Chloroberyllate mit Stickstoff-Donorliganden. Die Kristallstrukturen von (Ph₄P)[BeCl₃(Py)], (Ph₄P)₂[(BeCl₃)₂(TMEDA)], $(Ph_4P)[BeCl_2{(Me_3SiN)_2CPh}] und (Ph_4P)_2[BeCl_4] \cdot 2CH_2Cl_2$

Bernhard Neumüller und Kurt Dehnicke*

Marburg, Fachbereich Chemie der Philipps-Universität

Bei der Redaktion eingegangen am 9. September 2003.

Inhaltsübersicht. Die im Titel genannten Chloroberyllate entstehen als farblose, feuchtigkeitsempfindliche Kristalle durch Umsetzungen von (Ph₄P)₂[Be₂Cl₆] mit Pyridin, TMEDA (N,N'-Tetramethylethylendiamin) oder dem silylierten Benzamidin PhC[N(SiMe₃)₂-(NSiMe₃)], während das Tetrachloroberyllat als Nebenprodukt aus Dichlormethanlösung in Gegenwart des silylierten Phosphanimins Me₃SiNP(Tolyl)₃ kristallisiert. Alle Verbindungen werden durch Kristallstrukturanalysen und IR-Spektren charakterisiert.

 $(Ph_4P)[BeCl_3(Py)]$ (1): Raumgruppe Pbcm, Z = 4, Gitterkonstanten bei 193 K: $a = 756,2(1); b = 1739,2(2); c = 2016,3(2) pm, R_1 =$ 0,0626. Das komplexe Anion enthält tetraedrisch koordiniertes Berylliumatom mit einem Be-N-Abstand von 176,5 pm.

 $(Ph_4P)_2[(BeCl_3)_2(TMEDA)] \cdot 2CH_2Cl_2$ (2·2CH₂Cl₂). Raumgruppe $P\bar{1}$, Z = 1, Gitterkonstanten bei 193 K: a = 1072,7(1); b = 1132,6(1); c = 1248,9(1) pm, α = 95,34(1)°; β = 92,80(1)°; γ =

90,81(1)°; $\mathbf{R}_1 = 0,0344$. Im komplexen zentrosymmetrischen Anion sind beide N-Atome des TMEDA-Moleküls durch BeCl3--Einheiten koordiniert mit Be-N-Abständen von 181,3 pm.

 $(PPh_4)[BeCl_2\{(Me_3SiN)_2CPh\}]$ (3). Raumgruppe C2, Z = 2, Gitterkonstanten bei 193 K: a = 1255,4(2); b = 1401,9(2); c =1085,2(2) pm, $R_1 = 0.0288$. In dem komplexen Anion fungiert der Benzamidinatoligand {(Me₃SiN)₂CPh}⁻ als Chelat mit Be-N-Abständen von 174,9 pm.

 $(Ph_4P)_2[BeCl_4] \cdot 2CH_2Cl_2$ (4·2CH₂Cl₂). Raumgruppe P2/c, Z = 4, Gitterkonstanten bei 193 K: a = 2295,4(1); b = 982,5(1); c =2197,2(2) pm, $\beta = 99,19(1)^{\circ}$, $R_1 = 0,0586$. 4·2CH₂Cl₂ enthält wie das früher beschriebene 4·2,5CH₂Cl₂, das in der Raumgruppe PĪ kristallisiert, nahezu idealtetraedrische [BeCl₄]²⁻-Ionen mit gemittelten Be-Cl-Abständen von 203,4 pm.

Chlorobervllates with Nitrogen Donor Ligands. Crystal Structures of $(Ph_4P)[BeCl_3(py)], (Ph_4P)_2[(BeCl_3)_2(tmeda)], (Ph_4P)[BeCl_2\{(Me_3SiN)_2CPh\}], and$ $(Ph_4P)_2[BeCl_4] \cdot 2CH_2Cl_2$

Abstract. The title compounds were obtained as colourless, moisture sensitive crystals by reactions of (Ph₄P)₂[Be₂Cl₆] with pyridine, tmeda (N,N'-tetramethylethylendiamine), or with the silylated benzamidine PhC-[N(SiMe₃)₂(NSiMe₃)], whereas the tetrachloro beryllate was isolated as a by-product from a solution in dichloromethane in the presence of the silylated phosphaneimine Me₃SiNP(tol)₃. All compounds were characterized by crystal structure determinations and by IR spectroscopy.

 $(Ph_4P)[BeCl_3(Py)]$ (1): Space group Pbcm, Z = 4, lattice dimensions at 193 K: a = 756.2(1), b = 1739.2(2), c = 2016.3(2) pm, $R_1 =$ 0.0626. The complex anion contains tetrahedrally coordinated beryllium atom with a Be-N distance of 176.5 pm.

 $(Ph_4P)_2[(BeCl_3)_2(tmeda)] \cdot 2CH_2Cl_2$ (2·2CH₂Cl₂). Space group P1, Z = 1, lattice dimensions at 193 K: a = 1072.7(1), b = 1132.6(1), $c = 1248.9(1) \text{ pm}, \ \alpha = 95.34(1)^{\circ}, \ \beta = 92.80(1)^{\circ}, \ \gamma = 90.81(1)^{\circ},$ $R_1 = 0.0344$. Both nitrogen atoms of the tmeda molecule coordinate with BeCl₃⁻ units forming the centrosymmetric complex anion with Be-N distances of 181.3 pm.

 $(PPh_4)[BeCl_2\{(Me_3SiN)_2CPh\}]$ (3). Space group C2, Z = 2, lattice dimensions at 193 K: a = 1255.4(2), b = 1401.9(2), c = 1085.2(2) pm, $R_1 = 0.0288$. In the complex anion the benzamidinato ligand $\{(Me_3SiN)_2CPh\}^-$ acts as chelate with Be-N distances of 174.9 pm.

 $(Ph_4P)_2[BeCl_4] \cdot 2CH_2Cl_2$ (4·2CH₂Cl₂). Space group P2/c, Z = 4, lattice dimensions at 193 K: a = 2295.4(1), b = 982.5(1), c =2197.2(2) pm, $\beta = 99.19(1)^{\circ}$, $R_1 = 0.0586$. 4·2CH₂Cl₂ contains nearly ideal tetrahedral [BeCl₄]²⁻ ions, like the previously described 4.2,5CH₂Cl₂, which crystallizes in the space group P1, with Be-Cl distances of 203.4 pm on average.

Keywords: Beryllium; Chloroberyllates; Nitrogen donor ligands

Einleitung

Die Chemie des Berylliums mit Stickstoff-Donor-Liganden ist verhältnismäßig gering entwickelt, wie zusammenfas-

Fax: ++49/(0)6421/2825653

sende Darstellungen zeigen [1-5]. Kristallographisch wurde in den letzten Jahren allerdings eine Anzahl zumeist komplexer Molekülverbindungen mit Be-N-Bindungen charakterisiert [6]. Erst in jüngster Zeit wurde über die Synthese und die Kristallstrukturen einer Serie von Donor-Akzeptorkomplexen von BeCl₂ mit N-Donormolekülen wie Benzonitril, Pyridin, Pyrrolidin, Piperidin, Diethylamin des Typs [BeCl₂(L)₂] berichtet [7]. Darunter befindet sich auch der kationische Pyrrolidin-Komplex [BeCl(C₄H₈NH)₃]⁺Cl⁻

^{*} Prof. Dr. K. Dehnicke

Fachbereich Chemie der Philipps-Universität D-35032 Marburg, (Germany)

	$(Ph_4P)[BeCl_3(Py)]$ (1)	$\begin{array}{l} (Ph_4P)_2[(BeCl_3)_2(Me_2NC_2H_4NMe_2)]\\ \cdot \ 2CH_2Cl_2 \ \textbf{(2}{\cdot}2CH_2Cl_2) \end{array}$	$(Ph_4P)[BeCl_2{(Me_3SiN)_2CPh}]$ (3)	$\begin{array}{l} (Ph_4P)_2[BeCl_4] \cdot 2CH_2Cl_2 \\ \textbf{(4} \cdot 2CH_2Cl_2) \end{array}$	
Meßgerät	IPDS II (Stoe)	IPDS II (Stoe)	IPDS II (Stoe)	IPDS II (Stoe)	
Strahlung	Mo-K _a	Mo-K _a	Mo-K _a	Mo-K _a	
Formel	C ₂₉ H ₃₀ BeCl ₃ NP	$C_{56}H_{60}Be_2Cl_{10}N_2P_2$	C ₃₇ H ₄₃ BeCl ₂ N ₂ PSi ₂	C ₅₀ H ₄₄ BeCl ₈ P ₂	
Formelmasse/g/mol	269,45	1195,60	682,83	999,48	
Kristallabmessungen/mm	0,45×0,15×0,11	0,3×0,16×0,06	0,73×0,14×0,06	0,65×0,16×0,12	
a/pm	756,2(1)	1072,7(1)	1255,4(2)	2295,4(1)	
b/pm	1739,2(2)	1132,6(1)	1401,9(2)	982,5(1)	
c/pm	2016,3(2)	1248,9(1)	1085,2(2)	2197,2(2)	
α/°		95,34(1)			
β/°		92,80(1)		99,19(1)	
γ/°		90,81(1)			
Zellvolumen/pm ³	2651,8(5)·10 ⁶	$1508,7(2)\cdot 10^{6}$	1832,8(5)·10 ⁶	4891,6(8)·10 ⁶	
Z	4	1	2	4	
d _{rönt} / (g/cm ³)	1,35	1,316	1,237	1,357	
Kristallsystem	orthorhombisch	triklin	monoklin	monoklin	
Raumgruppe (No.)	Pbcm (57)	P1 (2)	C2 (5)	P2/c (13)	
Absorptionskorrektur	numerisch	numerisch	numerisch	numerisch	
μ/cm^{-1}	4,3	5,5	3,1	5,6	
Meßtemperatur/K	193	193	193	193	
2θ _{max} /°	52,58	52,47	52,38	52,54	
hkl-Werte	$-9 \leq h \leq 9, -21 \leq k \leq 21,$	$-13 \leq h \leq 13, -14 \leq k \leq 14,$	$-15 \leq h \leq 15, -16 \leq k \leq 16,$	$-28 \le h \le 28, -12 \le k \le 12,$	
	$-25 \le l \le 25$	$-15 \le l \le 15$	$-13 \le l \le 13$	$-27 \le l \le 25$	
gemessene Reflexe	26811	22001	6120	37143	
unabhängige Reflexe	2769	6039	3187	9819	
R _{int}	0,0695	0,0534	0,0318	0,1471	
Meßwerte mit $F_0 > 4\sigma(F_0)$	1996	3992	2606	4698	
Parameter	175	337	210	578	
Strukturlösung	Direkte Methoden, SHELXS-97 [17]		Direkte Methoden, SHELXS-97 [17]		
Strukturverfeinerung gegen F ²	SHELXL-97 [17]		SHELXL-97 [17]		
H-Atome	Die Lagen der H-Atome wurden	n für ideale Positionen berechnet und i	mit einem gemeinsamen Auslenkungsparameter verfeinert.		
Flack-Parameter	-	-	0,04(6)	-	
R ₁	0,0626	0,0344	0,0288	0,0586	
wR ₂ (alle Daten) ^a	0,1875	0,0776	0,0549	0,1381	
maximale Restelektronendichte/ 10 ⁻⁶ e/pm ³	0,81	0,28	0,20	0,60	
	^{a)} w = $1/[\sigma^2(F_0^2) + (0,1335 \cdot P)^2];$	^{a)} w = $1/[\sigma^2(F_0^2) + (0.0385 \cdot P)^2];$	^{a)} w = $1/[\sigma^2(F_0^2) + (0,0232 \cdot P)^2];$	^{a)} w = $1/[\sigma^2(F_0^2) + (0,0494 \cdot P)^2];$	
	$P = [max(F_0^2, 0) + 2 \cdot F_c^2]/3$	$P = [max(F_0^2, 0) + 2 \cdot F_c^2]/3$	$P = [max(F_0^2, 0) + 2 \cdot F_c^2]/3$	$P = [max(F_0^2, 0) + 2 \cdot F_c^2]/3$	

Tabelle 1	Kristalldaten	und Angaben	zu den	Kristallstrukturbestimmungen
-----------	---------------	-------------	--------	------------------------------

[7]. Mit der Synthese der beiden in Dichlormethan leicht löslichen Chloroberyllate $(Ph_4P)_2[BeCl_4]$ und (Ph₄P)₂[Be₂Cl₆] [8] bot sich nun die Möglichkeit, auch anionische Chlorokomplexe des Berylliums mit Stickstoffdonor-Molekülen unter schonenden Bedingungen herzustellen. Wir berichten hier über die Ergebnisse der Umsetzungen des Hexachlorodiberyllats mit Pyridin, TMEDA, dem silylierten Benzamidin $Ph-C{N(SiMe_3)_2(NSiMe_3)}$ sowie mit dem silylierten Phosphanimin Me₃SiNP(Tol)₃.

2 Ergebnisse

Die kristallographischen Daten und Angaben zu den Strukturlösungen enthält Tabelle 1. In den Tabellen 2-5 sind die Bindungslängen und -winkel enthalten.¹⁾

2.1 $(Ph_4P)[BeCl_3(Py)]$ (1)

1 entsteht in exothermer Reaktion bei der Zugabe der äquivalenten Menge Pyridin zu einer Lösung von (Ph₄P)₂[Be₂Cl₆] in Dichlormethan. Durch Einengen der Lösung im Vakuum bis zur beginnenden Kristallisation und Ruhigstellen des Ansatzes bilden sich farblose, feuchtigkeitsempfindliche Kristalle von 1.

$$(Ph_4P)_2[Be_2Cl_6] + 2C_5H_5N \rightarrow 2(Ph_4P)[BeCl_3(C_5H_5N)]$$
 (1)
1

Im IR-Spektrum von 1 sind die Banden des $(Ph_4P)^+$ -Ions und des koordinierten Pyridinmoleküls gegenüber den Spektren von (Ph₄P)Cl und flüssigem Pyridin [9] nur wenig verschoben. Eine sehr starke Bande mit einer deutlichen Kontur bei 579 cm⁻¹ ordnen wir v_{as}BeCl₃ zu, die vermutlich auch von vBeN herrührt. Die symmetrische BeCl₃-Valenzschwingung finden wir als schwache Absorption bei 450 cm⁻¹. Damit liegen beide BeCl₃-Valenzschwingungen längerwellig als die der terminalen BeCl2-Gruppen im $[Be_2Cl_6]^{2-}$ -Ion (640 und 495 cm⁻¹ [8]), was gut zu den deutlich längeren Be-Cl-Abständen in 1 paßt (s.u.). Zum vollständigen IR-Spektrum siehe experimentellen Teil.

¹⁾ Die kristallographischen Daten (ohne Strukturfaktoren) wurden als "supplementary publication no. CCDC-219292 (1), -219293 (2·2CH₂Cl₂), -219294 (3) und -219295 (4·2CH₂Cl₂)" beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei CCDC, 12 Union Road, Cambridge CB2 1EZ (Fax: (+44)1223-336-033; E-mail: deposit@ccdc.cam.ac.uk), Großbritannien, angefordert werden.

P(1)-C(6) P(1)-C(12)	179,1(3) 179,5(3)	Be(1)-Cl(1) Be(1)-Cl(2) Be(1)-N(1)	202,2(5) 200,8(3) 176,5(6)
$\begin{array}{l} C(6)-P(1)-C(6')\\ C(6)-P(1)-C(12)\\ C(6)-P(1)-C(12')\\ C(12)-P(1)-C(12')\\ Be(1)-N(1)-C(1)\\ Be(1)-N(1)-C(5) \end{array}$	109,5(1) 109,0(1) 112,0(1) 105,4(1) 117,9(3) 124,6(3)	$\begin{array}{l} Cl(1) - Be(1) - Cl(2) \\ Cl(1) - Be(1) - Cl(2') \\ Cl(2) - Be(1) - Cl(2') \\ N(1) - Be(1) - Cl(1) \\ N(1) - Be(1) - Cl(2) \end{array}$	106,9(2) 120,7(2) 110,2(3) 107,1(3) 105,5(2)

Abb. 1 Ansicht der Struktur von $(Ph_4P)[BeCl_3(Py)]$ (1) (ohne H-Atome). Ellipsoide der thermischen Schwingung mit 40 % Aufenthaltswahrscheinlichkeit bei 193 K.

1 kristallisiert orthorhombisch in der Raumgruppe Pbcm mit vier Formeleinheiten pro Elementarzelle. Bei der Strukturlösung wurde eine schwach ausgeprägte Überstruktur beobachtet mit einer Verdoppelung der a-Achse auf 1512,5(1) pm, entsprechend der Raumgruppe Pbca. Eine Verfeinerungsrechnung in dieser Raumgruppe ergaben aber nur Übereinstimmungsindices von $R_1 = 0,0857$ und w R_2 von 0,2638 mit ausgeprägtem Fehlordnungsverhalten der Ionen, so daß die Strukturlösung in der einfachen Elementarzelle zu bevorzugen ist.

In Abbildung 1 ist die Struktur von 1 wiedergegeben. Das P-Atom des $(Ph_4P)^+$ -Ions befindet sich auf einer zweizähligen Achse, das Berylliumatom und der Pyridinring liegen auf einer Spiegelebene, während Cl(1) eine allgemeine Lage einnimmt und in zwei Positionen fehlgeordnet ist. Kation und Anion von 1 bilden nur sehr schwache C-H…Cl-Brükken miteinander aus. Der kürzeste Abstand ist C(5)···Cl(1) mit 323,9(4) pm. Das [BeCl₃(Py)]⁻-Ion in 1 ist isoelektronisch mit dem [BCl₃(Py)]-Molekül [10], dessen Bor-Ligandatom-Abstände allerdings wegen des kleineren Ionenradius von B^{3+} (25 pm für C.N. 4 [11]) und wegen der negativen Überschußladung des [BeCl₃(Py)]⁻-Ions deutlich kürzer sind. Im Mittel betragen diese Abstände B-Cl 183,7 pm und B-N 159,2 pm [10], während die Abstände Be-Cl mit 201,6 pm und Be-N mit 176,5 pm um 17,9 bzw. 17,3 pm länger sind. Diese Differenzen entsprechen im wesentlichen den Differenzen in den Ionenradien (41 pm für Be2+ und C.N. 4 [11]) von 16 pm. Der Einfluß der negativen Überschußladung des Beryllations bleibt somit gering. Das gleiche Bild ergibt sich auch beim Vergleich der Abstände Be-Cl und Be-N in $[BeCl_2(Py)_2]$ [7], die mit Mittelwerten von 200,4 und 175,0 pm nur etwas mehr als ein pm kürzer sind als in 1.

Neben den unterschiedlichen Bindungslängen in $[BCl_3(Py)]$ und in 1 sind auch die Bindungswinkel deutlich verschieden, was wir auf die verschiedenen Packungsverhältnisse zurückführen. So liegen die Cl-B-Cl-Bindungswinkel mit 110,2(1)° und 109,8(2)° [10] sehr dicht beieinander, während die Cl-Be-Cl-Winkel in 1 mit 106,9(3)°, 110,2(3)° und 120,7(2)° eine weitaus größere Streubreite aufweisen und im Mittel auch deutlich größer sind. Im Gegensatz hierzu sind die Mittelwerte der N-B-Cl-Winkel mit 108,8° merklich größer als die N-Be-Cl-Winkel mit 106,0°.

2.2 $(Ph_4P)_2[(BeCl_3)_2(TMEDA)] \cdot 2CH_2Cl_2$ (2·2 CH_2Cl_2)

 $2 \cdot 2 \text{CH}_2 \text{Cl}_2$ entsteht in exothermer Reaktion bei der Zugabe der äquivalenten Menge TMEDA (N,N'-Tetramethylethylendiamin) zu einer Lösung von (Ph₄P)₂[Be₂Cl₆] in Dichlormethan.

$$(Ph_4P)_2[Be_2Cl_6] + Me_2NCH_2CH_2NMe_2 \rightarrow (Ph_4P)_2[(BeCl_3)_2(Me_2NCH_2CH_2NMe_2)]$$
(2)
2

Die nach dem Einengen im Vakuum und Zugabe von *n*-Hexan bei Raumtemperatur entstehenden farblosen, feuchtigkeitsempfindlichen, plattenförmigen Einkristalle der Zusammensetzung 2·2CH₂Cl₂ verlieren das eingelagerte Dichlormethan im Vakuum vollständig. Im IR-Spektrum von 2 finden wir v_{as}BeCl₃ als starke Bande bei 599 cm⁻¹, somit etwas kürzerwellig als in 1, während v_sBeCl₃ wie in 1 bei 451 cm⁻¹ liegt. Eine Be–N-Valenzschwingung läßt sich als Schulter bei etwa 500 cm⁻¹ erkennen.

 $2 \cdot 2 \text{CH}_2 \text{Cl}_2$ kristallisiert triklin in der Raumgruppe PĪ mit einer Formeleinheit pro Elementarzelle. Zwischen den (Ph₄P)⁺-Kationen, den zentrosymmetrischen [(Cl₃Be)-(TMEDA)(BeCl₃)]²⁻-Anionen (Abb. 2) und den eingelagerten Dichlormethan-Molekülen bestehen nur sehr schwache Wasserstoffbrücken-Kontakte. Das Symmetriezentrum des Anions befindet sich in der Mitte der C-C-Bindung des Ethylendiamin-Moleküls; die beiden C-Atome sind in zwei Positionen mit Besetzungsfaktoren von 0,5 fehlgeordnet (Abb. 2). Die Be-N-Abstände sind mit 181,3(3) pm deutlich länger als in 1 und auch länger als in den o.g. Molekülkomplexen [BeCl₂(L)₂] [7], was vermutlich durch die zweifache Koordination des TMEDA-Moleküls durch die BeCl₃⁻-Einheiten bedingt ist. Dagegen sind die Be-Cl-Abstände in 2·2CH₂Cl₂ ganz ähnlich wie die in 1 (Tab. 3), während die Cl-Be-Cl-Winkel in 2 im Gegensatz zu 1 eine nur geringe Streubreite von 112,6(1)°, 110,8(2)° und 108,9(1)° aufweisen.

 $\frac{(Ph_4P)_2[(BeCl_3)_2(Me_2NC_2H_4NMe_2)]\cdot 2CH_2Cl_2}{P(1)} = \frac{170}{2} \frac{$

Tabelle 3 Ausgewählte Bindungslängen/pm und -winkel/° in

P(1) - C(4)	179,0(2)	P(1) - C(16)	179,4(2)
P(1)-C(10)	179,6(2)	P(1)-C(22)	179,4(2)
Be(1)-Cl(1)	200,3(3)	N(1) - C(2)	147,4(3)
Be(1)-Cl(2)	200,9(3)	N(1) - C(3)	147,1(3)
Be(1)-Cl(3)	201,6(3)	N(1)-C(101)	153,0(5)
Be(1) - N(1)	181,3(3)	C(101)-C(101')	152(1)
C(4) - P(1) - C(10)	109,8(1)	C(10)-P(1)-C(16)	107,6(1)
C(4) - P(1) - C(16)	111,8(1)	C(10) - P(1) - C(22)	111,3(1)
C(4) - P(1) - C(22)	107,7(1)	C(16) - P(1) - C(22)	108,5(1)
Cl(1)-Be(1)-Cl(2)	112,6(1)	Be(1) - N(1) - C(2)	109,9(2)
Cl(1)-Be(1)-Cl(3)	110,8(2)	Be(1) - N(1) - C(3)	109,2(2)
Cl(2)-Be(1)-Cl(3)	108,9(1)	Be(1) - N(1) - C(101)	114,2(2)
N(1) - Be(1) - Cl(1)	107,2(1)	C(2) - N(1) - C(3)	106,4(2)
N(1) - Be(1) - Cl(2)	109,6(2)	C(2)-N(1)-C(101)	93,4(3)
N(1) - Be(1) - Cl(3)	107,6(1)	C(3)-N(1)-C(101)	121,8(3)
		N(1)-C(101)-C(101')	110,4(5)

Abb. 2 Ansicht des $[(BeCl_3)_2(TMEDA)]^{2-}$ -Ions in der Struktur von $(Ph_4P)_2[(BeCl_3)_2(TMEDA)]^{-}2CH_2Cl_2$ (2·2CH₂Cl₂) mit der Darstellung der Fehlordnung der Ethylen-C-Atome (ohne H-Atome). Ellipsoide der thermischen Schwingung mit 40 % Aufenthaltswahrscheinlichkeit bei 193 K.

Die Struktur des mit dem Anion von **2** isoelektronischen Bortrichlorid-Adduktes [(BCl₃)₂(TMEDA)] ist nicht bekannt, wohl aber die des entsprechenden Boran-Adduktes [(BH₃)₂(TMEDA)] [12], das ebenfalls zentrosymmetrisch aufgebaut ist. Im Vergleich mit der großen Anzahl von TMEDA-Komplexen mit Chelatfunktion sind mono- oder bifunktionelle Funktionen von TMEDA-Komplexen relativ selten. Ein Beispiel mit monofunktioneller Bindung wurde in einem Reaktionsprodukt von InMe₃ mit Phenylacetonitril in Gegenwart von TMEDA gefunden [13].

2.3 $(Ph_4P)[BeCl_2\{(Me_3SiN)_2CPh\}]$ (3)

3 entsteht durch Umsetzung einer Lösung des silylierten Benzamidins Ph-C[N(SiMe₃)₂(NSiMe₃)] [14] in Dichlorme-

P(1) = C(0)	170 1(2)	P(1) = C(15)	170 2(2)
$P_{0}(1) = C(3)$	1/9,1(2) 201.8(2)	N(1) = S(1)	179,2(2) 171.0(2)
Be(1) - O(1) Be(1) - N(1)	174.9(4)	$S_{i}(1) = C_{i}(6)$	171,9(2) 185.6(3)
N(1) = C(1)	177, 5(7)	Si(1) = C(0) Si(1) = C(7)	185,5(3)
$\Gamma(1) = C(1)$	152, 5(2)	S(1) = C(7)	105,5(5)
C(1) = C(2)	150,4(4)	SI(1) = C(8)	186,2(3)
C(9) - P(1) - C(15)	110,3(1)	C(9) - P(1) - C(9')	109,0(1)
C(9) - P(1) - C(15')	109,1(1)	C(15) - P(1) - C(15')	109,2(1)
Cl(1) - Be(1) - Cl(1')	112,3(2)	Be(1) - N(1) - Si(1)	134,3(1)
Cl(1) - Be(1) - N(1)	114,29(7)	N(1) - Si(1) - C(6)	111,8(1)
Cl(1') - Be(1) - N(1)	117,14(7)	N(1) - Si(1) - C(7)	104,8(1)
N(1) - Be(1) - N(1')	77,7(2)	N(1) - Si(1) - C(8)	112,3(1)
N(1)-C(1)-N(1')	111,8(2)	C(6) - Si(1) - C(7)	110,2(2)
N(1)-C(1)-C(2)	124,1(1)	C(6) - Si(1) - C(8)	109,8(2)
Be(1) - N(1) - C(1)	85,3(2)	C(7) - Si(1) - C(8)	107,7(2)
		C(1) - C(2) - C(3)	121,0(1)

than mit der äquivalenten Menge $(Ph_4P)_2[Be_2Cl_6]$, ebenfalls gelöst in Dichlormethan bei 20 °C.

$$\begin{aligned} (Ph_4P)_2[Be_2Cl_6] + & 2Ph-C[N(SiMe_3)_2(NSiMe_3)] \rightarrow \\ & 2(Ph_4P)[BeCl_2\{(Me_3SiN)_2CPh\}] + & 2ClSiMe_3 \end{aligned} \tag{3}$$

Reaktion (3) vollzieht sich praktisch vollständig ohne erkennbare Wärmetönung. Farblose, feuchtigkeitsempfindliche Kristallnadeln erhält man nach dem Einengen der Lösung im Vakuum bis zur beginnenden Kristallisation und Ruhigstellen des Ansatzes bei 20 °C.

Amidinato-Komplexe sind von zahlreichen Hauptgruppenelementen und Übergangsmetallen sowie von Lanthanidenelementen bekannt und eingehend charakterisiert [15]. Auch vom Beryllium sind zwei Beispiele beschrieben, nämlich [(Me₃Si)₂N(Be₂Cl₂){(Me₃SiN)₂CPh}] [6l] mit Be₂N₃C-Sechsringstruktur und das spirocyclische Derivat [Be{(Me₃SiN)₂CPh}₂] [6l]. Die Autoren erhielten die beiden Komplexe durch Reaktion von BeCl₂ mit Li(Me₃SiN)₂CPh [14] in Diethylether, wobei sie zur Herstellung des Reagenzes aus Li[N(SiMe₃)₂] und Benzonitril letzteres im Unterschuß angewandt hatten.

Im IR-Spektrum von 3 treten erwartungsgemäß für die CN_2 -Valenzschwingungen des Amidinatochelats stark mit dem Be-Atom des BeN₂C-Vierringes gekoppelte Schwingungen bei 1677 und 1316 cm⁻¹ auf, deren Frequenzlage etwa der Erwartung von CN-Doppel- und Einfachbindung entspricht [14c]. Die beiden BeCl₂-Valenzschwingungen entsprechen mit Bandenlagen von 567 und 439 cm⁻¹ etwa den Frequenzlagen von 1 und 2. Zum vollständigen IR-Spektrum siehe experimentellen Teil.

3 kristallisiert in der Raumgruppe C2 mit zwei Formeleinheiten pro Elementarzelle. Das Phosphoratom des Kations und die Achse Be(1)-C(1)-C(2)-C(5) des Anions liegen auf zwei kristallographisch verschiedenen zweizähligen Symmetrieachsen (Abb. 3). Das Berylliumatom des Anions ist tetraedrisch koordiniert, wobei die Ebene Cl(1)-Be-Cl(1') mit dem planaren BeN₂C-Vierring einen Diederwinkel von 88° bildet. Dagegen ist der Phenylring

Abb. 3 Ansicht der Struktur von $(PPh_4)[BeCl_2\{(Me_3SiN)_2CPh\}]$ (3) (ohne H-Atome). Ellipsoide der thermischen Schwingung mit 50 % Aufenthaltswahrscheinlichkeit bei 193 K.

des Benzamidinato-Liganden nur 42° gegen den BeN2C-Vierring verdreht. Die beiden BeN-Abstände sind mit 174,9(4) pm noch etwas kürzer als der BeN-Abstand in 1, aber etwas länger als in dem spirocyclischen Molekül [Be{(Me₃SiN)₂CPh}₂] [61], dessen Be-N-Abstände zwischen 172,3 und 173,0(6) pm liegen. Auch die Be-Cl-Abstände in 3 sind wegen der bindungslockernden Überschußladung des Anions mit 201,8(2) pm etwas länger als in Molekülkomplexen [BeCl₂(L)₂] [7]. Sie sind aber deutlich länger als die BeCl-Abstände der terminalen Chloratome im $[Be_2Cl_6]^{2-}$ -Ion mit 196,9 und 195,2(3) pm [8], dessen Außenladung bezogen auf eine Be-Einheit der des Anions in 3 entspricht. Die unterschiedlichen Be-Cl-Abstände beider Verbindungen korrelieren aber mit den langen BeCl2Be-Brückenabständen im [Be2Cl6]2--Ion und den kurzen Be-N-Bindungen im [BeCl₂{(Me₃SiN)₂CPh}]⁻-Anion in 3. Die CN-Bindungen dieses Anions entsprechen mit 132,5(2) pm etwa einem Bindungsgrad von 1,5, wie er auch in anderen Amidinatochelaten beobachtet wird [15].

2.4 $(Ph_4P)_2[BeCl_4] \cdot 2CH_2Cl_2 (4 \cdot 2CH_2Cl_2)$

Farblose, feuchtigkeitsempfindliche Einkristalle von $4.2CH_2Cl_2$ erhielten wir bei dem Versuch, $(Ph_4P)_2[Be_2Cl_6]$ mit dem silylierten Phosphanimin, Me₃SiNP(Tol)₃, in Dichlormethan bei 20 °C umzusetzen, um unter Abspaltung von ClSiMe₃ einen Phosphaniminato-Komplex des Berylliums zu erhalten. Wir vermuten, daß hierbei jedoch gemäß Gleichung (4) ein Phosphanimin-Komplex von BeCl₂ gebildet wurde, den wir noch nicht isolieren konnten.

$$(Ph_4P)_2[Be_2Cl_6] + Me_3SiNP(Tol)_3 \rightarrow (Ph_4P)_2[BeCl_4] + [BeCl_2\{Me_2SiNP(Tol)_3\}]$$
(4)
$$\mathbf{4}$$

P(1) - C(1)	179,0(4)	P(2) - C(25)	180,1(4)
P(1) - C(7)	179,0(4)	P(2) - C(31)	178,5(4)
P(1) - C(13)	180,2(4)	P(2) - C(37)	179,2(4)
P(1) - C(19)	180,0(4)	P(2)-C(43)	179,3(4)
Be(1)-Cl(1)	204,7(6)	Be(1)-Cl(3)	201,3(6)
Be(1)-Cl(2)	203,8(6)	Be(1)-Cl(4)	203,8(6)
C(1) - P(1) - C(7)	112,1(2)	C(25) - P(2) - C(31)	110,3(2)
C(1) - P(1) - C(13)	109,5(2)	C(25) - P(2) - C(37)	109,9(2)
C(1) - P(1) - C(19)	107,6(2)	C(25) - P(2) - C(43)	107,4(2)
C(7) - P(1) - C(13)	110,6(2)	C(31) - P(2) - C(37)	109,3(2)
C(7) - P(1) - C(19)	108,6(2)	C(31) - P(2) - C(43)	108,7(2)
C(13) - P(1) - C(19)	108,3(2)	C(37) - P(2) - C(43)	111,2(2)
Cl(1)-Be(1)-Cl(2)	107,7(3)	Cl(2) - Be(1) - Cl(3)	109,0(2)
Cl(1)-Be(1)-Cl(3)	109,9(2)	Cl(2) - Be(1) - Cl(4)	110,3(2)
Cl(1) - Be(1) - Cl(4)	108,6(2)	Cl(3) - Be(1) - Cl(4)	111,2(3)

Abb. 4 Ansicht der Struktur von $(Ph_4P)_2[BeCl_4]$ in $4 \cdot 2CH_2Cl_2$ (ohne Dichlormethanmoleküle und ohne H-Atome). Ellipsoide der thermischen Schwingung mit 40 % Aufenthaltswahrscheinlicheit bei 193 K.

4·2CH₂Cl₂ kristallisiert monoklin in der Raumgruppe P2/c mit vier Formeleinheiten pro Elementarzelle. Sowohl die Kationen wie auch das Tetrachloroberyllation sind ohne kristallographische Lagesymmetrie. Das $[BeCl_4]^{2-}$ -Ion erreicht aber wie in dem triklin kristallisierenden (Ph₄P)₂[BeCl₄]·2,5CH₂Cl₂ [8] annähernd T_d-Symmetrie. Die Be-Cl-Abstände variieren in den Grenzen von 201,3 bis 204,7(6) pm, die Cl-Be-Cl-Bindungswinkel liegen zwischen 107,7 und 111,2(3)°. Eines der beiden CH₂Cl₂-Moleküle ist in zwei Positionen mit den Besetzungsfaktoren 0,8/ 0,2 fehlgeordnet. Zwischen den Ionen und zwischen den Dichlormethanmolekülen und den Ionen bestehen nur sehr schwache Wasserstoffbrücken-Kontakte.

Experimentelles

Vorsicht! Beryllium und seine Verbindungen sind stark toxisch (MAK-Liste A2 krebserregender Arbeitsstoffe). Es wirkt zudem auch mutagen [16]. Der Umgang mit Berylliumverbindungen erfordert daher möglichst sterile Vorsichtsmaßnahmen.

Die Versuche erfordern Ausschluß von Feuchtigkeit; sie wurden unter trockenem Stickstoff ausgeführt. Die verwendeten Lösungsmittel wurden entsprechend getrocknet. (Ph₄P)₂[Be₂Cl₆] erhielten wir wie beschrieben [8] aus BeCl₂ und (Ph₄P)Cl (Merck), das vor Gebrauch i.Vak. bei 110 °C getrocknet wurde. N,N'-Tetramethylethylendiamin (TMEDA) und Pyridin (Merck) wurden nach Destillation eingesetzt. Das silylierte Benzamidin Ph-C[N(SiMe₃)₂- (NSiMe₃)] wurde nach Literaturvorschrift [14b] aus Li[N(SiMe₃)₂] und Benzonitril sowie anschließender Umsetzung mit Trimethylchlorsilan erhalten. Me₃SiNP(Tol)₃ wurde durch Staudinger-Reaktion aus Me₃SiN₃ (Merck) und Tritolylphosphan (Aldrich) in Toluol hergestellt und i.Vak. destilliert. Die IR-Spektren wurden mit Hilfe des Bruker-Gerätes IFS-88 registriert, KBr- und Polyethylenscheiben, Nujol-Verreibungen.

 $(\mathbf{Ph_4P})[\mathbf{BeCl_3(Py)}]$ (1). Man löst 1,05 g $(\mathbf{Ph_4P})_2[\mathbf{Be_2Cl_6}]$ (1,15 mmol) in 5 ml Dichlormethan und fügt mit Hilfe einer Injektionsspritze 0,19 ml Pyridin hinzu, wobei sich die Lösung deutlich erwärmt. Man engt i.Vak. bis zur beginnenden Kristallisation ein, stellt den Ansatz 12 h bei 20 °C ruhig, wobei reichlich farblose Einkristalle entstehen. Evakuieren bis zur Trockne liefert 1 in vollständiger Ausbeute.

IR-Spektrum/cm⁻¹: 1612 (m), 1585 (m), 1337 (w), 1309 (m), 1210 (m), 1187 (w), 1171 (w), 1109 (st), 1073 (m), 1052 (m), 1026 (vw), 995 (m), 973 (vw), 844 (vw), 771 (m), 755 (m), 723 (vst), 706 (w), 685 (m), 670 (w), 654 (w), 614 (vw), 579 (vst), 520 (vst), 450 (m), 284 (m), 240 (m), 199 (w), 176 (st), 156 (w), 121 (w).

 $(Ph_4P)_2[(BeCl_3)_2(TMEDA)]$ (2). Man arbeitet wie für 1 beschrieben und verwendet folgende Mengen: 1,00 g $(Ph_4P)_2[Be_2Cl_6]$ (1,10 mmol), 0,16 ml TMEDA (1,10 mmol), 5 ml Dichlormethan. Farblose Einkristalle von 2·2CH₂Cl₂ entstehen beim langsamen Verdampfen des Lösungsmittels i.Vak. Evakuieren bis zur Trockne liefert 2 in vollständiger Ausbeute.

IR-Spektrum/cm⁻¹: 1584 (m), 1341 (vw), 1314 (m), 1283 (m), 1204 (vw), 1185 (m), 1159 (m), 1107 (st), 1019 (vw), 1008 (vw), 995 (m), 972 (vw), 950 (m), 868 (vw), 846 (m), 813 (m), 774 (w), 755 (st), 722 (vst), 692 (st), 650 (w), 599 (st), 524 (vst), 451 (m), 390 (sh), 285 (m), 252 (m), 198 (st), 151 (m), 134 (w), 117 (w).

 $(Ph_4P)[BeCl_2\{(Me_3SiN)_2CPh\}]$ (3). Man löst 1,56 g $(Ph_4P)_2[Be_2Cl_6]$ (1,69 mmol) in 10 ml Dichlormethan und tropft unter Rühren eine Lösung von 1,15 g C_6H_5 - $C[N(SiMe_3)_2(NSiMe_3)]$ in 10 ml Dichlormethan hinzu. Nach 12 h engt man die klare Lösung bis zur beginnenden Kristallisation ein und stellt den Ansatz zur Gewinnung von Einkristallen ruhig. Evakuieren bis zur Trockne liefert **3** in vollständiger Ausbeute.

IR-Spektrum/cm⁻¹: 1677 (m), 1611 (m), 1598 (vw), 1586 (w), 1575 (w), 1316 (m), 1245 (st), 1195 (w), 1172 (m), 1138 (vw), 1107 (st), 1071 (m), 1027 (w), 1005 (vw), 995 (m), 931 (w), 838 (vst), 762 (st), 722 (st), 688 (st), 617 (vw), 567 (st), 525 (vst), 434 (m), 385 (m), 332 (st), 277 (m), 258 (w), 240 (m), 199 (m), 169 (w), 147 (m), 91 (w).

Literatur

- D. A. Everest, *The Chemistry of Beryllium*, Elsevier, Amsterdam 1964.
- [2] G. Petzow, H. Zorn, Chem.-Ztg. 1974, 98, 236.
- [3] M. F. Lappert, P. P. Power, A. R. Sanger, R. C. Srivastava, *Metals und Metalloid Amides*, E. Horwood Ltd., Chichester 1980.
- [4] A. Seidel in *Gmelin Handbook of Inorganic Chemistry*, Beryllium, Suppl. A1, Springer, Berlin 1986.
- [5] H. Schmidbaur in *Gmelin Handbook of Inorganic Chemistry*, Organoberyllium Compounds, Springer, Berlin 1987.
- [6] a) N. A. Bell, G. E. Coates, M. L. Schneider, H. M. M. Shearer, *Acta Crystallogr.* 1984, *C40*, 608; b) J. L. Atwood, G.

D. Stucky, J. Am. Chem. Soc. 1969, 91, 4426; c) R. Han, G. Parkin, Inorg. Chem. 1992, 31, 983; d) Y. Sohrin, H. Kokusen, S. Kihara, M. Matsui, Y. Kushi, M. Shiro, Chem. Lett. 1992, 1461; e) Y. Sohrin, H. Kokusen, S. Kihara, M. Matsui, Y. Kushi, M. Shiro, J. Am. Chem. Soc. 1993, 115, 4128; f) K.-H. Thiele, V. Lorenz, G. Thiele, P. Zönnchen, J. Scholz, Angew. Chem. 1994, 106, 1461; Angew. Chem. Int. Ed. Engl. 1994, 33, 1372; g) Y. Sohrin, M. Matsui, Y. Hata, H. Hasegawa, H. Kokusen, Inorg. Chem. 1994, 33, 4376; h) C. Chavant, J. C. Daran, Y. Jeannin, G. Kaufmann, J. McCordick, Inorg. Chim. Acta 1975, 14, 281; i) J. C. van Niekerk, H. M. N. H. Irving, L. R. Nassimbeni, S. Afr. J. Chem. 1979, 32, 85; j) B. Morosin, J. Howatson, J. Organomet. Chem. 1971, 29, 7; k) F. Cecconi, E. Chinea, C. A. Ghilardi, S. Midollini, A. Orlandini, Inorg. Chim. Acta 1997, 260, 77; 1) M. Niemeyer, P. P. Power, Inorg. Chem. 1997, 36, 4688; m) R. Han, G. Parkin, Inorg. Chem. 1993, 32, 4968; n) W. Hanay, H. Bohland, M. Noltemeyer, H.-G. Schmidt, Mikrochim. Acta 2000, 133, 197; o) Nan-Xing Hu, M. Esteghamatian, Shuang Xie, Z. Popovic, Ah-Mee Hor, Beng Ong, Suming Wang, Adv. Mater. 1999, 11, 1460; p) V. K. Syal, P. C. Jain, Indian J. Chem. 1973, 2, 494; q) R. Fleischer, D. Stalke, Inorg. Chem. 1997, 36, 2413; r) S. Chadwick, U. Englich, K. Ruhlandt-Senge, Angew. Chem. 1998, 110, 3204; Angew. Chem. Int. Ed. 1998, 37, 3007; s) B. Hall, J. B. Farmer, H. M. M. Shearer, J. D. Sowerby, K. Wade, J. Chem. Soc., Dalton Trans. 1979, 102; t) Shi-Feng Liu, Qingguo Wu, H. L. Schmider, H. Aziz, Nan-Xing Hu, Z. Popovic, Suning Wang, J. Am. Chem. Soc. 2000, 122, 3671; u) R. Faure, F. Bertin, H. Loiseleur, G. Thomas-David, Acta Crystallogr. 1974, 30, 462; v) E. Chinea, S. Dominguez, A. Mederos, F. Brito, J. M. Arrieta, A. Sanchez, G. Germain, Inorg. Chem. 1995, 34, 1579; w) C. D. Whitt, J. L. Atwood, J. Organomet. Chem. 1971, 32, 17.

- [7] M. P. Dressel, S. Nogai, R. J. F. Berger, H. Schmidbaur, Z. Naturforsch. 2003, 58b, 173.
- [8] B. Neumüller, F. Weller, K. Dehnicke, Z. Anorg. Allg. Chem. 2003, 629, 2195.
- [9] B. Schrader, W. Meier, Raman/IR-Atlas organischer Verbindungen, Verlag Chemie, Weinheim 1974.
- [10] K. Töpel, K. Hensen, M. Trömel, Acta Crystallogr. 1981, B37, 969.
- [11] R. D. Shannon, C. T. Prewitt, Acta Crystallogr. 1969, B25, 925; R. D. Shannon, Acta Crystallogr. 1976, A32, 751.
- [12] S. Chitsaz, T. Breyhan, J. Pauls, B. Neumüller, Z. Anorg. Allg. Chem. 2002, 628, 956.
- [13] E. Iravani, B. Neumüller, Organometallics 2003, 22, 4129.
- [14] a) A. R. Sanger, *Inorg. Nucl. Chem. Lett.* 1973, *9*, 351; b) R. T. Boeré, R. T. Oakley, R. W. Reed, *J. Organomet. Chem.* 1987, 331, 161; c) Struktur: C. Ergezinger, F. Weller, K. Dehnicke, *Z. Naturforsch.* 1988, 43b, 1119.
- [15] K. Dehnicke, Chem.-Ztg. 1990, 114, 295; F. T. Edelmann, Coord. Chem. Rev. 1994, 137, 403.
- [16] W. Kaim, B. Schwederski, *Bioanorganische Chemie*, 2. Aufl., B. G. Teubner-Verlag, Stuttgart 1995.
- [17] G. M. Sheldrick, SHELXS-97, Programm zur Lösung von Kristallstrukturen, Göttingen 1997; G. M. Sheldrick, SHELXL-97, Programm zur Verfeinerung von Kristallstrukturen, Göttingen 1997.