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In our continuing effort to develop inhibitors of the mycobacterial galactan biosynthesis, we planned to
synthesize original iminosugar-based analogues of UDP-galactofuranose by way of the 1,3-dipolar cyclo-
addition reaction between a 1-C-allyl iminosugar and a nitrile oxide, followed by the reductive cleavage
of the resulting isooxazoline. In initial studies, it was found that this last step led in one pot to a new poly-
hydroxylated indolizidine derivative closely related to the recently isolated (�)-steviamine, in good yield,
by way of a sequence involving at least five individual reactions. The activity of this new compound as a
glycosidase inhibitor was evaluated against a panel of glycosidases and compared to (�)-steviamine.

� 2011 Elsevier Ltd. All rights reserved.
In the context of our studies on iminosugars of therapeutic
interest,1 we engaged in a research program dedicated to finding
new inhibitors of mycobacterial galactan biosynthesis. Indeed
while D-galactose is widely distributed in higher eucaryotes in
the pyranose form (Galp), the furanose form (Galf) is found only
in prokaryotes, protozoans, and fungi2 as well as in a few lower
eukaryotes.3 As it is specific to a number of pathogenic bacteria,
the biosynthesis of galactofuranose-containing glycans is becom-
ing an important target for the development of new antibiotics.4

The enzymes involved in the biosynthesis of galactans are UDP-
Gal mutase (UGM),5 which is responsible for the isomerization of
UDP-Galp into UDP-Galf, and two or more UDP-Galf transferases
(GlfT),6 which transfer Galf units to build the galactan core
(Scheme 1). As part of our investigations on the synthesis of poten-
tial inhibitors of these enzymes,7,8 we prepared the iminosugar-
based analogue of UDP-Galf 1, as well as a number of disaccharide
mimics such as 2 (Fig. 1) which all exhibited very weak activity on
UGM.7d We also prepared a b-linked UDP-Galf mimic 3 (Fig. 1),7b

which was found to have significant activity as an inhibitor of
UDP-Galf transferase GlfT2.9

In continuation of this program, we planned to synthesize more
simple analogues of UDP-Galf having the general structure A
shown in Scheme 2. The 1,4-dideoxy-1,4-imino-D-galactitol unit
of 1 and 3 would be replaced by a more easily accessible L-arabino
iminopentitol, as in 4, and the nucleoside moiety would be mim-
icked by a simple substituted aromatic ring.
ll rights reserved.

: +33 238 417 281.
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This type of structure could be derived from the isoxazoline
moiety obtained by way of the 1,3-dipolar cycloaddition of a 1-C-
allyl iminosugar such as 4 and a nitrile oxide C, generated in situ
and carrying the aromatic group.

However, precursor B was found to be highly prone to dehydra-
tion and intramolecular reductive amination reactions during the
final hydrogenolysis step, leading unexpectedly to a new indolizi-
dine iminosugar 5, which was found to be an analogue of the nat-
ural product (�)-steviamine (Fig. 2), recently isolated from Stevia
rebaudiana leaves.10 The steviamine structure was fully elucidated
by X-ray crystallography of its hydrobromide salt11 and glycosi-
dase inhibition studies12 showed it to be the first natural product
to have a (weak) inhibition effect on an a-galactosaminidase.

Thus with the initial objective of making simple UDP-Galf
analogues by means of a nitrile oxide 1,3-dipolar cycloaddition,
we first investigated the synthesis of the protected b-1-C-allyl-
1,4-dideoxy-1,4-imino-L-arabinitol 4. This iminoalditol could be
readily obtained in seven steps from D-xylose (Scheme 3): kinetic
glycosylation of D-xylose into its methyl furanoside, benzylation
of the hydroxyl groups, and hydrolysis of the glycosidic bond led
to 2,3,5-tri-O-benzyl-D-xylofuranose 613 in excellent yield. Under
conditions we reported earlier,14 addition of benzyl carbamate di-
rectly to the free hemiacetal 6 in the presence of TMSOTf provided
the protected xylofuranosylamine 7 (52% after purification, 5 g-
scale). We then used the chain extension methodology we
developed for the synthesis of UDP-Galf mimics:7d addition of
AllylSiMe3 to the N-protected glycosylamine 7 in the presence of
TMSOTf led to amino D-iditol derivative 8 in excellent yield with
high syn-diastereoselectivity, as no trace of the other (D-gulo)
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Scheme 2. Retrosynthetic analysis of compounds of structure A.
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Figure 1. Previously synthesized inhibitors of UGM and GlfT2.
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Scheme 1. UDP-galactofuranose and galactan biosynthesis.
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Scheme 3. Reagents and conditions: (a) HCl (0.11 M), MeOH, 30 �C, 3.5 h; (b) NaH
(6 equiv), BnBr (4.5 equiv), DMF, 0 �C to rt; (c) 1 M HCl:AcOH (1:4), 80 �C, 55% (three
steps); (d) H2NCO2Bn (2 equiv), TMSOTf (1 equiv), CH2Cl2, 4 Å MS, rt, 52%; (e)
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(2.2 equiv), CH2Cl2, 4 Å MS, rt; (g) tBuOK (2 equiv), THF, rt, 59% (two steps).
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Figure 2. Chemical structures of (�)-steviamine and its synthesized analogue.
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diastereoisomer could be observed by NMR. The stereochemistry
of the new chiral center was determined after the cyclization step.
Ring closure was achieved by a two-step sequence: mesylation of
the free alcohol function of 8, then treatment of the resulting mes-
ylate with tBuOK gave the desired iminosugar 4 in the L-arabino
series.

Determination of the configuration of the pseudo-anomeric car-
bon by NMR was not possible directly on compound 4, because of
the presence of Z-group rotamers. Deprotection of the nitrogen
atom in 4 was achieved selectively by hydrogenolysis under basic
conditions leading to iminosugar 9 (Scheme 4), which could be
fully characterized by NMR. NOESY experiments on this compound
confirmed unambiguously the 1,2-cis configuration with the pres-
ence of a correlation between H1 and H4.

Having the allylic iminosugar 4 in hands, we then prepared the
nitrile oxide moiety (structure C) in order to perform the 1,3-dipolar
cycloaddition reaction. Because of their facile dimerization, nitrile
oxides are usually generated in situ by the dehydration of primary
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Scheme 4. Reagents and conditions: H2, 10% Pd/C, NEt3 (0.25 equiv), iPrOH, rt, 97%.
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MeOH/CH2Cl2 1:1, rt, 57%.

Table 1
Inhibition profile of 5 toward different glycosidases

Enzymes Inhibition (%) at 1000 lM

a-Glucosidase Yeast 4.7
Rice 8.7
Rat intestinal maltase 24.9

b-Glucosidase Almond 10.7
Bovine liver 37.8

a-Galactosidase Coffee beans 19.2
b-Galactosidase Bovine liver 34.7
a-Mannosidase Jack beans 6.7
b-Mannosidase Snail 0
a-L-Fucosidase Bovine kidney 0.6
b-Glucuronidase Bovine liver 6.5

E. coli 47.8
a,a-Trehalase Porcine kidney 4.4
Amyloglucosidase Aspergillus niger 7.2
a-L-Rhamnosidase Penicillium decumbens 23.0
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nitro compounds15 or by base-induced dehydrohalogenation of
hydroximoyl chlorides.16 The first method was not easily applicable
to the preparation of the planned nitrile oxides, as corresponding
starting nitro compounds are not commercially available. Conse-
quently we used the second methodology from hydroximoyl chlo-
rides, which are usually prepared by chlorination or oxidation of
aldoximes. We followed Kulkarni’s procedure,17 which would pro-
vide a great diversity of nitrile oxides of structure C possessing a
methylene knuckle, from the conjugated nitrostyrene precursors.
These compounds could be conveniently prepared by the addition
of nitromethane on different commercially available substituted
benzaldehydes.18 As a first example, p-anisaldehyde 10 was effi-
ciently converted into the conjugated nitrostyrene compound
11,17b which was then submitted to the action of titanium chloride
in the presence of triethylsilane to give the desired hydroximoyl
chloride 12;17b this precursor was used as a crude material in the
cycloaddition reaction (Scheme 5).

1,3-Dipolar cycloaddition was then performed at room temper-
ature by mixing the dipolarophile 4 with an excess of the hydroxy-
moyl chloride 12 in the presence of triethylamine, for in situ
generation of the corresponding nitrile oxide (Scheme 6). The reac-
tion proved to be highly regioselective in favor of the 5-substituted
isoxazoline, which is in accordance with the predictions based on
frontier orbital theory.19 However the stereoselectivity was not
as high, as two diastereoisomers were obtained in a 3:2 ratio; these
isomers were quite difficult to separate by flash chromatography
on silica gel. Nevertheless a sufficient amount of one diastereoiso-
mer was obtained to perform the final hydrogenolysis step.

With the goal of cleaving the isoxazoline and deprotecting the
iminosugar moiety, compound 13 was submitted as a single dia-
stereoisomer to catalytic hydrogenolysis under aqueous acidic
conditions, in order to favor the hydrolysis of the intermediate
imine into a ketone. Quite surprisingly, this reaction gave directly
the indolizidine derivative 520 (Scheme 7), in good yield and as a
single diastereoisomer.21 Although the formation of 5 can be read-
ily explained, this result is remarkable in that it must involve a ser-
ies of at least 9 individual steps including a 5-step sequence of
cleavage of the N–O bond, hydrolysis of the resulting imine, dehy-
dration to an a,b-unsaturated ketone, hydrogenation to a saturated
ketone, and stereoselective intramolecular reductive amination.

The stereochemistry of the chiral center resulting from the
reductive amination was unambiguously determined by a NOESY
experiment, which indicated by the correlations between H1, H4,
and H9 that the three protons are all on the same side of the mol-
ecule. Compound 5 is an analogue of the recently isolated natural
product (�)-steviamine,10 bearing a p-methoxybenzyl group in-
stead of the methyl group and having a ‘b-L-arabino’ configuration
in the pyrrolidine instead of the ‘a-D-lyxo’ configuration. Because of
its relation with the well-known glycosidase inhibitors, this new
indolizidine was tested against a panel of glycosidases. With the
exception of b-glucuronidase from Escherichia coli, for which a
weak inhibition effect was observed, compound 5 did not show
significant inhibitory properties toward other glycosidases
(Table 1).
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Scheme 5. Reagents and conditions: (a) AcONH4 (1.1 equiv), CH3NO2, reflux, 82%;
(b) Et3SiH (2.1 equiv), TiCl4 (2.2 equiv), CH2Cl2, rt, crude.
In conclusion, we have developed an efficient synthesis of pro-
tected b-1-C-allyl-1,4-dideoxy-1,4-imino-L-arabinitol, an imino-
sugar derivative which could be used in a diversity of coupling
reactions to prepare UDP-Galf mimics. It was successfully engaged
as a dipolarophile in a 1,3-dipolar cycloaddition reaction with a ni-
trile oxide. Further elaboration of the resulting isoxazoline by
hydrogenolysis led, by way of a remarkable sequence of steps, to
a new indolizidine, which is an analogue of the natural product
(�)-steviamine. Inhibition studies showed only weak inhibitory
properties for this new compound toward a panel of glycosidases.
Further work is in progress in our laboratory to achieve the synthe-
sis of iminosugar-based analogues of UDP-galactofuranose related
to A as potential inhibitors of the mycobacterial galactan biosyn-
thesis, using nitrile oxide 1,3-dipolar cycloaddition reaction.
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