H_5), 4.51 (d, J=3.0Hz, H_4), 4.82 (s, H_2), 7.34 (s, =CH), 12.30 (br, NH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 17.74, 25.49, 26.90, 28.25, 60.95, 61.65, 80.21, 82.91, 83.14, 91.65, 113.26, 113.61, 138.22, 159.52, 174.61; UV λ_{max} (CH₃OH) 216 nm (ε 9160), 275 (11800), 299 (11200), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 224 nm (ε 9990), 262 (9110), 296 (6780). Found: C, 50.74; H, 7.55; N, 6.53%. Calcd for C₁₉H₃₂O₆N₂SSi·0.5H₂O: C, 50.30; H, 7.33; N, 6.18%. 5-[(2S*,3R*,4R*,5R*)-5-Hydroxymethyl-3,4-isopropylidenedioxy-3-methyltetrahydrofuran-2-yl]-2-thiouracil (58b): A mixture of 53b (200 mg, 0.707 mmol), thiourea (377 mg, 4.95 mmol), and 0.92 mol dm⁻³ C₂H₅ONa in C₂H₅OH (5.4 ml) was stirred for 3 h. The Method B workup and preparative TLC (4:1 chloroform-CH₃OH) afforded **58b** (155 mg, 70%). Mp 142—144 °C (CH₃OH); $'R_f = 0.62$ (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.14 (s, CH₃), 1.32 and 1.50 (s, isopropylidene CH₃), 3.56 (d-like, J=4.0Hz, CH_2OH), 3.96 (m, H_5), 4.31 (d, J=2.8 Hz, H_4), 4.80 (s, H_2), 7.38 (s, =CH), 13 C NMR (dimethyl- d_6 sulfoxide) δ 20.26, 27.07, 28.32, 61.47, 81.21, 82.91, 87.30, 89.36, 112.84, 114.74, 138.92, 159.82, 175.16; UV $\lambda_{\rm max}$ (CH₃OH) 215 nm (ε 12600), 275 (15800), 297 (14900), λ_{max} (0.1 mol dm⁻³ NaOH) 221 nm (ε 13700), 262 (12100), 298 (8110). Found: m/z, 314.0949. Calcd for $C_{13}H_{18}O_5N_2S$: M, 314.0936. With Guanidine Hydrochloride. 5-[(2R*,3R*,4S*,5S*)-5-(1-Hydroxy-1-methylethyl) - 3,4 - isopropylidenedioxytetrahydrofuran-2-vilisocytosine (12a): Guanidine hydrochloride (1.11 g, 11.8 mmol) was dissolved in 1.69 mol dm⁻³ C₂H₅ONa in C₂H₅OH (7 ml). To this was added 7a (436 mg, 1.47 mmol) and the mixture was stirred for 5 h. The Method A workup followed by trituration of the residue with ether afforded **12a** (334 mg, 73%). Mp 242.0—243.1 °C (CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.10 (s, CH₃), 1.28 and 1.49 (s, isopropylidene CH_3), 3.67 (d, J=3.0 Hz, H_5), 4.51 (m, H_3), 4.68 (m, H_2 and H_4), 6.64 (br, NH_2), 7.66 (s, =CH); UV λ_{max} (CH₃OH) 227 nm (ϵ 5330), 290 (5370), λ_{max} (0.1 mol dm⁻³ NaOH) 233 nm (ϵ 7420), 276 (5940). Found: C, 54.16; H, 6.67; N, 13.30%. Calcd for $C_{14}H_{21}O_5N_3$: C, 54.01; H, 6.80; N, 13.50%. 5-[(2R*,3R*,4R*,5R*)-5-[(R*)-1-Hydroxyethyl]-3,4-isopropylidenedioxytetrahydrofuran-2-yl]isocytosine (12b): A mixture of 7b (952 mg, 3.36 mmol), guanidine hydrochloride (2.54 g, 26.9 mmol), and 2.69 mol dm⁻³ C₂H₅ONa in C₂H₅OH (10 ml) was stirred for 5 h. The reaction mixture was worked up according to Method A, and the product was subjected to trituration with ethyl acetate to give 12b (665 mg, 67%). Mp 219.8—220.9 °C (CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.06 (d, J=6.0 Hz, CH₃), 1.27 and 1.48 (s, isopropylidene CH₃), 3.71 (m, H₅ and CH₂OH), 4.71 (m, H₃), 4.74 (m, H₂ and H₄), 6.66 (br, NH₂), 7.64 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 226 nm (ε 7240), 290 (7240), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 232 nm (ε 9120), 276 (6920). Found: C, 52.50; H, 6.50; N, 13.97%. Calcd for C₁₃-H₁₉O₅N₃: C, 52.51; H, 6.44; N, 14.13%. 5-[$(2R^*,3R^*,4R^*,5R^*)$ -5-[(R^*) -1-Hydroxyhexyl]-3,4-isopropylidenedioxytetrahydrofuran-2-yl]isocytosine (I2c): A mixture of **7c** (428 mg, 1.26 mmol), guanidine hydrochloride (951 mg, 10.1 mmol), and 1 mol dm⁻³ C_2H_5ONa in C_2H_5OH (10 ml) was stirred for 5 h. Workup according to Method A followed by trituration (ether) of the crude product gave pure I2c (327 mg, 74%). Mp 212.0—213.9 °C (CH₃OH); ¹H NMR (C_5D_5N) δ 0.81 (t, J=6.0 Hz, CH₃), 1.2—1.8 (m, CH₂), 1.40 and 1.68 (s, isopropylidene CH₃), 4.18 (m, CH₂OH), 4.42 (t-like, J=4.1 Hz, H_5), 5.06 (d, J=4.2 Hz, H_2), 5.38 (m, H_3 and H_4), 8.04 (s, =CH), 8.10 (br, NH₂); UV λ_{max} (CH₃OH) 227 nm (ε 10720), 290 (10720), λ_{max} (0.1 mol dm⁻³ NaOH) 233 nm (ε 11480), 277 (9330). Found: C, 57.05; H, 7.50; N, 11.91%. Calcd for C_{17} - $H_{27}O_5N_3$: C, 57.77; H, 7.70; N, 11.89%. 5-[(2R*,3R*,4R*,5S*)-5-[(S*)-α-Hydroxybenzyl]-3,4-isopropylidenedioxytetrahydrofuran-2-yl]isocytosine (12d): A mixture of 7d (206 mg, 0.597 mmol), guanidine hydrochloride (394 mg, 4.18 mmol), and 3.2 mol dm⁻³ C₂H₅ONa in C₂H₅OH (1.5 ml) was stirred for 5 h. After workup according to Method A, the crude product was purified by trituration with ether to give 12d (44 mg, 21%). Mp 273.8—275.0 °C (CH₃OH); ¹H NMR (dimethyl-d₆ sulfoxide) δ 1.18 and 1.42 (s, isopropylidene CH₃), 4.10 (dd, J=2.0, 4.0 Hz, H₅), 4.50 (d, J=4.3 Hz, H₂), 4.90 (m, H₃ and H₄) 5.82 (dd, J=2.0, 4.0 Hz, CHOH), 6.60 (br, NH₂), 7.30 (m, C₆H₅), 7.64 (s, =CH), 11.0 (br, NH); UV $\lambda_{\rm max}$ (CH₃OH) 227 nm (ε 12310), 290 (13180), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 233 nm (ε 5490), 277 (4360). Found: C, 59.98; H, 6.05; N, 11.38%. Calcd for C₁₈H₂₁O₅N₃: C, 60.16; H, 5.89; N, 11.69%. 5-[(2R*,3S*,4S*,5R*)-5-Hydroxymethyl-3,4-isopropylidenedioxy-5-methyltetrahydrofuran-2-yl]isocytosine (20a): A mixture of 15a (705 mg, 2.49 mmol), guanidine hydrochloride (1.89 g, 19.9 mmol), and 1.4 mol dm⁻³ C₂H₅ONa in C₂H₅OH (14 ml) was stirred for 2 h. The workup according to Method A and trituration with ethyl acetate gave 20a (434 mg, 64%). Mp 252—254 °C (CH₃OH); R_f =0.44 (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.14 (s, CH₃), 1.27 and 1.50 (s, isopropylidene CH₃), 3.34 (br s, $\underline{\text{CH}_2\text{OH}}$), 4.53 (d, J=5.2 Hz, $\underline{\text{H}_4}$), 4.64 (d, J=6.0 Hz, $\underline{\text{H}_2}$), 4.85 (dd, J=5.2, 6.0 Hz, $\underline{\text{H}_3}$), 5.08 (br, OH), 6.82 (br, NH₂), 7.64 (s, =CH), 11.14 (br, NH); ¹³C NMR (dimethyl d_6 sulfoxide) δ 18.14, 25.31, 27.10, 67.70, 80.83, 83.29, 83.50, 84.72, 111.88, 112.56, 154.10, 156.09, 163.00; UV λ_{max} (CH₂OH) 225 nm (ε 13890), 289 (11220), λ_{max} (0.1 mol dm⁻³ NaOH) 233 nm (ε 10320), 276 (7930). Found: C, 52.60; H, 6.27; N, 13.85%. Calcd for $C_{13}H_{19}O_5N_3$: C, 52.51; H, 6.44; N, 14.13%. 5-[(2R*,3S*,4S*,5R*)-5-Hydroxymethyl-3,4-isopropylidene-dioxy-5-pentyltetrahydrofuran-2-yl]isocytosine (20b). A mixture of 15b (471 mg, 1.39 mmol), guanidine hydrochloride (1.06 g, 11.1 mmol), and 0.93 mol dm⁻³ C₂H₅ONa in C₂H₅OH (12 ml) was stirred for 2 h. The reaction mixture was worked up according to Method A. Trituration with ethyl acetate afforded pure 20b (356 mg, 73%). Mp 228—230 °C (CH₃OH); R_f =0.51 (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.88 (t, J=6.0 Hz, CH₃), 1.28 and 1.51 (s, isopropylidene CH₃), 1.1—1.7 (m, CH₂), 3.39 (br s, CH₂OH), 4.46 (d, J=6.0 Hz, H₄), 4.68 (d, J=6.0 Hz, H₂), 4.87 (t, J=6.0 Hz, H₃), 5.14 (br, OH), 6.81 (br, NH₂), 7.64 (s, =CH); (C₅D₅N) δ 0.83 (t, J=6.0 Hz, CH₃), 1.2—2.1 (m, CH₂), 1.38 and 1.68 (s, isopropylidene CH₃), 3.85 (d, J=11.5 Hz, \underline{H}_aH_bCOH), 4.01 (d, J=11.5 Hz, \underline{H}_aH_bCOH), 4.02 (d, J=5.5 Hz, \underline{H}_a), 5.20 (d, J=5.5 Hz, \underline{H}_a), 5.59 (t, J=5.5 Hz, \underline{H}_a), 8.06 (s, =CH), 8.06 (br, NH₂); UV λ_{max} (CH₃OH) 227 nm (ε 9510), 290 (9540), λ_{max} (0.1 mol dm⁻³ NaOH) 216 nm (ε 9210), 233 (9750), 276 (7740). Found: C, 57.98; H, 7.78; N, 11.36%. Calcd for $C_{17}H_{27}O_5N_3$: C, 57.77; H, 7.70; N, 11.89%. 5-[(2R*,3S*,4S*,5R*)-5-Hydroxymethyl-3,4-isopropylidenedioxy-5-phenyltetrahydrofuran-2-yl isocytosine (20c): A mixture of 15c (537 mg, 1.56 mmol), guanidine hydrochloride (1.19 g, 12.5 mmol), and 0.78 mol dm⁻³ C₂H₅ONa in C₂H₅OH (16 ml) was stirred for 2 h. Trituration with ethyl acetate gave **20c** (436 mg, 78%). Mp 270—272 °C (CH₃OH); $R_1 = 0.53$ (5:1 chloroform-CH₂OH); ¹H NMR (dimethyl-d₆ sulfoxide) δ 1.14 and 1.24 (s, isopropylidene CH₃), 4.63 (d, J=6.0Hz, H₄), 5.01 (dd, J=5.8, 6.0 Hz, H₃), 5.13 (d, J=5.8 Hz, H_2), 6.75 (br, NH_2), 7.40 (m, C_6H_5), 7.67 (s, =CH), 11.50 (br, NH), CH₂OH peaks obscured by H₂O peaks; ¹³C NMR (dimethyl- d_6 sulfoxide) δ 25.66, 27.21, 68.71, 82.89, 83.84, 89.40, 111.99, 112.35, 126.22, 126.54, 127.37, 140.02, 154.47, 156.77, 164.22; UV λ_{max} (CH₃OH) 226 nm (ϵ 12330), 289 (10390), λ_{max} (0.1 mol dm⁻³ NaOH) 211 nm (ϵ 15210), 234 (11940), 276 (9020). Found: C, 60.00; H, 5.88; N, 11.69%. Calcd for C₁₈H₂₁O₅N₃: C, 60.16; H, 5.89; N, 11.69%. 5-[(2R*,3R*,4R*,5R*)-5-Hydroxymethyl-3,4-isopropylidenedioxy-2-methyltetrahydrofuran-2-yl isocytosine (28a): A mixture of crude 23a [prepared from 22a (248 mg, 1.09 mmol) and t-butoxybis(dimethylamino)methane (2 ml)], guanidine hydrochloride (1.06 g, 8.72 mmol), and 1.25 mol dm⁻³ C₂H₅-ONa in C₂H₅OH (7 ml) was stirred for 2 h. Workup according to Method A followed by preparative TLC (5:1 chloroform-CH₃OH) afforded 28a (53.4 mg, 17% based on **22a**) as a yellow foam. $R_f = 0.40$ (5:1 chloroform-CH₃OH), ¹H NMR (C₅D₅N) δ 1.36 and 1.62 (s, isopropylidene CH₃), 1.91 (s, CH_3), 4.00 (d, J=5.2 Hz, $C\underline{H}_2OH$), 4.54 (m, H_5), 5.01 (dd, J=4.1, 6.0 Hz, H_4), 5.39 (d, J=6.0 Hz, H_3), 8.04 (br, NH₂), 8.33 (s, =CH); UV λ_{max} (CH₃OH) 224 nm (ϵ 10400), 290 (8450), $\lambda_{\rm max}$ (0.1 mol dm $^{-3}$ NaOH) 231 nm (ε 7710), 278 (5950). Found: m/z, 297.1312. Calcd for $C_{13}H_{19}N_3O_5$: M, 297.1325. 5-[(2R*,3R*,4R*,5R*)-5-Hydroxymethyl-3,4-isopropylidenedioxy-2-pentyltetrahydrofuran-2-yl]isocytosine (28b): A mixture of crude 23b [prepared from 22b (632 mg, 2.23 mmol) and t-butoxybis(dimethylamino)methane (3 ml)], guanidine hydrochloride (1.69 g, 17.8 mmol), and 1 mol dm⁻³ C₂H₅ONa in C₂H₅OH (18 ml) was stirred for 2 h. Workup according to Method A and column chromatography (20:1 to 10:1 chloroform-CH₂OH) afforded **28b** (31.6 mg, 4% based on **22b**) as a yellow foam. $R_f = 0.42$ (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.77 (t, J=6.0 Hz, CH₃), 1.0-2.0 (m, CH₂), 1.22 and 1.42 (s, isopropylidene CH₃), 3.38 (d, J=2.7 Hz, $C\underline{H}_2OH$), 3.82 (m, H_5), 4.43 (dd, J= 2.0, 6.0 Hz, H_4), 4.81 (d, J=6.0 Hz, H_3), 6.78 (br, NH_2), 7.61 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 225 nm (ε 5770), 292 (3680), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 230 nm (ε 6720), 278 (4770). Found: m/z, 335.1842. Calcd for $C_{17}H_{25}O_4N_3$: $(M-H_2O)$, 335.1840. 5-[(2R*,3S*,4S*)-5,5-Bis(hydroxymethyl)-3,4-isopropylidene-dioxyletrahydrofuran-2-yl]isocytosine (36): A mixture of 31 (368 mg, 0.91 mmol), guanidine hydrochloride (608 mg, 6.37 mmol), and 1 mol dm⁻³ C_2H_5ONa in C_2H_5OH (7 ml) was stirred for 5 h. Workup according to Method B gave a yellow solid, which was purified by preparative TLC (3:1 chloroform-CH₃OH) to give 36 (128 mg, 45%). Mp 245—247 °C (CH₃OH); R_f =0.39 (3:1 chloroform-CH₃OH); 1H NMR (dimethyl- d_6 sulfoxide) δ 1.25 and 1.46 (s, isopropylidene CH₃), 3.53 (m, CH₂OH), 4.0—5.0 (br, OH), 4.47 (d, J=5.5 Hz, H₄), 4.70 (d, J=5.5 Hz, H₂), 4.82 (t, J=5.5 Hz, H₃), 6.85 (br, NH₂), 7.63 (s, =CH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 25.24, 27.16, 60.71, 64.01, 81.74, 83.09, 86.44, 111.44, 112.46, 154.41, 156.45, 163.18, UV $\lambda_{\rm max}$ (CH₃OH) 227 nm (ε 5960), 290 (5720), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 233 nm (ε 10250), 277 (7770). Found: C, 49.54; H, 6.10; N, 13.40%. Calcd for C₁₃H₁₉O₆N₃: C, 49.83; H, 6.11; N, 13.41%. 5-[(2R*,3R*,4S*,5R*)-2,5-Dimethyl-5-hydroxymethyl-3,4isopropylidenedioxytetrahydrofuran-2-yl\isocytosine (50a): A mixture of 45a (1.07 g, 3.60 mmol), guanidine hydrochloride (2.74 g, 28.8 mmol), and 1 mol dm⁻³ C₂H₅ONa in C₂H₅OH (30 ml) was stirred for 5 h. Workup according to Method A followed by trituration with ethyl acetate afforded 50a (878 mg, 77%). Mp 255—257 °C (CH₃OH), R = 0.43 (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl-d₆ sulfoxide) δ 1.19 and 1.32 (s, CH₃), 1.32 and 1.49 (s, isopropylidene CH₃), 3.18 (d-like, J=4.8 Hz, $C\underline{H}_2OH$), 4.48 (d, J=6.3 Hz, H_3), 4.91 (d, J=6.3 Hz, H_4), 6.46 (br, NH_2), 7.72 (s, =CH), 10.90 (br, NH); 13 C NMR (dimethyl- d_6 sulfoxide) δ 19.82, 24.59, 24.94, 25.71, 66.71, 83.24, 83.30, 83.42, 84.59, 111.30, 119.42, 156.01; UV $\lambda_{\rm max}$ (CH3OH) 225 nm (ε 9930), 292 (8160), λ_{max} (0.1 mol dm⁻³ NaOH) 231 nm (ε 8750), 278 (6930). Found: C, 52.90; H, 6.75; N, 12.89%. Calcd for $C_{14}H_{21}O_5N_3 \cdot 0.5H_2O$: C, 52.49; H, 6.92; N, 13.12%. $5 - [(2R^*, 3R^*, 4S^*, 5R^*) - 2, 5 - Dipentyl - 5 - hydroxymethyl - 3, 4$ isopropylidenedioxytetrahydrofuran-2-yl]isocytosine (50b): A mixture of 45b (1.31 g, 3.20 mmol), guanidine hydrochloride (2.43 g, 25.6 mmol), and 1 mol dm⁻³ C₂H₅ONa in C₂H₅OH (25 ml) was stirred. After 5 h, the mixture was worked up according to Method A to give an oil, which was triturated with ethyl acetate to give 50b (528 mg, 39%). Mp 168-170 °C (CH₃OH); $R_f = 0.54$ (5:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.86 (m, CH₃), 1.0—2.0 (m, CH₂), 1.26 and 1.46 (s, isopropylidene CH₃), 3.34 (m, $C\underline{H}_2OH$), 4.49 (d, J=6.2 Hz, H_3), 4.74 (br, OH) 4.87 (d, $J=6.2 \text{ Hz}, \text{ H}_4$), 6.60 (br, NH₂), 7.62 (s, =CH), 11.10 (br, NH); 13 C NMR (dimethyl- d_6 sulfoxide) δ 13.80, 22.02, 22.66, 23.13, 24.36, 25.42, 31.76, 32.11, 34.70, 63.58, 83.34, 85.01, 85.66, 85.95, 110.78, 116.83, 155.52; UV λ_{max} (CH₃OH) 225 nm (ε 7530), 292 (5810), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 231 nm (ε 5440), 279 (3980). Found: C, 61.28; H, 8.79; N, 9.39%. Calcd for $C_{22}H_{37}O_5N_3 \cdot 0.5H_2O$; C, 61.09, H, 8.86; N, 9.71%. 5-[(2S*,3R*,4R*,5R*)-3-t-Butyldimethylsiloxymethyl-5-hydroxymethyl-3,4-isopropylidenedioxytetrahydrofuran-2-yl]isocytosine (60a): A mixture of 53a (500 mg, 1.21 mmol), guanidine hydrochloride (809 mg, 8.47 mmol), and 0.94 mol dm⁻³ C₉H_EONa in C₂H₅OH (9 ml) was stirred for 3 h. After the Method B workup, the residue was subjected to preparative TLC (10:1 chloroform-CH₃OH) to give **60a** (339 mg, 67%). Mp 231—233 °C (CH₃OH-acetone-hexane); $R_f = 0.25$ (10:1 chloroform–CH $_3$ OH); 1 H NMR (dimethyl- d_6 sulfoxide) δ $0.06 \text{ (s, } t\text{-}C_4H_9(C\underline{H}_3)_2Si), 0.85 \text{ (s, } t\text{-}C_4\underline{H}_9(CH_3)_2Si), 1.34 \text{ and}$ 1.51 (s, isopropylidene CH_3), 3.4—3.7 (m, $C\underline{H}_2OH$ and $CH_2OSi)$, 3.97 (m, H_5), 4.54 (d, J=3.0 Hz, H_4), 4.89 (s, H_2), 6.67 (br, NH_2), 7.59 (s, =CH), 11.00 (br, NH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 17.62, 25.37, 26.72, 28.31, 61.42, 81.03, 82.50, 82.73, 91.59, 108.92, 112.79, 128.29, 153.70, 155.18; UV $\lambda_{\rm max}$ (CH₃OH) 228 nm (ε 9500), 294 (8840), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 233 nm (ε 5090), 280 (3910). Found: C, 52.15; H, 7.67; N, 9.58%. Calcd for $C_{19}H_{33}O_6N_3Si \cdot 0.5H_2O$: C, 52.27; H, 7.85; N, 9.62%. $5-[(2S^*, 3R^*, 4R^*, 5R^*) - 5 - Hydroxymethyl - 3, 4 - isopropylidenedioxy-3-methyltetrahydrofuran-2-yl]isocytosine (60b): A mixture$ of **53b** (200 mg, 0.707 mmol), guanidine hydrochloride (473 mg, 4.95 mmol), and 0.92 mol dm⁻³ C_2H_5ONa in C_2H_5OH (5.4 ml) was stirred for 3 h. The Method B workup of the reaction mixture gave a crude product which was subjected to preparative TLC (4:1 chloroform–CH₃OH) to afford **60b** (132 mg, 63%). Mp 178—180 °C (CH₃OH); R_f =0.45 (5:1 chloroform–CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.14 (s, CH₃), 1.34 and 1.51 (s, isopropylidene CH₃), 3.56 (d-like, J=5.0 Hz, CH₂OH), 3.93 (m, H₅), 4.32 (d, J=2.8 Hz, H₄), 4.88 (s, H₂), 6.80 (br, NH₂), 7.58 (s, -CH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 20.55, 27.23, 28.44, 61.72, 82.22, 82.50, 87.37, 89.47, 110.76, 112.62, 152.83, 155.77, 162.22; UV λ_{max} (CH₃OH) 226 nm (ε 6830), 293 (6290), λ_{max} (0.1 mol dm⁻³ NaOH) 233 nm (ε 11000), 280 (8690). Found: C, 50.11; H, 6.51; N, 13.30%. Calcd for $C_{13}H_{19}O_5N_3 \cdot 0.8H_2O$: C, 50.09; H, 6.66; N, 13.48%. Deprotection of the 5-(5-Hydroxymethyl-3,4-isopropylidenedioxytetrahydrofuran-2-yl)pyrimidine C-Nucleosides by Methanolic Hydrogen Chloride. General Procedure: Unless otherwise stated, removal of the isopropylidene group was performed as follows. A mixture of a 5-(5-hydroxymethyl-3,4-isopropylidenedioxytetrahydrofuran-2-yl)pyrimidine G-nucleoside and 10% methanolic hydrogen chloride solution was stirred at the room temperature until the reaction was complete (TLC analysis). The reaction mixture was concentrated under reduced pressure (50—90 mmHg), giving a crude material, which was coevaporated with C₂H₅OH. The resulting solid was triturated with ether or ethyl acetate to give the desired deprotection product. A pure sample was collected by recrystallization. 5-[(2R*,3R*,4R*,5R*) - 3,4 - Dihydroxy - 5-[(R*)-1-hydroxy-ethyl]tetrahydrofuran - 2-yl]uracil ((±)-5'-Methylpseudouridine) (9b): To a solution of 8b (51.2 mg, 0.172 mmol) in CH₃OH (2 ml) was added 10% HCl in CH₃OH (2 ml) and the mixture was stirred for 10 min. The above described workup gave 9b (42.8 mg, 96%). Mp 237.2—239.1 °C (aqueous C₂H₅OH); ¹H NMR (dimethyl-d₆ sulfoxide) δ 1.06 (d, J=6.0 Hz, CH₃), 3.50 (m, H₅ and CHOH), 4.0 (m, H₃ and H₄), 4.37 (d, J=6.0 Hz, H₂), 7.70 (d, J=6.0 Hz, =CH), 10.87 (d, J=6.0 Hz, NH), 11.08 (s, NH); UV λ _{max} (CH₃-OH) 264 nm (ε 5620), λ _{max} (0.1 mol dm⁻³ HCl) 263 nm (ε 8130), λ _{max} (0.1 mol dm⁻³ NaOH) 287 nm (ε 8510). Found: C, 46.67; H, 5.39; N, 10.71%. Calcd for C₁₀-H₁₄O₆N₂: C, 46.51; H, 5.47; N, 10.85%. 5-[(2R*,3R*,4S*,5S*)-3,4-Dihydroxy-5-(1-hydroxy-1-methylethyl)tetrahydrofuran-2-yl]uracil ((±)-5',5'-Dimethylpseudouridine) (9a): To a solution of 8a (218 mg, 0.699 mmol) in CH₃-OH (4 ml) was added 10% HCl in CH₃OH (3 ml) and the resulting mixture was stirred for 10 min. Workup in a usual manner left pure 9a (185 mg, 97%). Mp 221.4—224.8 °C; ¹H NMR (C_5D_5N) δ 1.53 and 1.57 (s, CH₃), 4.32 (dd, J=3.0, 5.0 Hz, H₄), 4.34 (d, J=3.0 Hz, H₅), 5.12 (dd, J=5.0, 6.5 Hz, H₃), 5.25 (d, J=6.5 Hz, H₂), 5.75 (br, OH and NH), 8.00 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 212 nm (ε 7940), 263 (6600), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 264 nm (ε 8310), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 218 nm (ε 8310), 287 (10960). Found: C, 48.42; H, 6.02; N, 10.11%. Calcd for $C_{11}H_{16}O_6N_2$: C, 48.52; H, 5.92; N, 10.29%. 5-[$(2R^*,3R^*,4R^*,5R^*)$ - 3,4 - Dihydroxy - 5-[(R^*) - 1-hydroxy-hexyl]tetrahydrofuran - 2 - yl]uracil $((\pm)$ - 5' - Pentylpseudouridine) (9c): A mixture of 8c (134 mg, 0.379 mmol) in CH₃OH (3 ml) and 10% HCl in CH₃OH (3 ml) was stirred for 10 min. The usual workup gave 9c (71 mg, 60%). Mp 193.3—197.7 °C; ¹H NMR (C_5D_5N) δ 0.81 (t, J=6.0 Hz, CH₃), 1.10—1.90 (m, CH₂), 4.24 (m, CHOH), 4.54 (t, J=2.8 Hz, H₅), 4.94 (dd, J=2.8, 4.3 Hz, H₄), 5.15 (m, H₂ and H₃), 5.50 (br, OH and NH), 7.95 (s, =CH); UV 5-[(2R*,3R*,4R*,5S*)-3,4-Dihydroxy-5-[(S*)-α-hydroxy-benzyl]tetralydrofuran-2-yl]uracil ((±)-5'-Phenylpseudouridine) (9d): To a solution of 8d (39.0 mg, 0.108 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1.5 ml). The resulting mixture was stirred for 5 min and worked up to yield 9d (36.3 mg, 100%) as a wax. ¹H NMR (C₅D₅N) δ 4.90 (m, H₅ and CHOH), 5.24 (m, H₃ and H₄), 5.47 (d, J=4.0 Hz, H₂), 7.20—7.50 (m, C₆H₅), 7.83 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 265 nm (ε 7410), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 264 nm (ε 7250), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 285 nm (ε 9330). Found: C, 56.31; H, 5.23; N, 8.61%. Calcd for C₁₅H₁₆O₆N₂: C, 56.25; H, 5.04; N, 8.75%. 5-[(2R*,3S*,4S*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-5-methyltetrahydrofuran-2-yl]uracil ((\pm)-4'-Methylpseudouridine) (17a): To a solution of 16a (14.0 mg, 0.0392 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml). After stirring for 15 min, usual workup afforded 17a (11.6 mg, 100%). Mp 226—228 °C (CH₃OH); R_f =0.37 (3:1 chloroform-CH₃OH); ¹H NMR (C₅D₅N) δ 1.69 (s, CH₃), 3.90 (d, J=11.5 Hz, H_aH_b COH), 4.08 (d, J=11.5 Hz, H_aH_b COH), 4.87 (m, H_4), 5.26 (m, H_2 and H_3), 6.32 (br, OH), 7.98 (s, =CH), 12.50 and 13.20 (br, NH); UV λ_{max} (CH₃OH) 264 nm (ϵ 7760), λ_{max} (0.1 mol dm⁻³ HCl) 264 nm (ϵ 7510), λ_{max} (0.1 mol dm⁻³ NaOH) 286 nm (ϵ 7540). Found: m/z, 258.0855. Calcd for C₁₀H₁₄O₆N₂: M, 258.0852. 5-[(2R*,3S*,4S*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-5-pentyl-tetrahydrofuran - 2-yl]uracil ((±)-4'-Pentylpseudouridine) (17b): To a mixture of 16b (16.0 mg, 0.0452 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml), and the resulting mixture was stirred for 10 min. Workup afforded 17b (15.7 mg, 100%). Mp 205—209 °C (CH₃OH); R_f = 0.60 (3:1 chloroform—CH₃OH); ¹H NMR (C₅D₅N) δ 0.84 (t, J=6.0 Hz, CH₃), 1.2—2.3 (m, CH₂), 3.98 (d, J= 11.8 Hz, H_aH_b COH) 4.14 (d, J=11.8 Hz, H_aH_b COH) 4.88 (d, J=4.5 Hz, H_4), 5.14 (d, J=8.0 Hz, H_2), 5.34 (dd, J=4.5, 8.0 Hz, H_3), 5.91 (br, OH), 7.89 (s, =CH), 12.50 and 13.20 (br, NH); UV λ_{max} (CH₃OH) 264 nm (ε 9530), λ_{max} (0.1 mol dm⁻³ HCl) 264 nm (ε 9210), λ_{max} (0.1 mol dm⁻³ NaOH) 287 nm (ε 8390). Found: C, 50.54; H, 6.68; N, 7.68%. Calcd for $C_{14}H_{22}O_6N_2\cdot H_2O$: C, 50.59; H, 7.28; N, 8.43%. 5-[(2R*,3S*,4S*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-5-phenyltetrahydrofuran-2-yl]uracil ((\pm)-4'-Phenylpseudouridine) (17c): To a solution of 16c (34.2 mg, 0.095 mmol) in CH₃OH (2 ml) was added 10% HCl in CH₃OH (2 ml). After stirring for 15 min, the mixture was worked up to give 17c (32.0 mg, 100%). Mp 245—249 °C (CH₃OH); R_f =0.55 (3:1 chloroform-CH₃OH); ¹H NMR (C₅D₅N) δ 4.07 (d, J=11.9 Hz, H_aH_b COH), 4.17 (d, J=11.9 Hz, H_aH_b COH), 5.28 (d, J=5.2 Hz, H_4), 5.35 (d, J=7.5 Hz, H_2), 5.62 (dd, J=5.2, 7.5 Hz, H_3), 5.92 (br, OH), 7.2—8.0 (m, C₆H₅), 8.08 (s, =CH), 13.30 (br, NH); UV λ_{max} (CH₃-OH) 264 nm (ε 5380), λ_{max} (0.1 mol dm⁻³ HCl) 263 nm (ε 8790), λ_{max} (0.1 mol dm⁻³ NaOH) 288 nm (ε 5150).³⁸⁾ 5-[(2R*,3R*,4R*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-2- 5-[$(2R^*,3R^*,4R^*,5R^*)$ -3,4-Dihydroxy-5-hydroxymethyl-2-methyltetrahydrofuran-2-yl]uracil ((\pm)-1'-Methylpseudouridine) (25 α): A mixture of a solution of 24 α (16.9 mg, 0.128 mmol) in CH₃OH (1 ml) and 10% HCl in CH₃OH (1 ml) was stirred for 30 min. Usual workup gave 25 α (15.9 mg, 100%) as a pale green foam. R_1 =0.40 (3:1 chloroform-CH₃OH); ¹H NMR (C₅D₅N) δ 2.16 (s, CH₃), 4.22 (dd, J=3.1, 11.2 Hz, H₄H₆COH), 4.38 (dd, J=2.5, 11.2 Hz, $\rm H_aH_bCOH)$, 4.61 (ddd, J=2.5, 3.1, 7.5 Hz, $\rm H_5$), 4.84 (dd, J=4.7, 7.5 Hz, $\rm H_4$), 5.00 (d, J=7.5 Hz, $\rm H_3$), 6.26 (br, OH), 8.52 (s, =CH), 12.42 and 12.96 (br, NH); UV $\lambda_{\rm max}$ (CH₃OH) 263 nm, $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 263 nm, $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 265 nm (sh), 289, molar extinction coefficient has not been measured because of the extreme hygroscopicity.³⁸⁾ $5 - [(2R*,3R*,4R*,4R*) - 3,4 - Dihydroxy - 5 - hydroxymethyl - 2 - pentyltetrahydrofuran - 2 - yl]uracil ((±) - 1' - Pentylpseudouridine) (25b): To a solution of 24b (30.0 mg, 0.0847 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml). After stirring for 30 min, usual workup and preparative TLC (3:1 chloroform–CH₃OH) afforded 25b (9.6 mg, 36%) as a yellow foam. <math>R_f$ =0.44 (3:1 chloroform–CH₃OH); ¹H NMR (C₅D₅N) δ 0.80 (t, J=7.0 Hz, CH₃), 1.1—2.0 (m, CH₂), 2.3—3.1 (m, CH₂, 2H), 4.36 (m, CH₂OH), 4.58 (m, H₅), 4.84 (m, H₄), 5.00 (m, H₃), 8.62 (s, =CH); UV λ_{max} (CH₃OH) 265 nm (ε 5960), λ_{max} (0.1 mol dm⁻³ HCl) 265 nm (ε 6610), λ_{max} (0.1 mol dm⁻³ NaOH) 266 nm (sh, ε 3260), 289 (4840).³⁸ $5 - [(2R^*, 3S^*, 4S^*) - 3, 4 - Dihydroxy - 5, 5 - bis (hydroxymethyl) - tetrahydrofuran - 2 - yl]uracil ((±) - 4'-Hydroxymethylpseudouridine) (33): A mixture of 32 (50 mg, 0.175 mmol) and 10% HCl in CH₃OH (1.5 ml) was stirred for 10 min. Workup afforded 33 (38.3 mg, 89%) as a white powder. Mp 76—79 °C; ¹H NMR (dimethyl-<math>d_6$ sulfoxide) δ 3.46 (d-like, J=6.0 Hz, CH₂OH), 4.33 (m, H₂, H₃, and H₄), 4.0—5.0 (br, OH), 7.43 (d, J=5.8 Hz, =CH), 10.87 (d, J=5.8 Hz, NH), 11.05 (br s, NH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 61.63, 63.88, 72.40, 74.06, 78.33, 86.47, 110.59, 140.44, 150.91, 163.94; UV $\lambda_{\rm max}$ (CH₃OH) 264 nm (ε 6580), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 264 nm (ε 6090), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 287 nm (ε 6780).³8) 5-[(2R*,3R*,4S*,5R*)-3,4-Dihydroxy-2,5-dimethyl-5-hydroxy-methyltetrahydrofuran-2-yl]uracil ((±)-1',4'-Dimethylpseudouridine) (47α): To a solution of 46α (313 mg, 0.911 mmol) in CH₃OH (2 ml)was added 10% HCl in CH₃OH (3 ml). The resulting mixture was stirred for 1 h. Usual workup afforded 47α (274 mg, 100%). Mp 134—138 °C (CH₃OH); $R_{\rm f}$ =0.45 (3:1 chloroform-CH₃OH); ¹H NMR (C₅D₅N) δ 1.78 and 2.14 (s, CH₃), 3.96 (s, CH₂OH), 4.87 (d, J=5.5 Hz, H₃), 5.05 (d, J=5.5 Hz, H₄), 6.24 (br, OH), 8.48 (br s, =CH), 12.50 (br, NH), 13.04 (br, NH); ¹³C NMR (dimethyl-d₆ sulfoxide) δ 19.74, 23.46, 67.24, 72.11, 75.80, 82.23, 84.53, 117.80, 139.04, 151.60, 164.15; UV λ_{max} (CH₃OH) 265 nm (ε 6190), λ_{max} (0.1 mol dm⁻³ NaOH) 287 nm (ε 4760). Found: C, 46.52; H, 5.87; N, 8.98%. Calcd for C₁₁H₁₆O₆N₂·0.8H₂O: C, 46.08; H, 6.19; N, 9.77%. 5-[(2R*,3R*,4S*,5R*)-3,4-Dihydroxy-2,5-dipentyl-5-hydroxy-methyltetrahydrofuran-2-yl]uracil ((±)-1',4'-Dipentylpseudouridine) (47b): To a solution of 46b (100 mg, 0.236 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (3 ml). After stirring for 1.5 h, the mixture was worked up to give 47b (82.5 mg, 91%). Mp 232—236 °C (CH₃OH); ¹H NMR (dimethyl-d₆ sulfoxide) δ 0.86 (m, CH₃), 1.0—2.1 (m, CH₂), 3.51 (br s, CH₂OH), 4.03 (m, H₃ and H₄), 4.81 (br, OH), 7.51 (m, =CH), 10.88 (m, NH), 11.00 (br s, NH); ¹³C NMR (dimethyl-d₆ sulfoxide) δ 13.73, 21.98, 22.40, 22.58, 31.62, 31.77, 32.35, 32.77, 63.93, 72.11, 76.65, 83.80, 85.65, 115.67, 138.98, 151.07, 163.94; UV λ_{max} (CH₃OH) 265 nm (ε 7240), λ_{max} (0.1 mol dm⁻³ HCl) 265 nm (ε 2300), λ_{max} (0.1 mol dm⁻³ NaOH) 290 nm (ε 7200).³⁸⁾ 5-[(2R*,3S*,4R*,5R*)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-tetrahydrofuran - 2-yl]uracil ((\pm) -2'-Hydroxymethylpseudouridine) (**55a**): To a solution of **54a** (94 mg, 0.219 mmol) in CH₃OH (0.1 ml) was added 10% HCl in CH₃OH (0.2 ml). After stirring for 30 min, the mixture was worked up to give **55a** (57 mg, 95%) as a white foam. Mp 125—130 °C; $R_{\rm f}$ = 0.29 (10:10:1 chloroform–CH₃OH–Water); ¹H NMR (dimethyl- d_6 sulfoxide) δ 3.28 (s, C(OH)CH₂OH), 3.4—3.9 (m, H₄, H₅, and CH₂OH), 4.68 (s, H₂), 7.50 (d, J=4.8 Hz, =CH), 12.28 (d, J=4.8 Hz, NH), 12.40 (br, NH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 60.56, 63.21, 70.58, 79.62, 80.42, 82.06, 110.75, 139.17, 150.96, 164.18; UV $\lambda_{\rm max}$ (CH₃OH) 267 nm (ε 5710), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 266 nm (ε 5140), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 285 nm (ε 3780).³⁸⁾ 5-[(2R*,3S*,4R*,5R*) - 3,4 - Dihydroxy - 5 - hydroxymethyl - 3-methyltetrahydrofuran - 2 - yl]uracil $((\pm)$ - 2' - Methylpseudouridine) (55b): To a solution of 54b (30 mg, 0.101 mmol) in CH₃OH (0.5 ml) was added 10% HCl in CH₃OH (0.5 ml) and the resulting mixture was stirred for 1 h. Workup afforded 54b (25 mg, 96%). Mp 138—142 °C; R_f =0.40 (2:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.99 (s, CH₃), 3.60 (m, H₄, H₅, and CH₂OH), 4.00 (br, OH), 4.68 (s, H₂), 7.60 (d, J=5.0 Hz, =CH), 10.78 (d, J=5.0 Hz, NH), 10.99 (br, NH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 20.95, 60.31, 73.57, 77.99, 81.31, 81.53, 112.13, 138.92, 150.90, 163.68; UV λ_{max} (CH₃OH) 264 nm (ε 6420), λ_{max} (0.1 mol dm⁻³ NaOH) 285 nm (ε 8020).³⁸⁾ 5-[(2R*,3R*,4R*,5R*)-3,4-Dihydroxy-5-[(R*)-1-hydroxy-ethyl]tetrahydrofuran-2-yl]-2-thiouracil ((\pm)-5'-Methyl-2-thiopseudouridine) (**11b**): To a solution of **10a** (52.1 mg, 0.155 mmol) in CH₃OH (2 ml) was added 10% HCl in CH₃OH (2 ml). The resulting mixture was stirred for 5 min and worked up to give **11b** (48.6 mg, 100%) as a wax. ¹H NMR (C₅D₅N) δ 1.51 (d, J=6.0 Hz, CH₃), 4.67 (m, H₅ and HCOH), 4.96 (m, H₃ and H₄), 5.35 (d, J=5.2 Hz, H₂), 6.0 (br, OH and NH), 8.16 (s, =CH); UV λ _{max} (CH₃OH) 215 nm (ε 6610), 277 (8350), 291 (7590), λ _{max} (0.1 mol dm⁻³ HCl) 213 nm (ε 6080), 280 (4630), 295 (5630), λ _{max} (0.1 mol dm⁻³ NaOH) 221 nm (ε 11400), 264 (10200), 285 (7730).³⁸) $5 - (2R^*, 3R^*, 4R^*, 5R^*) - 3, 4 - Dihydroxy - 5 - (R^*) - 1 - hydroxy - 5$ hexyl\tetrahydrofuran-2-yl\-2-thiouracil\ ((\pm\perp)-5'-Pentyl-2-thiopseudouridine (11c): To a solution of 10c (62.8 mg, 0.170 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (2 ml). After stirring for 10 min, the mixture was worked up to afford **11c** (32.5 mg, 58%). Mp 164—170 °C; ¹H NMR $({\rm C}_5{\rm D}_5{\rm N}) \ \delta \ 0.81 \ ({\rm t},\ J\!=\!7.0\ {\rm Hz},\ {\rm CH}_3),\ 1.1\!-\!2.0\ ({\rm m},\ {\rm CH}_2),$ 4.30 (m, $\underline{\text{H}}\text{COH}$) 4.57 (t-like, $J=3.0\,\text{Hz}$, H_5), 5.00 (m, H_3 and H_4), 5.35 (d, $J=5.2~{\rm Hz},~H_2$), 5.4—6.8 (br, OH and NH), 8.14 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 214 nm (ε 4310), 276 (5160), 291 (4670), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 215 nm (ε 7090), 276 (8230), 290 (8230), λ_{max} (0.1 mol dm⁻³ NaOH) 222 nm (ε 5300), 264 (4340), 285 (3420).³⁸⁾ $5 - [(2R^*, 3R^*, 4R^*, 5S^*) - 3, 4 - Dihydroxy - 5 - [(S^*) - \alpha - hydroxy - 5]]$ benzyl]tetrahydrofuran-2-yl]-2-thiouracil $((\pm) - 5' - Phenyl - 2 - thio$ pseudouridine) (11d): To a suspension of 10d (26.6 mg, 0.071 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml). The resulting mixture was stirred for 10 min and worked up to give **11d** (24.9 mg, 100%). Mp 126—130 °C; ¹H NMR (dimethyl- d_6 sulfoxide) δ 3.95 (dlike, $J\!=\!3.1$ Hz, H_5), 4.46 (d, $J\!=\!3.0$ Hz, H_4), 4.70 (m, H_3), 4.90 (m, H_2), 5.59 (d, $J\!=\!3.0$ Hz, $\underline{\rm HCOH}$), 7.2—7.5 (m, ${\rm C_6H_5}$), 7.44 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 212 nm (ε 4380), 277 (3620), 290 (3240), $\lambda_{\rm max}$ (0.1 mol dm $^{-3}$ HCl) 275 nm (ε 6900), 290 (6440), $\lambda_{\rm max}$ (0.1 mol dm $^{-3}$ NaOH) 264 nm (ε 6510), 285 (5030). 38) 5 - [(2R*,3S*,4S*,5R*) - 3,4 - Dihydroxy - 5 - hydroxymethyl - 5 methyltetrahydrofuran-2-yl]-2-thiouracil ((\pm)-4'-Methyl-2-thiopseudouridine) (19a): To a solution of 18a (22.1 mg, 0.0704 mmol) in CH₂OH (1.5 ml) was added 10% HCl in CH₃OH (1.5 ml) and the resulting mixture was stirred for 20 min. Usual workup afforded **19a** (18.4 mg, 95%). Mp 157—162 °C (CH₃OH); $R_f = 0.55$ (3:1 chloroform-CH₃OH); ¹H NMR (C₅D₅N) δ 1.69 (s, CH₃), 3.93 (d, J=11.5 Hz, $\underline{H}_a H_b COH$), 4.07 (d, J = 11.5 Hz, $H_a \underline{H}_b COH$), 4.88 (d, J=5.5 Hz, H_4), 5.10 (t, J=5.5 Hz, H_3), 5.35 (d, $J=5.5 \text{ Hz}, \text{ H}_2$, 8.16 (s, =CH); UV λ_{max} (CH₃OH) 215 nm (ϵ 10920), 276 (15550), 291 (14070), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 214 nm (ε 13150), 276—290 (flat, 15570), λ_{max} (0.1 mol dm⁻³ NaOH) 223 nm (ε 12640), 264 (11240), 286 (8570). Found: m/z, 274.0613. Calcd for $C_{10}H_{14}O_5N_2S$: M, 274.0623. 5-[(2R*,3S*,4S*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-5-pentyltetrahydrofuran-2-yl]-2-thiouracil $((\pm)$ -4'-Pentyl-2-thiopseudouridine) (19b). To a suspension of 18b (17.7 mg)0.048 mmol) in CH₃OH (1.5 ml) was added 10% HCl in CH₃OH (1.5 ml). After stirring for 30 min, the mixture was worked up in a usual manner to give 19b (16.9 mg. 100%). Mp 203-205 °C (CH₃OH); $R_f = 0.74$ (3:1 chloroform-CH₃OH); ¹H NMR (C₅D₅N) δ 0.81 (t, J=6.0 Hz, CH₃), 1.2–2.0 (m, CH₂), 3.96 (d, J=11.8 Hz, \underline{H}_aH_bCOH), 4.12 (d, J=11.8 Hz, $H_a \underline{H}_b \text{COH}$), 4.87 (br s, H_4), 5.20 (m, H_2 and H_3), 6.0 (br, OH), 8.02 (s, =CH); UV λ_{max} (CH₃OH) 215 nm (ε 13320), 276 (18690), 291 (16950), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 214 nm (ϵ 14310), 275—290 (flat, 16500), λ_{max} (0.1 mol dm⁻³ NaOH) 223 nm (ε 13790), 264 (12100), 286 (9340).38) 5-[(2R*,3S*,4S*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-5-phenyl-tetrahydrofuran-2-yl]-2-thiouracil ((±)-4'-Phenyl-2-thiopseudouridine) (19c): A mixture of 18c (106 mg, 0.282 mmol) and 9:1 CF₃COOH-H₂O (4 ml) was stirred for 10 min. Usual workup afforded 19c (84.1 mg, 89%). Mp 249—250 °C (CH₃OH); R_1 =0.70 (3:1 chloroform-CH₃OH); ¹H NMR (dimethyl-d₆ sulfoxide) δ 3.34 (m, CH₂OH), 4.57 (m, H₃), 5.10 (m, H₂ and H₄), 7.30 (m, C₆H₅), 7.66 (d, J=5.5 Hz, =CH), 12.43 (d, J=5.5 Hz, NH), 12.57 (br s, NH); UV $\lambda_{\rm max}$ (CH₃OH) 276 nm (ε 16620), 290 (14970), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 276 nm (ε 13620), 289 (13790), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 216 nm (ε 19540), 264 (13910), 289 (13790). Found: C, 52.75; H, 4.70; N, 8.12; S, 9.68%. Calcd for C₁₅H₁₆O₅N₂S: C, 53.36; H, 4.80; N, 8.33; S, 9.53%. 5-[(2R*,3R*,4R*,5R*) - 3,4 - Dihydroxy - 5 - hydroxymethyl - 2 - methyltetrahydrofuran - 2 - yl]-2-thiouracil ((±) - 1' - Methyl-2-thiopseudouridine) (27a): To a solution of 26a (54.7 mg, 0.175 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml). After stirring for 30 min, the mixture was worked up to give 27a (50.3 mg, 100%) as a yellow foam. R_f = 0.60 (3:1 chloroform-CH₃OH); ¹H NMR (C₅D₅N) δ 2.16 (s, CH₃), 4.21 (dd, J=2.0, 11.9 Hz, H₄H_bCOH), 4.38 (dd, J=3.1, 11.9 Hz, H₄H₅COH), 4.60 (ddd, J=2.0, 3.1, 6.1 Hz, H₅), 4.82 (dd, J=4.6, 6.1 Hz, H₄), 4.96 (d, J=6.1 Hz, H₃), 6.0—6.9 (br, OH and NH), 8.71 (s, =CH); UV λ _{max} (CH₃OH) 215 nm (ε 10940), 276 (14430), 290 (13270), λ _{max} (0.1 mol dm⁻³ HCl) 215 nm (ε 11000), 275 (14330), 290 (sh, 13320), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 221 nm (sh, ε 12680), 262 (12310), 295 (sh, 6620).³8) 5-[(2R*,3R*,4R*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-2pentyltetrahydrofuran - 2 - yl] - 2 - thiouracil $((\pm) - 1' - Pentyl - 2 - thio$ pseudouridine) (27b): To a solution of 26b (52.6 mg, 0.142) mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml). The mixture was stirred for 30 min and worked up to give 27b (41.6 mg, 89%) as a yellow foam. $R_{\rm f}$ = 0.72 (3:1 chloroform–CH₃OH); 1 H NMR (C₅D₅N) δ 0.76 $(t, J=7.0 \text{ Hz}, CH_3), 1.0-1.9 \text{ (m, CH}_2), 2.2-3.1 \text{ (m, CH}_2)$ 2H), 4.27 (dd, J=2.2, 11.9 Hz, $\underline{H}_a H_b COH$), 4.44 (dd, J=2.3, 11.9 Hz, $H_a \underline{H}_b COH$), 4.56 (ddd, J=2.2, 2.3, 7.0 Hz, H_5), 4.86 (dd, J=5.0, 7.0 Hz, H_4), 4.95 (d, J=5.0 Hz, H_3), 6.0—7.2 (br, OH and NH), 8.78 (s, =CH); UV λ_{max} (CH₃OH) 215 nm (ε 10910), 277 (14540), 291 (13190), λ_{max} (0.1 mol dm⁻³ HCl) 213 nm (sh, ε 7280), 273 (8440), 295 (sh, 6160), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 220 nm (sh, ϵ 9340), 262 (9420), 297 (sh, 4590). Found: m/z, 330.1244. Calcd for C₁₄H₂₂O₅N₂S: M, 330.1249. $5 - [(2R*,3S*,4S*) - 3,4 - Dihydroxy-5,5-bis(hydroxymethyl) tetrahydrofuran - 2 - yl] - 2 - thiouracil ((±) - 4' - Hydroxymethyl - 2 - thiopseudouridine) (35): A mixture of 34 (35.8 mg, 0.119 mmol) and 10% HCl in CH₃OH (1 ml) was stirred for 10 min. Usual workup afforded 35 (32.3 mg, 90%) as a white powder. Mp 84—87 °C; ¹H NMR (dimethyl-<math>d_6$ sulfoxide) δ 3.48 (dlike, J = 5.9 Hz, CH₂OH), 4.06 (m, H₃), 4.61 (m, H₂ and H₄), 4.3—5.0 (br, OH), 7.52 (d, J = 5.9 Hz, =CH), 11.84 (d, J = 5.9 Hz, NH), 11.98 (br s, NH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 61.68, 63.94, 72.45, 74.09, 78.41, 86.51, 110.62, 140.43, 150.92, 163.95; UV λ_{max} (CH₃OH) 213 nm (ε 14110), 275 (15840), 296 (sh, 13120), λ_{max} (0.1 mol dm⁻³ HCl) 214 nm (ε 13500), 273 (13500), 292 (sh, 12080), λ_{max} (0.1 mol dm⁻³ NaOH) 265 nm (ε 13620), 285 (12920).³8) 5-[(2R*,3R*,4R*,5R*)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)-tetrahydrofuran - 2-yl]-2-thiouracil ((±)-1'-Hydroxymethyl-2-thiopseudouridine) (41): To a solution of 40 (50 mg, 0.156 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (0.5 ml). After stirring for 10 min, the mixture was worked up in a usual manner to give 41 (39 mg, 87%) as a white powder. Mp 130—135 °C; ¹H NMR (dimethyl-d₆ sulfoxide) δ 3.49 (d-like, J=6.5 Hz, CH₂OH), 3.9—4.3 (m, H₃, H₄, H₅, and OH), 7.53 (m, =CH), 12.30 (br, NH), 12.44 (br s, NH); UV $\lambda_{\rm max}$ (CH₃OH) 213 nm (ε 12360), 275 (12540), 299 (sh, 10300), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 213 nm (ε 13820), 274 (13340), 297 (sh, 11200), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 265 nm (ε 12580), 284 (10440).³⁸⁾ 5-[(2R*,3R*,4S*,5R*)-3,4-Dihydroxy-2,5-dimethyl-5-hydroxymethyltetrahydrofuran-2-yl]-2-thiouracil ((\pm)-1',4'-Dimethyl-2-thiobseudouridine) (49a): To a solution of 48a (229 mg, 0.670 mmol) in CH₃OH (2 ml) was added 10% HCl in CH₃OH (3 ml). The resulting mixture was stirred for 1 h and worked up to afford 49a (192 mg, 98%). Mp 182-186 °C (CH₃OH); ¹H NMR (C₅D₅N) δ 1.75 and 2.13 (s, CH_3), 3.98 (s, $C\underline{H}_2OH$), 4.86 (d, J=5.2 Hz, H_3), 4.97 (d, $J=5.2 \text{ Hz}, \text{ H}_4$, 6.50 (br, OH), 8.65 (s, =CH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 19.59, 22.88, 66.42, 71.24, 75.06, 81.95, 84.30, 123.01, 138.83, 160.89, 175.01; UV λ_{max} (CH₃OH) 216 nm (ε 13430), 277 (18980), 290 (17230), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 216 nm (ε 12870), 277 (16560), 285 (16370), λ_{max} (0.1 mol dm⁻³ NaOH) 222 nm (ε 15860), 262 (14800), 290 (9650). Found: C, 45.76; H, 5.74; N, 9.47; S, 10.86%. Calcd for $C_{11}H_{16}O_5N_2S$: C, 45.83; H, 5.59; N, 9.72, S, 11.12%. 5-[(2R*,3R*,4S*,5R*)-3,4-Dihydroxy-2,5-dipentyl-5-hydroxy-methyltetrahydrofuran-2-yl]-2-thiouracil ((\pm) -1',4'-Dipentyl-2-thiopseudouridine) (**49b**): To a solution of **48b** (404 mg, 0.910 mmol) in CH₃OH (3 ml) was added 10% HCl in CH₃OH (3 ml). The mixture was stirred for 1 h and worked up in a usual manner to afford **49b** (392 mg, 100%). Mp 105—110 °C (CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.84 (m, CH₃), 1.0—2.1 (m, CH₂), 3.34 (m, CH₂OH), 3.8—5.0 (br, OH), 4.04 (m, H₃ and H₄), 7.57 (m, =CH), 12.26 (m, NH), 12.35 (br s, NH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 13.73, 21.99, 22.50, 31.71, 32.37, 63.71, 71.89, 76.25, 83.89, 85.78, 121.27, 138.93, 160.73, 174.68; UV λ_{max} (CH₃OH) 215 nm (ε 9330), 277 (13170), 290 (sh, 11690), λ_{max} (0.1 mol dm⁻³ HCl) 217 nm (ε 6280), 275 (9980), 289 (9460), λ_{max} (0.1 mol dm⁻³ NaOH) 225 nm (ε 10110), 262 (10790).³⁸ $5-\lceil (2S^*,3R^*,4R^*,5R^*)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-1$ tetrahydrofuran - 2 - yl] - 2 - thiouracil $((\pm)-2'-Hydroxymethyl-2-thio$ pseudouridine) (59a): To a solution of 58a (237 mg, 0.534 mmol) in CH₃OH (2.8 ml) was added 10% HCl in CH₃OH (5 ml). After stirring for 30 min, the mixture was worked up as usual to afford **59a** (148 mg, 96%). Mp 140—145 °C; $R_f = 0.48$ (10:10:1 chloroform-CH₃OH-water); ¹H NMR (dimethyl- d_6 sulfoxide) δ 3.27 (s, C(OH)C \underline{H}_2 OH), 3.4—3.7 (m, H_4 and H_5), 3.64 (d, J=8.0 Hz, \underline{H}_aH_bCOH), 3.85 (d, $J=8.0 \text{ Hz}, H_a H_b COH), 4.25 \text{ (br, OH)}, 4.68 \text{ (s, H}_2), 7.50$ (d, J=5.5 Hz, =CH), 12.26 (d, J=5.5 Hz, NH), 12.38 (br, NH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 60.54, 62.70, 70.17, 79.88, 80.16, 82.05, 116.58, 138.54, 160.90, 174.63; UV $\lambda_{\rm max}$ (CH₃OH) 215 nm (ε 9080), 277 (11700), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 215 nm (ε 9400), 276 (11000), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 220 nm (ε 11700), 264 (9060). Found: C, 37.22; H, 5.06; N, 7.42%. Calcd for C₁₀H₁₄-O₆N₉S·2.3H₉O: C, 36.21; H, 5.64; N, 8.45%. $5 - [(2S^*, 3R^*, 4R^*, 5R^*) - 3, 4 - Dihydroxy - 5 - hydroxymethyl - 3$ methyltetrahydrofuran - 2 - yl] - 2 - thiouracil $((\pm)-2'-Methyl-2-thio$ pseudouridine) (59b): To a solution of 58b (194 mg, 0.618 mmol) in CH₃OH (3 ml) was added 10% HCl in CH₃OH (5 ml). The mixture was stirred for 30 min and worked up to give **59b** (164 mg, 97%). Mp 132—136 °C (CH₃OHether); $R_f = 0.61$ (2:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.98 (s, CH₃), 3.6 (m, H₄, H₅, and $C\underline{H}_2OH$), 4.22 (br, OH), 4.70 (s, \underline{H}_2), 7.68 (d, $\underline{J}=5.5$ Hz, =CH), 12.26 (d, J=5.5 Hz, NH), 12.38 (br, NH); 13 C NMR (dimethyl- d_6 sulfoxide) δ 20.87, 60.18, 73.46, 78.06, 81.05, λ 81.59, 117.70, 138.51, 160.53, 174.75; UV λ_{max} (CH₃OH) 215 nm (ε 9470), 276 (11600), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 215 nm (ε 10200), 275 (11000), λ_{max} (0.1 mol dm⁻³ NaOH) 220 nm (ε 17300), 263 (14500). Found: C, 40.81; H, 5.19; N, 9.44; S, 10.58%. Calcd for $C_{10}H_{14}O_5N_2S \cdot 1.1H_2O$: C, 40.84; H, 5.55; N, 9.53; S, 10.90%. 5-[(2R*,3R*,4S*,5S*)-3,4-Dihydroxy-5-(1-hydroxy-1-methylethyl) tetrahydrofuran - 2 - yl]isocytosine Hydrochloride $((\pm)$ - 5',5'-Dimethylpseudoisocytidine Hydrochloride) (13a): To a suspension of **12a** (35.2 mg, 0.113 mmol) in CH₃OH (2 ml) was added 10% HCl in CH₃OH (1 ml). The reaction mixture was stirred for 10 min and worked up in a usual way to afford 13a (40.1 mg, 100%) as a wax. ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.14 (s, CH₃), 3.52 (d, J=4.1 Hz, H₅), 3.97 (m, H₃ and H₄), 4.49 (d, J=5.0 Hz, H₂), 4.6-6.4 (br, OH), 7.91 (s, =CH), 8.53 (br, NH₂); UV λ_{max} (CH₃OH) 223 nm (ϵ 10500), 265 (7160), 290 (3910), λ_{max} (0.1 mol dm⁻³ HCl) 221 nm (ε 8950), 262 (6890), λ_{max} (0.1 mol dm⁻³ NaOH 233 nm (ε 8670), 276 (6870).³⁸⁾ 5-[(2R*,3R*,4R*,5R*)-3,4-Dihydroxy-5-[(R*)-1-hydroxyethyl\tetrahydrofuran-2-yl\isocytosine Hydrochloride $((\pm)-5'-Methyl$ pseudoisocytidine Hydrochloride) (13b): To a suspension of 12b (57.4 mg, 0.193 mmol) in CH₃OH (2 ml) was added 10% HCl in CH₃OH (2 ml). After stirring for 10 min, the mixture was worked up to afford 13b (53.1 mg, 94%). Mp 198.0—202.0 °C; ¹H NMR (C_5D_5N) δ 1.58 (d, J= 5.8 Hz, CH₃), 4.35 (m, H₅ and <u>H</u>COH), 4.92 (m, H₄), 5.18 (m, H₂ and H₃), 6.50 (br, OH and NH), 8.12 (s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 223 nm (ε 10500), 265 (7160), 290 (3910), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 221 nm (ε 8950), 262 (6890), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 233 nm (ε 8670), 276 (6870).³⁸⁾ 5-[(2R*,3R*,4R*,5R*)-3,4-Dihydroxy-5-[(R*)-1-hydroxy-hexyl]tetrahydrofuran-2-yl]isocytosine Hydrochloride ((\pm) -5'-Pentyl-pseudoisocytidine Hydrochloride (13c): To a suspension of 12c (106 mg, 0.30 mmol) in CH₃OH (3 ml) was added 10% HCl in CH₃OH (2 ml) and the resulting mixture was stirred for 15 min. Usual workup afforded 13c (95.1 mg, 91%). Mp 168.0—172.0 °C (CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.88 (t, J=6.0 Hz, CH₃), 1.1—1.6 (m, CH₂), 3.60 (m, H₅ and HCOH), 4.00 (m, H₃ and H₄), 4.47 (d, J=4.9 Hz, H₂), 7.80 (s, =CH), 8.45 (br, NH₂); UV λ _{max} (CH₃OH) 224 nm (ε 9630), 266 (6220), 290 (4180), λ _{max} (0.1 mol dm⁻³ HCl) 220 nm (ε 11800), 262 (9070), λ _{max} (0.1 mol dm⁻³ NaOH) 233 nm (ε 7340), 276 (5840). Found: C, 47.83; H, 6.90; N, 12.04%. Calcd for C₁₄H₂₃O₅N₃Cl: C, 48.21; H, 6.65; N, 12.05%. 5-[(2R*,3R*,4R*,5S*) - 3,4 - Dihydroxy - 5-[(S*)-α-hydroxy-benzyl]tetrahydrofuran - 2-yl]isocytosine Hydrochloride ((±)-5'-Phenylpseudoisocytidine Hydrochloride) (13d): To a suspension of 12d (29.3 mg, 0.082 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml). After stirring for 15 min, the mixture was worked up in a usual manner to give 13d (33.4 mg, 100%) as a wax. ¹H NMR (dimethyl- d_6 sulfoxide) δ 3.98 (m, H₃, H₄, and H₅), 4.4—5.7 (br, OH), 4.48 (d, J=6.0 Hz, H₂), 4.70 (m, HCOH), 7.35 (m, C_6 H₅), 7.61 (s, =CH), 8.57 (br, NH₂); UV λ_{max} (CH₃OH) 225 nm (ε 12700), 264 (8240), 290 (3960), λ_{max} (0.1 mol dm⁻³ HCl) 263 (ε 10300), λ_{max} (0.1 mol dm⁻³ NaOH) 233 nm (ε 13200), 277 (10100).³⁸ 5-[(2R*,3S*,4S*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-5-methyltetrahydrofuran-2-yl]isocytosine Hydrochloride ((±)-4'-Methylpseudoisocytidine Hydrochloride) (21a): To a solution of 20a (14.9 mg, 0.05 mmol) in CH₃OH (3 ml) was added 10% HCl in CH₃OH (2 ml) and the resulting mixture was stirred for 30 min. After usual workup, pure 21a (17.9 mg, 100%) was obtained. Mp 212—215 °C (CH₃OH); ¹H NMR (dimethyl-d₆ sulfoxide) δ 1.10 (s, CH₃), 3.25 (d, J=11.5 Hz, $\underline{H}_a\underline{H}_bCOH$), 3.41 (d, J=11.5 Hz, $\underline{H}_a\underline{H}_bCOH$), 3.93 (d, J=5.8 Hz, H_4), 4.10 (dd, J=5.8, 6.0 Hz, H_3), 4.52 (d, J=6.0 Hz, H_2), 7.80 (s, =CH), 8.38 (br, NH₂); UV λ_{max} (CH₃OH) 223 nm (ε 12360), 263 (8050), 290 (5530), λ_{max} (0.1 mol dm⁻³ HCl) 220 nm (ε 14820), 262 (10940), λ_{max} (0.1 mol dm⁻³ NaOH) 238 nm (ε 11760), 280 (4530). Found: C, 40.45, H, 5.30; N, 14.10%. Calcd for C₁₀-H₁₅O₅N₃Cl: C, 40.89; H, 5.49; N, 14.31%. 5-[(2R*,3S*,4S*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-5-pentyl-tetrahydrofuran - 2-yl]isocytosine Hydrochloride ((±)-4'-Pentyl-pseudoisocytidine Hydrochloride) (21b): To a solution of 20b (20.3 mg, 0.0575 mmol) in CH₃OH (2 ml) was added 10% HCl in CH₃OH (2 ml). After stirring for 30 min, the mixture was worked up in a usual manner to give 21b (12.9 mg, 58%). Mp 188—190 °C CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.92 (t, J=6.0 Hz, CH₃), 1.1—1.7 (m, CH₂), 3.42 (br s, CH₂OH), 4.01 (d, J=5.0 Hz, H₄), 4.23 (dd, J=5.0, 7.0 Hz, H₃), 4.50 (d, J=7.0 Hz, H₂), 7.80 (s, =CH), 8.38 (br, NH₂); UV $\lambda_{\rm max}$ (CH₃OH) 225 nm (ε 7520), 266 (4910), 290 (3020), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 220 nm (ε 10840), 262 (8200), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 231 nm (ε 12550), 276 (8620). Found: C, 46.64; H, 6.65; N, 11.60%. Calcd for C₁₄H₂₃O₅N₃Cl·0.5H₂O: C, 46.99; H, 6.76; N, 11.74%. $\textit{5-}[(2R*, 3S*, 4S*, 5R*) - 3, 4- \textit{Dihydroxy-5-hydroxymethyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5-phenyl-5$ tetrahydrofuran - 2 - yl]isocytosine Hydrochloride $((\pm)$ - 4' - Phenylpseudoisocytidine Hydrochloride) (21c): To a solution of 20c (35.7 mg, 0.0994 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml) and the resulting mixture was stirred for 10 min. Usual workup gave 21c (35.0 mg, 99%). Mp 218—221 °C (CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 3.40 (d, J=11.9 Hz, H_aH_bCOH), 3.69 (d, J=11.9 Hz, H_aH_bCOH), 4.35 (m, H_2 and H_3), 4.69 (d, J=6.0 Hz, H_4), 7.30 (m, C_6H_5), 7.98 (s, =CH), 8.48 (br, NH₂); UV λ_{max} (CH₃OH) 217 nm (ε 17630), 262 (9530), λ_{max} (0.1 mol dm⁻³ HCl) 263 nm (ε 7880), λ_{max} (0.1 mol dm⁻³ NaOH) 231 nm (ε 14130), 276 (9740).³⁸) 5-[(2R*,3R*,4R*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-2methyltetrahydrofuran - 2-yl]isocytosine Hydrochloride $((\pm) - 1' -$ Methylpseudoisocytidine Hydrochloride) (29a): To a suspension of 28a (52.4 mg, 0.178 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml). After stirring for 30 min, the mixture was worked up as usual to afford 29a (48.4 mg, 93%) as a yellow foam. ¹H NMR (dimethyl-d₆ sulfoxide) δ 1.38 (s, CH₃), 3.5—3.9 (m, H₄, H₅, and CH₂OH), 4.02 (d, $J=3.5~{\rm Hz}$, H_3), 7.90 (s, =CH), 8.48 (br, NH₂); UV $\lambda_{\rm max}$ (CH₃OH) 222 nm (ε 9490), 262 (6290), 300 (sh, 1030), λ_{max} (0.1 mol dm⁻³ HCl) 221 nm (ε 8680), 262 (6450), λ_{max} (0.1 mol dm⁻³ NaOH) 230 nm (ε 11030), 278 (8250).38) 5 - [(2R*,3R*,4R*,5R*) - 3,4 - Dihydroxy - 5 - hydroxymethyl-2pentyltetrahydrofuran - 2 - yl]isocytosine Hydrochloride $((\pm) - 1' -$ Pentylpseudoisocytidine Hydrochloride) (29b): To a solution of **28b** (28.2 mg, 0.0799 mmol) in CH₃OH (1 ml) was added 10% HCl in CH₃OH (1 ml) and the resulting mixture was 10% HCl in CH₃OH (1 ml) and the resulting mixture was stirred for 30 min. Usual workup afforded **29b** (25.7 mg, 92%) as a yellow foam. ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.81 (t, J=6.0 Hz, CH₃), 1.0—2.0 (m, CH₂), 3.5—3.9 (m, H₄, H₅, and CH₂OH), 4.04 (d, J=4.0 Hz, H₃), 7.86 (s, =CH), 8.2—8.8 (br, NH₂); UV λ_{max} (CH₃OH) 210 nm (sh, ε 12180), 225 (7940), 261 (4380), 300 (sh, 1170), λ_{max} (0.1 mol dm⁻³ HCl) 210 nm (ε 12310), 225 (sh, 8660), 262 (4780), λ_{max} (0.1 mol dm⁻³ NaOH) 230 nm (sh, ε 7120), 277 (4780).³⁸ 5-[(2R*,3S*,4S*)-3,4-Dihydroxy-5,5-bis(hydroxymethyl)tetrahydrofuran-2-yl]isocytosine Hydrochloride ((±)-4'-Hydroxymethyl-pseudoisocytidine Hydrochloride) (37): A mixture of 36 (56.0 mg, 0.179 mmol) and 10% HCl in CH₃OH (1.5 ml) was stirred for 15 min. Usual workup gave 37 (50.3 mg, 91%) as a white powder. Mp 177—182 °C; ¹H NMR (dimethyl-d₆ sulfoxide) δ 3.51 (d-like, J=6.1 Hz, CH₂OH), 4.08 (m, H₃ and H₄), 4.57 (m, H₂), 5.0—6.4 (br, OH), 7.82 (br s, =CH), 8.50 (br, NH₂); UV $\lambda_{\rm max}$ (CH₃OH) 224 nm (ε 9250), 263 (7870), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 222 nm (ε 9580), 263 (7520), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 233 nm (ε 10870), 278 (8510).³⁸) 5-[(2R*,3R*,4S*,5R*)-3,4-Dihydroxy-2,5-dimethyl-5-hydroxymethyltetrahydrofuran - 2 - yl]isocytosine Hydrochloride $((\pm) - 1', 4' -$ Dimethylpseudoisocytidine Hydrochloride) (51a): To a suspension of **50a** (202 mg, 0.641 mmol) in CH₃OH (3 ml) was added 10% HCl in CH₃OH (3 ml). After stirring for 1 h, the mixture was worked up to afford 51a (193 mg, 97%) as a white powder. Mp 215-220 °C; ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.12 and 1.39 (s, CH₃), 3.29 (s, CH_2OH), 3.90 (d, J=5.7 Hz, H_3), 4.11 (d, J=5.7 Hz, H_4), 7.94 (s, =CH), 8.37 (br, NH₂); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 19.47, 22.77, 66.07, 70.95, 74.83, 81.77, 84.24, 122.18, 137.78, 152.54, 159.42; UV $\lambda_{\rm max}$ (CH₃OH) 223 nm (ϵ 18460), 263 (12580), 292 (sh, 3300), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 222 nm (ε 9550), 263 (6930), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 231 nm (ε 9080), 278 (6860). Found: C, 41.86; H, 5.72; N, 13.33%. Calcd for $C_{11}H_{18}O_5N_3Cl \cdot 0.5H_2O$: C, 41.94, H, 6.01; N, 13.34%. 5-[(2R*,3R*,4S*,5R*)-3,4-Dihydroxy-2,5-dipentyl-5-hydroxy-methyltetrahydrofuran-2-yl]isocytosine Hydrochloride ((±)-1',4'-Dipentylpseudoisocytidine Hydrochloride) (51b): To a suspension of 50b (269 mg, 0.63 mmol) in CH₃OH (5 ml) was added 10% HCl in CH₃OH (5 ml) and the resulting mixture was stirred for 1 h. Usual workup afforded 51b (260 mg, 100%). Mp 245—250 °C; ¹H NMR (dimethyl-d₆ sulfoxide) δ 0.87 (m, CH₃), 1.0—2.0 (m, CH₂), 3.19 (d, J=7.1 Hz, H_aH_bCOH), 3.33 (d, J=7.1 Hz, H_aH_bCOH), 4.04 (m, H₃ and H₄), 4.0—5.2 (br, OH), 7.82 (s, =CH), 8.30 (br, NH₂); ¹³C NMR (dimethyl-d₆ sulfoxide) δ 14.02, 22.28, 22.59, 32.20, 32.64, 63.95, 72.06, 76.55, 84.14, 86.08, 120.55, 139.68, 153.32, 160.33; UV λ _{max} (CH₃OH) 263 nm (ε 5230), λ _{max} (0.1 mol dm⁻³ HCl) 265 nm (ε 3720), λ _{max} (0.1 mol dm⁻³ NaOH) 230 nm (ε 6780), 278 (3920).³⁸⁾ 5-[(2S*,3R*,4R*,5R*)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,5-bis(hydroxymethyl)-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihydroxy-3,4-Dihtetrahydrofuran-2-yl] isocytosine Hydrochloride $((\pm)-2'-Hydroxy-1)$ methylpseudoisocytidine Hydrochloride) (61a): To a solution of **60a** (200 mg, 0.468 mmol) in CH₃OH (2.3 ml) was added 10% HCl in CH₃OH (5 ml). After stirring for 15 min, the mixture was worked up to afford **61a** (139 mg, 96%). Mp 215—217 °C; ¹H NMR (dimethyl- d_6 sulfoxide) δ 3.30 (s, $C(OH)CH_2OH$), 3.4—3.9 (m, H_4 and H_5), 3.67 (d, $J=8.8 \text{ Hz}, \ \underline{H}_a H_b COH), \ 3.92 \ (d, \ J=8.8 \text{ Hz}, \ H_a \underline{H}_b COH),$ 4.71 (s, H_2), 7.76 (s, =CH), 8.48 (br, NH_2); ^{13}C NMR (dimethyl- d_6 sulfoxide) δ 60.70, 62.50, 70.01, 80.20, 82.00, 116.48, 137.80, 152.49, 159.18; UV λ_{max} (CH₃OH) 224 nm (ε 12500), 265 (7770), $λ_{max}$ (0.1 mol dm⁻³ NaOH) 232 nm (ε 8800), 280 (6420). Found: C, 37.81; H, 5.16; N, 13.08%. Calcd for C₁₀H₁₆O₆N₃Cl·0.5H₂O: C, 37.68; H, 5.38; N, 13.19%. 5-[(2S*,3R*,4R*,5R*)-3,4-Dihydroxy-5-hydroxymethyl-3-methyltetrahydrofuran-2-yl]isocytosine Hydrochloride ((±)-2'-Methylpseudoisocytidine Hydrochloride) (61b): To a solution of 60b (263 mg, 0.886 mmol) in CH₃OH (3 ml) was added 10% HCl in CH₃OH (5 ml) and the resulting mixture was stirred for 30 min. Usual workup gave 61b (253 mg, 97%). Mp 222—225 °C (CH₃OH-ether); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.02 (s, CH₃), 3.62 (m, H₄, H₅, and CH₂OH), 4.70 (s, H₂), 7.88 (s, =CH), 8.48 (br, NH₂); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 20.84, 60.20, 73.35, 78.28, 80.97, 81.64, 117.18, 138.33, 152.50, 159.53; UV $\lambda_{\rm max}$ (CH₃OH) 244 nm (ε 10700), 265 (6890), $\lambda_{\rm max}$ (0.1 mol dm⁻³ HCl) 222 nm (ε 5800), 264 (4250), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 233 nm (ε 9010), 280 (6750). Found: C, 40.46; H, 5.52; N, 14.00; Cl, 12.32%. Calcd for C₁₀H₁₆O₅N₃Cl: C, 40.89; H, 5.49; N, 14.31; Cl, 12.07%. $5-\lceil (2S^*,3R^*,4R^*,5R^*)-3-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethylsiloxymethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimethyl-3,4-iso-t-Butyldimet$ propylidenedioxy-5-mesyloxymethyltetrahydrofuran-2-yl]uracil (56a): To a solution of 54a (50 mg, 0.117 mmol) in pyridine (0.8 ml) was added methanesulfonyl chloride (28 µl, 0.351 mmol) at 0 °C under argon, and then this mixture was stirred at the same temperature for 30 min and at 15 °C for 12 h. The reaction mixture was concentrated and the resulting residue was coevaporated with C₂H₅OH (2ml×2). Purification of the residue on preparative TLC (10:1 chloroform- CH_3OH) afforded **56a** (40 mg, 67%). Mp 195— 197 °C (acetone-hexane); $R_{\rm f}$ =0.42 (10:1 chloroform-CH₃-OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 0.06 (s, t- C_4 H₉- $(C\underline{H}_3)_2Si)$, 0.84 (s, t- $C_4\underline{H}_9(CH_3)_2Si)$, 1.36 and 1.52 (s, isopropylidene CH₃), 3.28 (s, CH₃SO₂), 3.52 (s, CH₂OSi), 4.2—4.6 (m, H₄, H₅, and CH₂OMs), 4.88 (s, H₂), 7.22 (d, J=5.0 Hz, =CH), 10.92 (d, J=5.0 Hz, NH), 11.12 (br, NH); 13 C NMR (dimethyl- d_6 sulfoxide) δ 17.74, 25.49, 26.84, 28.31, 61.01, 61.60, 80.44, 82.73, 83.02, 91.54, 107.80, 113.08, 138.68, 150.78, 162.56; UV $\lambda_{\rm max}$ (CH₃OH) 266 nm (ε 7150), $\lambda_{\rm max}$ (0.1 mol dm⁻³ NaOH) 289 nm (ε 6150). Found: C, 45.11, H, 6.44, N, 4.91%. Calcd for $C_{20}H_{34}O_{9}N_{2}SSi-1.5H_{2}O$: C, 45.01, H, 6.98; N, 5.25%. 5-[(2S*,3R*,4R*,4R*)-3,4-Isopropylidenedioxy-3-methyl-5-mesyloxymethyltetrahydrofuran-2-yl]uracil (56b): A mixture of 54b (20 mg, 0.067 mmol), methanesulfonyl chloride (26 μl, 0.335 mmol), and pyridine (0.4 ml) was stirred at room temperature for 14 h and worked up as described above. Subsequent preparative TLC (5:1 chloroform-CH₃OH) afforded 56b (21 mg, 83%). Mp 199—202 °C; R_f =0.47 (1:1 chloroform-CH₃OH); ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.15 (s, CH₃), 1.34 and 1.50 (s, isopropylidene CH₃), 3.22 (s, CH₃SO₂), 4.1—4.5 (m, H₃, H₄, and CH₂OMs), 4.86 (s, H₂), 7.22 (s, =CH), 11.00 (br, NH); UV $\lambda_{\rm max}$ (CH₃OH) 261 nm (ε 7000). 2'-t-Butyldimethylsiloxymethyl - 2',3' - O - isopropylidene-4,5'-cyclopseudouridine (57a): To a solution of 56a (30 mg, 52.9 μmol) in acetonitrile (1.2 ml) was added DBU (9.8 μl, 65.1 μmol) under argon and the mixture was stirred at 80 °C. After stirring for 2 h, DBU (4.9 µl, 32.6 µmol) was renewedly added. The resulting mixture was stirred for an additional 2 h and evaporated to give a yellow solid, which was purified by preparative TLC (10:1 chloroform-CH₃OH) to afford **57a** (22 mg, 90%). Mp $240-241 \,^{\circ}\text{C}$ (acetone-hexane); $R_{\rm f}$ =0.34 (10:1 chloroform-CH₃OH); ¹H NMR (dimethyl- $d_{\rm f}$ sulfoxide) δ 0.06 (s, t-C₄H₉(C<u>H</u>₃)₂Si), 0.80 (s, t-C₄H₉- $(CH_3)_2Si)$, 1.38 and 1.45 (s, isopropylidene CH_3), 3.38 (d, $J=11.5 \text{ Hz}, \text{C}\underline{\text{H}}_{\text{a}}\text{H}_{\text{b}}\text{OSi}), 3.62 \text{ (d, } J=11.5 \text{ Hz,CH}_{\text{a}}\underline{\text{H}}_{\text{b}}\text{OSi}),$ 3.98 (d, J=13.0 Hz, $\underline{H}_a H_b CO$), 4.32 (br s, \underline{H}_5), 4.52 (d, $J=13.0 \text{ Hz}, H_a H_b CO), 4.70 \text{ (s, } H_2), 4.90 \text{ (s, } H_4), 7.96 \text{ (s, } H_2)$ =CH); UV λ_{max} (CH₃OH) 295 nm (ε 3720). Found: C, 50.82; H, 7.77; N, 5.94%. Calcd for $C_{19}H_{30}O_6N_2Si$ $2H_2O$: C, 51.10; H, 7.67; N, 6.27%. 2',3' - O - Isopropylidene-2'-methyl-4,5'-cyclopseudouridine (57b): A mixture of 54b (20 mg, 0.053 mmol), DBU (8.8 μl, 0.059 mmol), and acetonitrile (1.1 ml) was stirred at 80 °C for 3 h and the resulting mixture was worked up as described above. Subsequent preparative TLC (5:1 chloroform—CH₃OH) gave 57b (12 mg, 81%). Mp 225—229 °C(CH₃OH–acetone—hexane); $R_{\rm f}$ =0.47 (1:1 chloroform—CH₃OH); ¹H NMR (dimethyl- $d_{\rm 6}$ sulfoxide) δ 1.10 (s, CH₃), 1.40 and 1.43 (s, isopropylidene CH₃), 3.96 (d, J=6.5 Hz, $H_{\rm a}H_{\rm b}$ CO) 4.2—4.5 (m, $H_{\rm 5}$ and $H_{\rm a}H_{\rm b}$ CO), 4.62 (s, $H_{\rm 2}$), 4.78 (s, $H_{\rm 4}$), 8.02 (br s, =CH); UV $\lambda_{\rm max}$ (CH₃OH) 293 nm (ε 3080). Found: m/z, 280.1049. Calcd for $C_{13}H_{16}O_{5}N_{2}$: M, 280.1059. ## References - 1) C-Nucleoside Synthesis. 19. Part 18: R. Noyori, T. Sato, and H. Kobayashi, Bull. Chem. Soc. Jpn., 56, 2661 (1983). - 2) R. Noyori, T. Sato, and Y. Hayakawa, J. Am. Chem. Soc., 100, 2561 (1978); T. Sato, Y. Hayakawa, and R. Noyori, submitted for publication. - 3) Pseudoisocytidine was found to be active toward various mouse leukemias. J. H. Burchenal, K. Ciovacco, K. Kalaher, T. O'Toole, R. Kiefner, M. D. Dowling, C. K. Chu, K. A. Watanabe, I. Wempen, and J. J. Fox, *Cancer Res.*, **36**, 1520 (1976). - 4) Reviews: R. Noyori, Ann. N. Y. Acad. Sci., 295, 225 (1977); Acc. Chem. Res., 12, 61 (1979); R. Noyori and Y. Hayakawa, Org. React., 29, 163 (1983). - 5) U. Reichman, C. K. Chu, I. Wempen, K. A. Watanabe, and J. J. Fox, *J. Heterocycl. Chem.*, **13**, 933 (1976); C. K. Chu, U. Reichman, K. A. Watanabe, and J. J. Fox, *ibid.*, **14**, 1119 (1977); *J. Med. Chem.*, **21**, 96 (1978); M. J. Robins and W. H. Muhn, *J. Chem. Soc.*, *Chem.* - Commun., 1978, 677; A. Matsuda, K. Pankiewicz, B. K. Marcus, K. A. Watanabe, and J. J. Fox, Carbohydr. Res., 100, 297 (1982). - 6) Isolation: H. Yüntsen, H. Yonchara, and H. Ui, J. Antibiot., Ser. A, 7, 113 (1954); H. Yüntsen, K. Ohkuma, Y. Ishii, and H. Yonchara, ibid., 9, 195 (1956); W. Schroeder and H. Hoeksema, J. Am. Chem. Soc., 81, 1767 (1959); H. Hoeksema, G. Slomp, and E. E. van Tamelen, Tetrahedron Lett., 1964, 1787. Review: R. J. Suhadolnik, "Nucleoside Antibiotics," Wiley-Interscience, New York, N. Y. (1970), pp. 96—122. - 7) Isolation: R. I. Hewitt, A. R. Gumble, L. H. Taylor, and W. S. Wallace, *Antibiot. Annu.*, **1956/57**, 722; S. O. Thomas, V. L. Singleton, J. A. Lowery, R. W. Sharpe, L. M. Pruess, J. N. Porter, J. H. Mowat, and N. Bohonos, *ibid.*, **1956/57**, 716; E. J. Backus, H. D. Tresner, and T. H. Campbell, *Antibiot. Chemother.*, **7**, 532 (1957). Review: Ref. 6, pp. 246—256. - 8) F. Shafizadeh, Adv. Carbohydr. Chem., 11, 263 (1956); W. G. Overend, Chem. Ind. (London), 1963, 342; H. Grisebach, "Biosynthetic Patterns in Microorganisms and Higher Plants," Wiley-Interscience, New York, N. Y. (1967); Helv. Chim. Acta, 51, 928 (1968); J. S. Brimacombe, Angew. Chem., Int. Ed. Engl., 8, 401 (1969); 10, 236 (1971); H. Grisebach and R. Schmid, ibid., 11, 159 (1972); H. Paulsen, Pure Appl. Chem., 49, 1169 (1977); J. Yoshimura, Yuki Gosei Kagaku Kyokai Shi, 40, 778 (1982). - 9) For preliminary accounts of this work see: T. Sato, M. Watanabe, and R. Noyori, *Tetrahedron Lett.*, **1978**, 4403; *Chem. Lett.*, **1978**, 1297. - 10) H. Bredereck, G. Simchen, S. Rebsdat, W. Kantlehner, P. Horn, R. Wahl, H. Hoffmann, and P. Gieshaber, *Chem. Ber.*. **101**, 41 (1968). - 11) J. L. Imbach, Ann. N. Y. Acad. Sci., 255, 177 (1975). 12) H. Ohrui and S. Emoto, J. Org. Chem., 42, 1951 (1977). - 13) 5',5'-Dimethyladenosine, a branched-chain sugar *N*-nucleoside having a tertiary 5'-hydroxyl group, was synthesized by Walton *et al.*, and its interesting biological activities were reported. R. F. Nutt and E. Walton, *J. Med. Chem.*, **11**, 151 (1968). See also: H. T. Shigeura and S. D. Sampton, *Nature*, **215**, 419 (1967). - 14) For preliminary accounts of this work see: T. Sato, M. Watanabe, and R. Noyori, *Tetrahedron Lett.*, **1979**, 2897; *Heterocycles*, **14**, 761 (1980). - 15) Powerful *anti*-trypanosomal property of nucleocidin⁷⁾ has stimulated interest in devising efficient methods allowing substituent incorporation at the C-4′ position,¹⁶⁾ only very few modifications at this position have been reported.¹⁷⁾ To date, no reports describing 4′-arylated nucleosides have appeared. - 16) I. D. Jenkins, J. P. H. Verheyden, and J. G. Moffatt, J. Am. Chem. Soc., **93**, 4323 (1971). - 17) J. P. H. Verheyden, I. D. Jenkins, G. R. Owen, S. D. Dimitrijevich, C. M. Richards, P. C. Srivastava, N. Le-Hong, and J. G. Moffatt, Ann. N. Y. Acad. Sci., 255, 151 (1975); G. R. Owen, J. P. H. Verheyden, and J. G. Moffatt, J. Org. Chem., 41, 3010 (1976); R. Youssefyeh, D. Tegg, J. P. H. Verheyden, G. H. Jones, and J. G. Moffatt, Tetrahedron Lett., 1977, 435; J. A. Secrist III and W. J. Winter, J. Am. Chem. Soc., 100, 2554 (1978); C. M. Richards, J. P. H. Verheyden, and J. G. Moffatt, Carbohydr. Res., 100, 315 (1982). - 18) Feature of the NMR (¹H and ¹³C) signal shift observed in going from 5-[(2R,3R,4R,5R)-3,4-isopropylidenedioxy-5-hydroxymethyltetrahydrofuran-2-yl]uracil¹9) to the phenyl derivative **16c** are quite similar to those induced by the struc- - tural change, methyl [(2S,3S,4R,5R)-3,4-isopropylidenedioxy-5-hydroxymethyltetrahydrofuran-2-yl]acetate²⁰⁾ to methyl $[(2S^*,3S^*,4S^*,5R^*)-3,4$ -isopropylidenedioxy-5-hydroxymethyl-5-phenyltetrahydrofuran-2-yl]acetate, compatible with the assigned β stereochemistry at the anomeric carbon. - 19) Prepared from pseudouridine according to the reported procedure: ²¹⁾ ¹H NMR (dimethyl- d_6 sulfoxide) δ 1.27 and 1.49 (s, isopropylidene CH₃), 3.53 (m, CH₂OH), 3.91 (q-like, J=4.0 Hz, H₅), 4.6—5.0 (m, H₂, H₃, and H₄), 7.55 (s, =CH), 10.93 and 11.14 (br, NH); ¹³C NMR (dimethyl- d_6 sulfoxide) δ 25.45, 27.42, 61.74, 80.30, 81.55, 83.91, 84.83, 110.40, 112.81, 140.03, 151.05, 163.27. - 20) For ¹H and ¹³C NMR data, see H. Ohrui, G. H. Jones, J. G. Moffatt, M. L. Maddox, A. T. Christensen, and S. K. Byram, *J. Am. Chem. Soc.*, **97**, 4602 (1975). - 21) A. M. Michelson and W. E. Cohn, *Biochem.*, 1, 490 (1962). - 22) For 1'-hydroxymethylated ribonucleosides such as angustmycin A and C, see Ref. 6. - 23) For a preliminary account of this work see: T. Sato and R. Noyori, *Tetrahedron Lett.*, 21, 2535 (1980). - 24) For a preliminary account of this work see: T. Sato, M. Watanabe, and R. Noyori, *Chem. Lett.*, **1980**, 679. - 25) Prepared from $\alpha,\alpha,\alpha',\alpha'$ -tetrabromoacetone and 2,5-dimethylfuran by the aid of Zn/Ag couple in 66% yield. see T. Sato and R. Noyori, *Bull. Chem. Soc. Jpn.*, **51**, 2745 (1978). - 26) Typical H_6 and H_7 chemical shifts (CDCl₃, δ) are: **43** (R=H), 4.53; **43** (R=H and CH₃), 4.30 and 4.51; **43** (R=H and n-C₅H₁₁), 4.33 and 4.49; **43** (R=n-C₅H₁₁), 4.30. - 27) H. Bredereck, F. Effenberger, and T. Brendle, *Angew. Chem.*, *Int. Ed. Engl.*, **5**, 132 (1966); H. H. Wasserman and J. L. Ives, *J. Org. Chem.*, **43**, 3238 (1978). - 28) In the ¹H NMR spectrum of 5'-O-trityl derivatives of **46** (R=H) in CDCl₃, the isopropylidene methyls exhibited - singlets at δ 1.32 and 1.56 ($\Delta\delta$ =0.24 ppm). Its α isomer afforded the methyl signals at δ 1.27 and 1.39 ($\Delta\delta$ =0.12 ppm). See C. K. Chu, I. Wempen, K. A. Watanabe, and J. J. Fox, *J. Org. Chem.*, **41**, 2793 (1976). - 29) For preliminary accounts of this work see: T. Sato, H. Kobayashi, and R. Noyori, *Tetrahedron Lett.*, **21**, 1971 (1980); *Heterocycles*, **15**, 321 (1981). - 30) The cyclization was carried out according to the method of Watanabe: K. A. Watanabe, U. Reichman, C. K. Chu, and J. J. Fox, "Nucleic Acid Chemistry," ed by L. B. Townsend and R. S. Tipson, Wiley-Interscience, New York, N.Y. (1978), Part 1, p. 273. - 31) Introduction of methyl group to the C-2′ or C-3′ position of certain nucleosides is known to retard the enzymatic destruction, thereby increasing the biological activities markedly.³²) In addition, 2′-methylated nucleosides might be expected to minic 2′-deoxy nucleosides either by lowing the chemical activity of the 2′-hydroxy function¹³) or by changing conformation of normal ribofuranosyl skeleton. - 32) E. Walton, S. R. Jenkins, R. F. Nutt, M. Zimmermann, and F. W. Holly, *J. Am. Chem. Soc.*, **88**, 4524 (1966); S. R. Jenkins, B. Arison, and E. Walton, *J. Org. Chem.*, **33**, 2490 (1968). - 33) J. G. Buchanan and J. C. P. Schwarz, *J. Chem. Soc.*, **1962**, 4770; J. Lehrfeld, *J. Org. Chem.*, **32**, 2544 (1967). 34) R. D. Clark and C. H. Heathcock, *J. Org. Chem.*, **41**, 636 (1976); Ref. 25. - 35) E. LeGoff, J. Org. Chem., 29, 2048 (1964). - 36) C. Rappe, Acta Chem. Scand., 16, 2467 (1962). - 37) K. Y. Novitskiy, V. P. Volkov, L. P. Shayderova, and Y. K. Yurev, Zh. Obshch. Khim., 31, 136 (1961). - 38) For this new compound, correct analytical data were not obtained. However, the spectral properties, together with the generality and straightforwardness of the synthetic route, fully support the assigned structure.