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1. Introduction

Dihydrofolate reductase (DHFR) is a critical enzyrre folate metabolism. It converts dihydrofolate HB) to
tetrahydrofolate (THF), which is essential for pariand thymidylate (TMP) synthesis in cell prolifiéon[1]. Depressing
DHFR activity results in THF deficiency and disriagpt of subsequent DNA replication and resultingéh death[2]. Therefore,
human DHFR (hDHFR) has long been a vital targeyermzin the development of antitumor chemotherapegdents[3].

Several hDHFR inhibitors have been successfullyg useclinical oncology such as methotrexate (MTXpdrimetrexate
(TMQ). Analysis of the structure of these hDHFRIibitors found that most of them contain a cruciatieus: a planar bicyclic
ring consisted of nitrogen-heterocyclics substdutgith amino groups such as the diaminopteridimgy rof MTX, the
quinazoline ring of trimetrexate (TMQ), pyrrolo[2d3pyrimidine ring of pemetrexed [4-11]. Therefothey have similar
binding mode with hDHFR, in which, e.g., N8 of theeridine ring of MTX contacts with Glu30 and Trp##ough a water
molecule, the 4-amino group forms hydrogen bongith lle7, Vall15, Tyr121 and NADPH[12] (Figure B).

In our previous studies, a series of 1,3,5-trieaompounds with spiro bicyclic ring were desigaed synthesized, and
their biological activities were evaluated[13-1#he results showed that some compounds, e.g., aomdpdO (fig. 1) showed
potent anti-folate activity against mammalian DH&RJin vitro anti-tumor activities against human alveolar bagaithelial
cell line (A549)[14], which is comparable to MTXh@& results showed that 1,3,5-triazine with spimytlic ring was a novel
molecular scaffold for hDHFR inhibitors. This protag us to undertake further investigation on neirospiazine derivatives
with higher anticancer activity.

In this work, we analyzed the interactions of thenpr bicyclic ring of hDHFR inhibitors with thegigues in the hDHFR
active site observed in several X-ray complexesBRD: 1U72, 1DLS, 1KMS, 10HK, 1S3U, 2W3B, 3NTZ) [£2]. All
showed an anti-folate binding mode in which hetemwaand amino groups contact with residues llep24r Glu30, Vall15,
Tyrl21 and NADPH. Then, the molecular docking wak compound MO was performed with the Flexible Diagk
program[24-25]. The molecular docking data suggk#tat we insert oxygen and sulfur atom separateby/the spiro ring of
compound MO to create more favorable interactighaovel series of 1,3,5-triazine derivatives begr®oxaspiro or 9-
thiaspiro were designed and synthesized, and bha@gical activities were evaluated.

2. Results and discussion
2.1 Molecular docking studies

The molecular docking study was performed by usitgxible Docking protocol[26] in Discovery Studio03 All the X-
ray complexes were extracted from the Brookhavenelr Database (PDB http://www.rcsb.org/pdb). Tinacdure of hDHFR
derived from the complex 1U72[4] was prepared irsdovery Studio 3.0 by removal of the original ligaMTX and
preservation of co-factor NADPH, and the hydrogeomes and CHARMmM force fields were then added. Thiree hDHFR
enzyme was defined as a receptor and the siteesplaer selected based on the ligand binding locatithin a radius of 10.0 A.
Other parameters were set as default. For compblhelnd its derivatives, energy minimization useel inimize Ligands’
protocol.

After a superimposition work of the hDHFR protefr@am X-ray complexes involving 1U72, 1DLS, 1KMS, B&, 1S3U,
2W3B and 3NTZ (Figure 2), a significant conformatd change in Glu31l was found seen in a ternaryptemof the
furopyrimidine derivative and hDHFR[23] (PDB ID: 3V) (Fig. 2). This allowed us to hypothesize thia¢ tvolume of key
active-site pocket could be further enlarged duihécshift of flexible residue Glu31. Thus, theides Glu31 was identified and
selected as the flexible amino acid residue fas thacking. At first, a flexible docking of originijand MTX was carried out
to demonstrate the reliability of this model for HER (RMSD to the X-ray < 1A). Subsequently, compbM0 and its
derivatives were added. After completing the mdcdocking procedure, docking poses were scoredsafected based on
calculated -CDOCKER energy. We exhibited the dogkinse of MO with the best -CDOCKER energy in Fg@B. Figures
2&3 were prepared by Discovery Studio 3.0.

In the docking results (Figure 3B), compound M@eayated the key hydrogen bonds with hDHFR in thelgéc domain.
The 4-amino group of diaminotriazine ring formedliggen bonds with residues lle7, Val115 and Tyr1B&;2-amino group
of diaminotriazine ring made contacts with the desi Glu30, and the triazine ring appeared at theesposition as
diaminopteridine ring of MTX. The phenoxypropyl sidhain reached the hydrophobic pocket. Thesesictiens followed the
rule of normal binding mode reported in X-ray compllU72. In contrast with the MTX-binding modeg tépiro-ring of MO
with the unique steric hindrance was placed ahthwe extended space caused by the shift in thebllelHE31, closer to Glu30
and Trp24 than N8 of the pteridine ring of MTX. Hewer, no possible hydrogen bond existed sinceliseree of electron-rich
atoms on the spiro ring for MO. The docking resfltthe target compound A2 bearing 9-oxaspiro ingidaa homologous
binding pattern as that of MO (Figure 4). The oxygeom 3.60 A from Glu 30 and 4.89 A from Trp24,ilehhe distances in
MTX from 1U72 complex were 4.01 A and 6.06 A regpedy. These docking results explain the similarding mode in the
bicyclic region from that of MTX and suggested tlaserting oxygen or sulfur atom on spiro-ring ntidgie a promising
approache to enhance the binding affinity with hIRH8y generating stronger hydrogen bonds with Ge3® Trp24 via water-
mediated manner (or directly).




2.2 Chemistry

Target compounds A1-Al6 and B1-B12 were synthesif@tbwing the steps in Schemes 1. The 3-substitute
phenoxypropyl bromides were obtained via alkylattbrcommercially available substituted-phenols W{CO; as a base and
acetonitrile as a solvent. The synthesis of theuired key intermediates 2,4-diamino-5-hydroxy-1;8i&za-9-oxa-
spiro[5.5]undeca-1,3-diene hydrochloride (AO) folkxd the procedure reported in our previous pubtiofs,9]. Compound A0
was treated with NaOH and 3-substituted phenoxygrbopomide in DMF to obtain the corresponding 2jdrdino-5-(3'-
(substituted  phenoxy)propyloxy)-1,3,5-triaza-9-ey@ro[5.5]undeca-1,3-diene  hydrobromide (A1l-Al6).-substituted
phenoxypropyl bromides were treated with benzolwainic acid and sodium hydroxide in ethanol unddiuxeto get the
corresponding N-benzoyl-protected substituted pkgmmpyloxy hydroxylamine hydrochlorides. Next, the hydrolysias
performed to synthesize substituted phenoxypropgytopdroxylamine hydrochlorides (C1-C12) by hydrochdacid. Reaction
of the substituted phenoxypropyloXydroxylamine hydrochlorides (C1-C12) and cyanoggiae for 5 hours provided the
biguanide hydrochlorides. They in reaction solutiamthout isolation was directly subjected to HClalgzed
cyclocondensation with tetrahydro-4-thiopyrone irore pot reaction. After 5 to 15 days, final de$i4-diamino-5-(3'-
(substituted phenoxy)propyloxy)-1,3,5-triaza-9-tkro[5.5]undeca-1,3-dienes hydrochloride (B1-Bd2ye obtained.

2.3 hDHFR inhibitory activity

All target compounds were evaluated for the inlbilyitactivities against human DHFR by the reportestedure [14, 27,
28]. The results are shown in Table 1. In the iitlib assay, twenty compounds showed favorablebitibh at 5 M, which is
superior to both leading compound MO and MTX. Téert compounds (A1-A10, B1-B3) with an inhibitiotioaover 90% at 5
UM were chosen for the further evaluation ofgl@lues, and the others (A11-A16, B4-B12) with bitidon ratios below 90%
at 5 uM were arranged to test hDHFR inhibitionaati a concentration of 50 pM. At 50 puM, nine coonpas showed 88.2% to
94.4% inhibition ratio superior to the leading camapd MO (87.6% inhibition ratio); four compoundosled 89.8% to 93.8%
inhibition superior to MTX (89.7% inhibition ratio)

The activities of thirteen target compounds (A1-ARQ-B3) were reported as d¢values. Eleven compounds among them
showed the Igy values of 46.62 to 3.72 nM, which is superior t0 C5,=49.04 nM), and four (A2, A5, B1,and B3) showed
favorable hDHFR inhibitory activities with kgvalue of 7.46 nM, 3.72 nM, 6.46 nM, 4.08 nM—supetd MTX (1C5;=6.67
nM). In comparison to MO (16=49.04 nM), 4-chloro substituted compound A65(€33.56 nM) and B2 (16=18.28 nM)
bearing 9-oxaspiro ring or 9-thiaspiro ring extebiincreased activities showing that insertion>afgen and sulfur atom into
the spiro-ring could increase the activity. Furthere, when comparing B2 (418.28 nM), B1 (IGy=6.46 nM), and B3
(ICs0=4.08 nM) with A6 (IGy=33.56 nM), A9 (IG=32.49 nM), and A2 (I&=7.46 nM), respectively, it implied that
compounds of the thiaspiro series were generallseraotive than compounds of the oxaspiro series.

2.41Invitro antiproliferative activity

The anti-tumor potency was carried out by the MESagy [29,30] for all the target compounds agaims&et human tumor
cell lines including human colorectal cancer celel(HCT116), human alveolar basal epithelial dek (A549), and human
leukemia cell line (HL-60). Twenty-one compoundswshd better activity against HCT116 cells with IG&Ques ranging from
0.69uM to 0.001uM relative to the positive control MTX. Thirteenrmapounds showed better activity against A549 ceith w
ICso values ranging from 0.24M to 0.001uM relative to MTX. Twenty-two compounds showed wityi against HL-60 cells
with 1Cso values ranged from 0.88M to 0.03uM, which is superior to MTX. In addition, compound40-A16, B1-B12 were
also evaluated anti-tumor activity against livepdocellular cell line (HepG2) and metastatic breascer cell line (MDA-
MB-231). Eleven compounds showed activity agairep®2 cells with 16, values ranged from 0.38v to 0.05uM superior to
that of MTX, and 20 compounds showed activity agaMDA-MB-231 cells with 1G, values ranging from 3.5/M to 0.001
uM, which is superior to MTX. Consistent with the HBR inhibitory activity data, there were improvertgeim the anti-tumor
activity due to introducing oxygen and sulfur atdrhe activity of the thiaspiro series surpasset @héhe oxaspiro series.

2.51Invivo anti-tumor activity

Thein vivo anti-tumor efficacy of compound A2 was evaluatedniale BALB/c nude mice bearing A549 cells, accogdi
to the published protocol[31,32]. The MTX (2 mg/kg)d 50 mg/kg compound A2 were injected i.p. 14etimver a 22 days.
Body weights were recorded per day. The tumor sizge measured using calipers, and tumor volumes wadculated by the
formula AXB%2 where A and B are the larger and smaller diametethe tumor, respectively. Tumor volume (TV) was
calculated by the following formula: TV 1Raxb?. Relative tumor volume (RTV) was calculated bg fhllowing formula:
RTV = Vt/Vo (Vo = TV at day 1). An evaluation indef the anti-tumor effect was tumor growth inhibitirate calculated by
the following formula: Tumor growth inhibition rafg6) = (1-RTVest/ RTVcontro) X 100%. Table 2 shows the relative tumor
volume and tumor growth inhibition rate of diffeteéneatment groups. Compound A2 was identified aesess gooth vivo
anti-tumor effect with 36.80% tumor growth inhibiti at day 22 (for MTX, 50.84%). There was no catieh betweerin vitro
andin vivo activities, which was probably due to the pharnkawetic properties.



Table 3 describes the change in body weight ofnilde mice. There was a smaller decrease in micghivei the A2-
treated group than the MTX-treated group.

3. Conclusion

In this research, we describe a molecular docktogy for compound MO from our previous report. Tasults implied
that the possible extended space that results fhenshift of the flexible residue Phe31 might beofable for the binding of
the spiro-ring to the active site of hDHFR. A noseties of dihydro-1,3,5-triazine derivatives begra heteroatom spiro-ring
were designed and synthesized on the basis of @tlisgis from molecular flexible docking. All compuais exhibited hDHFR
inhibitory activity and anti-proliferative activitggainst tumor cell lines (HCT116, A549, HL-60, &y and MDA-MB-231).
Compounds A2, A5, B1, and B3 showed potent hDHHR#bitory activity with IC50 values of 7.46 nM, 3.7V, 6.46 nM,
and 4.08 nM, compared with reference drug MTX. 2¥mPounds showeth vitro antiproliferative activity toward several
tumor cell lines with IG, values ranging from 0.79 to 0.0¢M—Dbetter than MTX. The furtheim vivo anti-tumor study
showed that compound A2 could inhibit tumor growtha nude mouse A549 model. The results showedinisattion of
oxygen and sulfur atom to the spiro-ring could rteimor increase the hDHFR inhibition.

4. Experimental section
4.1 General

All target compounds were characterized on thesheféH NMR and**C NMR spectroscopic data (Bruker Avance 111-400
MHz and 600 MHz, respectively). Chemical shifts egported in ppm using tetramethylsilane (TMS) asraernal standard.
the peak patterns were described as: (br) broaair(glet, (d) doublet, (t) triplet, (q) quartehca(m) multiplet. Mass spectra
were recorded with a Q-TOF mass spectrometer wedetgrospray ionization (ESI). A.R. grade solvemése directly used and
further purification or degas of the solvents was required. HPLC analysis was done on Agilent HRlyStem (model: 1260)
equipped with a DAD detector using Agilent Ecligalegs C18 (5um, 438 150 mm) column using ACN: 0.1% phosphoric acid
aqueous solution mobile phase by gradient elutidlow rate of 1 ml/min.

4.2 General Procedurefor the Synthesisof A1-A16 series

2,4-Diamino-5-hydroxy-1,3,5-triaza-9-oxa-spiro[fubfleca-1,3-diene hydrochloride (0.5g, 0.002 moB diasolved in 20
ml of methanol, 1 molar equivalent of NaOH was abliai¢o the solution , and the mixture was reflu@d30 min. After being
cooled to room temperature, the solvent was evagubnasing vacuum, the dry white precipitate wasioletd. The precipitate
was dissolved in 5 ml of DMF. 1.2 molar equivalehft3-aryloxypropyl bromide was added. The mixturasvstirred at room
temperature and TLC was used to monitor the reacfitie solution was adjusted to pH 1 using coneésdr HBr, when
reaction was completed. Evaporate the solutioroainrtemperature to remove DMF. The residue wasrditt , followed by
recrystallization in 90% EtOH. Compounds A1-A16 w@repared in this method.

4.2.1 2,4-Diamino-5-(3'-phenoxypropyloxy)-1,3,5-triazea®a-spiro[5.5]undeca-1,3-diene hydrobromide (A1)

White solid yield: 36.5%, mp: 206-208 °&4 NMR (400 MHz, DMSO-¢): ¢ 1.69-1.66(d,2H, J=12.8), 2.03(br, s, 2H),
2.18-2.14(dd, 2H, J=6), 3.59-3.54(t, 2H, J=11.6]833.74(dd, 2H,¥4.8, 3=12), 4.11-4.06(dd, 4H,36, 3=12), 6.97-6.93(m,
3H), 7.31-7.28(dd, 2H,,37.2, 3=8.8), 7.81(s, br, 1H, ex), 8.09(s, 1H, ex), 8.66(4, ex), 9.50(s, 1H, ex)*C NMR (151 MHz,
DMSO0)§ 161.60, 157.17, 134.59, 130.20, 129.39, 128.861792.27, 62.71, 33.38, 32.08; HRMS calcd. fadHz:NsO3 [M-
HBr+H]": 334.1874. found: 334.1871.

4.2.2 2,4-Diamino-5-(3'-(2",4"-dichrolo-phenoxy)propyig-1,3,5-triaza-9-oxa-spiro[5.5]undeca-1,3-dierydfobromide (A2)

White solid yield: 32.1%, mp: 220-222 °C; HPLC: 88% (£=18.189 min);’H NMR (400 MHz, DMSO-g): ¢ 1.68-1.65
(d, 2H, J=12.8), 2.00(br, s, 2H), 2.22-2.19(t, 2H6), 3.60-3.55(t, 2H, J=12), 3.75-3.71(dd, 24¢434, J=12), 4.10-4.07(t, 2H,
J=6.4), 4.20-4.17(t, 2H, J=6), 7.21-7.19(d, 1H,.8¥%87.38-7.35(dd, 1H,;32.4, 3=8.8), 7.55-7.54(d, 1H, J=2.4), 7.83(s, br, 1H,
ex), 8.11(s, 1H, ex), 8.66(s, 1H, ex), 9.37(s, &%); °C NMR (151 MHz, DMSO-g): § 161.24, 156.60, 152.85, 129.35, 128.29,
124.76, 122.56, 115.35, 74.34, 71.76, 65.505, 63887, 33.60, 30.47, 26.97; HRMS calcd. fggHG,CloNsO;3 [M-HBr+H] *:
402.1094. found: 402.1100.

4.2.3 2,4-Diamino-5-(3"-(4"-fluoro-phenoxy)propyloxy)3l5-triaza-9-oxa-spiro[5.5]undeca-1,3-diene hydoatide (A3)

White solid yield: 25.8%, mp: 210-214 °&4 NMR (400 MHz, DMSO-¢): ¢ 1.67-1.63(d, 2H, J=12.8), 2.01(br, s, 2H),
2.51-2.49(m, 2H, J=3.6), 3.44-3.38(t, 2H), 3.7828dd, 2H, §=4.8, 3=12), 4.06-4.01(dd, 4H,36.4, 3=12), 6.94-6.91(m, 2H),
7.09-7.04(m, 2H, J=2.4), 7.78(s, br, 1H, ex), 81QH, ex), 8.65(s, 1H, ex), 9.13(s, br, 1H, eXRME calcd. for GH2FNsO;3
[M-HBr+H]*: 352.1779. found: 352.1784.

4.2.4 2,4-Diamino-5-(3'-(4"-methoxy-phenoxy)propyloxy)315-triaza-9-oxa-spiro[5.5]undeca-1,3-diene hydoatide (A4)



White solid yield: 48.5%, mp: 217-219 °C;HPLC: 9% (z=7.026 min); '"H NMR (400 MHz, DMSO-g): 6 1.69-1.66(d,
2H, J=12.8), 2.0w(br, s, 2H), 2.16-2.11(t, 2H, J=8655-3.49(t, 2H, J=11.8), 3.80-3.76(dd, 2k+418, 3=12), 3.69(s, 3H),
4.07-4.00(m, 4H), 6.87-6.82(m, 4H), 7.85(s, br, &k), 8.09(s, 1H, ex), 8.67(s, 1H, ex), 9.11(s, &4); **C NMR (151 MHz,
DMSO-a;): § 161.60, 157.17, 134.59, 130.20, 129.39, 128.8%1792.27, 62.71, 33.38, 32.08; HRMS calcd. foiHgNsO,
[M-HBr+H]": 364.1979. found: 364.1985.

4.2.5 2,4-Diamino-5-(3'-(4"-tert-butyl-phenoxy) propylox$,3,5-triaza-9-oxa-spiro[5.5]undeca-1,3-dieneribpdomide (A5)

White solid yield: 65.8%, mp: 216-218 °&4 NMR (400 MHz, DMSO-g): § 1.25(s,9H), 1.69-1.66(d,2H, J=12.8), 2.02(br,
s, 2H), 2.16-2.13(t, 2H, J=6), 3.52-3.46(t, 2H, I5B.79-3.75(dd, 2H,;34.4, 3=12), 4.07-4.04(t, 4H, J=6), 6.91-6.88(d, 2H,
J=9.2), 7.33-7.31(d, 2H, J=8.8), 7.85(s, br, 1H), &10(s, 1H, ex), 8.67(s, 1H, ex), 8.92(s, 1H); §C NMR (151 MHz,
DMSO-a;): 6 161.60, 157.17, 134.59, 130.20, 129.39, 128.86179.2.27, 62.71, 33.38, 32.08; HRMS calcd. fasHziN:s03
[M-HBr+H]*: 390.2500. found: 390.2499.

4.2.6 2,4-Diamino-5-(3'-(4"-chrolo-phenoxy)propyloxy)315-triaza-9-oxa-spiro[5.5]undeca-1,3-diene hydoatide (A6)

White solid yield: 23.9%, mp: 217-219 °@4 NMR (400 MHz, DMSO-g): 6 1.68-1.65(d,2H, J=12.8), 2.00(br, s, 2H),
2.15-2.12(t, 2H, J=6), 3.47-3.41(t, 2H, J=12), 337B4(dd, 2H, 4.8, 3=12), 4.08-4.04(dd, 4H,36, }=12), 6.91-6.88(d, 2H,
J=8.8), 7.31-7.29(d, 2H, J=8), 7.80(s, br, 1H, 841(s, 1H, ex), 8.65(s, 1H, ex), 8.90(s, 1H, &9;NMR (151 MHz, DMSO-
de): 0 161.43, 157.60, 156.94, 129.74, 124.81, 116.7B5[X2.26, 64.83, 62.65, 31.98, 27.35; HRMS cdlmdC;¢H,,CIN5O;
[M-HBr+H]*: 368.1484. found: 368.1485.

4.2.7 2,4-Diamino-5-(3'-(4"-methyl-phenoxy) propyloxy)315-triaza-9-oxa-spiro[5.5]undeca-1,3-diene hydootide (A7)

White solid yield: 62.1%, mp: 221-222 °&4 NMR (400 MHz, DMSO-¢): 6 1.70-1.67(d, 2H, J=12), 2.03(br, s, 2H),
2.16-2.13(t, 2H, J=6), 2.23(s,3H), 3.52-3.46(t, 4H12), 3.80-3.76(dd, 2H:4.4, 3=12), 4.08-4.03(dd, 4H;36, }=12), 6.82-
6.80(d, 2H, J=8.8), 7.08-7.05(d, 2H, J=8.4), 7.8B(s1H, ex), 8.10(s, 1H, ex), 8.68(s, 1H, exP58s, 1H, ex)>*C NMR (151
MHz, DMSO-d): ¢ 161.49, 156.96, 156.61, 130.31, 129.79, 114.8112/52.22, 64.39, 62.68, 31.75, 27.50, 20.55; HRMS
calcd. for G/H,sNsO; [M-HBr+H]*: 348.2030. found: 348.2037.

4.2.8 2,4-Diamino-5-(3'-(2",4",5"-trichrolo-phenoxyjypyloxy)-1,3,5-triaza-9-oxa-spiro[5.5]undeca-1,8mk hydrobromide
(A8)

White solid yield: 45.2%, mp: 215-217 °C; HPLC: 98% (=15.967 min);'H NMR (400 MHz, DMSO-¢): 6 1.69-
1.66(d, 2H.J=12.8), 2.01(br, s, 2H), 2.22-2.19H, 3=6.4), 3.53-3.46(t, 2H, J=12), 3.79-3.75(dd, 24.8, 3=11.8), 4.09-
4.06(t, 2H, J=6.4), 4.27-4.22(t, 2H, J=6), 7.49(3), 7.79(s, 1H), 6.91(s, br, 1H, ex), 8.12(s, &k), 8.68(s, 1H, ex), 9.03(s, 1H,
ex); "°C NMR (151 MHz, DMSO-g): 6 161.54, 156.88, 153.61, 131.08, 130.98, 123.30,6R 115.95, 74.56, 72.15, 66.35,
62.76, 32.01, 27.17; HRMS calcd. forsB2ClsNsO; [M-HBr+H] *: 436.0704, found: 436.0708.

4.2.9 2,4-Diamino-5-(3'-(4"-bromo-phenoxy)propyloxy)- 153riaza-9-oxa-spiro[5.5]undeca-1,3-diene hydrotice (A9)

White solid yield: 31.6%, mp: 215-216 °@4 NMR (400 MHz, DMSO-¢): § 1.69-1.66(d, 2H, J=12.8), 2.01(br, s, 2H),
2.17-2.12(t, 2H, J=6), 3.54-3.48(t, 2H, J=12), 33785( dd, 2H, 1+4.4,3=12), 4.09-4.04(m, 4H), 6.92-6.89(d, 2H, J=8.8437.
7.41(d, 2H, J=8.4), 7.95(s, br, 1H, ex), 8.09(s, &), 8.66(s, 1H, ex), 9.21(s, 1H, ex}c NMR (151 MHz, DMSO-¢): 6
161.47, 158.05, 157.03, 132.63, 117.28, 112.5@5/42.23, 64.78, 62.68, 31.84, 27.34; HRMS cdadC;sH,,BrNsO; [M-
HBr+H]": 412.0979. found: 412.0976

4210 2,4-Diamino-5-(3'-(3",4"-dichrolo-phenoxy)propylg-1,3,5-triaza-9-oxa-spiro[5.5]undeca-1,3-dieneydiobromide
(A10)

White solid yield: 52.3%, mp: 218-220 °@4 NMR (400 MHz, DMSO-¢): 6 1.70-1.67(d, 2H, J=12.8), 2.01(br, s, 2H),
2.17-2.14(t, 2H, J=6), 3.54-3.48(t, 2H, J=12), 33806(dd, 2H, 4.8, 3=12), 4.07-4.04(t, 2H, J=6), 4.14-4.11(t, 2H, J=6),
7.00-6.97(dd, 1H,,32.8, 3=9.2), 7.25-7.24 (d, 1H, J=2.8), 7.53-7.51(m, 1HR8(s, br, 1H, ex), 8.11(s, 1H, ex), 8.68(s, 1H,
ex), 9.08(s, 1H, ex); HRMS calcd. fode»ClLNsO; [M-HBr+H] *: 402.1094. found: 402.1101.

4211 2,4-Diamino-5-(3'-(2",3"-dichrolo-phenoxy)propylg-1,3,5-triaza-9-oxa-spiro[5.5]undeca-1,3-dieneydiobromide
(A11)

White solid yield: 30.7%, mp: 208-210 °C (de¢H; NMR (400 MHz, DMSO-g): 6 1.67-1.64 (d, 2H, J=12.4), 2.00(br, s,
2H), 2.23-2.20(t, 2H, J=6), 3.61-3.58(m, 2H), 33%89(dd, 2H, J4.8, J=12), 4.11-4.08(t, 2H, J=6), 4.23-4.20(t, 2H, J=6),
7.23-7.17(m, 2H), 7.35-7.31(t, 2H, J=8), 7.81(s, 1, ex), 8.10(s, 1H, ex), 8.65(s, 1H, ex), 9.64(4, ex);**C NMR (151
MHz, DMSO-g¢) : ¢ 161.60, 157.17, 134.59, 130.20, 129.39, 128.86517972.27, 62.71, 33.38, 32.08; HRMS calcd. for
C16H21C|2N503 [M'HBr+H] *:402.1094. found: 402.1100.

4212 2,4-Diamino-5-(3'-(3",5"-dimethyl-phenoxy)propxig-1,3,5-triaza-9-oxa-spiro[5.5]undeca-1,3-dieng/driobromide
(A12)



White solid yield: 52.0%, mp: 203-205 °C; HPLC: 8% (k=6.101 min);"H NMR (400 MHz, DMSO-g): ¢ 1.70-1.67 (d,
2H, J=12.8), 2.04-1.99(m, 2H), 2.13-2.16(m, 2HR3?s, 6H), 3.56-3.50(t, 2H, J=12), 3.81-3.77(dd,H=#4.4, 3=12), 4.08-
4.03(dd, 4H, £6, 3=10.8), 6.69-6.58(d,3H,J=8.4), 7.83(s, br, 1H, &)1(s, 1H, ex), 8.66(s, 1H, ex), 9.36(s, 1H, &5¢;
NMR (151 MHz, DMSO-¢): 6 161.56, 158.76, 156.96, 139.09, 122.81, 112.73,8752.15, 64.23, 62.74, 56.49, 31.76, 27.50,
21.52, 19.02; HRMS calcd. for,@1,,NsOs [M-HBr+H] *: 362.2187. found: 362.2193.

4.2.13 2,4-Diamino-5-(3'-(2"-chrolo-phenoxy)propyloxy)315-triaza-9-oxa-spiro[5.5]undeca-1,3-diene hydootide (A13)
White solid yield: 37.7%, mp: 207-209 °C (dett NMR (400 MHz, DMSO-g): ¢ 1.69-1.66(d, 2H, J=12.4), 2.01(br, s,
2H), 2.22-2.17(dd,2H,,36,J,=12), 3.49-3.43(t, 2H, J=12), 3.76-3.72(dd, 2418, 3=12), 4.12-4.09(t, 2H, J=6), 4.19-4.16(t,2
H, J=6), 6.98-6.94(m, 1H), 7.18-7.16(dd, 1kk116, 3=8), 7.33-7.28(m, 1H), 7.43-7.40(dd, 1H=1.6, 3=8), 8.13(s, 1H, ex),
8.67(s, 1H, ex), 9.96(s, 1H, exX}C NMR (151 MHz, DMSO-g): 6 161.61, 156.87, 154.02, 130.38, 128.90, 122.14,8IR
114.44, 74.65, 72.03, 65.18, 62.75, 31.75, 27.388 calcd. for GsH2,CINsO3 [M-HBr+H]": 368.1484. found: 368.1484.

4.2.14 2,4-Diamino-5-(3'-(3"-chrolo-phenoxy)propyloxy)315-triaza-9-oxa-spiro[5.5]undeca-1,3-diene hydootide (A14)

White solid yield: 41.6%, mp: 209-211 °&4 NMR (400 MHz, DMSO-g): 6 1.70-1.67(d,2H, J=13.2), 2.01(br, s, 2H),
2.17-2.14(t, 2H, J=6), 3.54-3.48(t, 2H, J=12), 33806(dd,2H,d=4.8,3=12), 4.08-4.04(t,2H,J=6), 4.13-4.10(t,2H,J=6),37.0
6.92(m,3H), 7.33-7.29(t,1H,J=8), 8.11(s, 1H, exk8gs, 1H, ex), 9.05(s, 1H, eXjiC NMR (151 MHz, DMSO-g): § 161.61,
159.73, 156.87, 134.24, 131.40, 121.16, 115.05,.0B1474.98, 72.05, 64.91, 62.79, 31.78, 27.30; HRb&#cd. for
Ci16H22CINsO; [M-HBr+H] ": 368.1484. found: 368.1487.

4.2.15 2,4-Diamino-5-(3'-(2"-bromo-phenoxy) propyloxy)- hariaza-9-oxa-spiro[5.5]undeca-1,3-diene hydrotide (A15)

White solid yield: 38.0%, mp: 215-216 °H NMR (400 MHz, DMSO-¢): ¢ 1.70-1.60(d,2H, J=12.8), 2.01(br, s, 2H),
2.23-2.19(dd, 2H,,36, }=12), 3.47-3.41(t, 2H, J=12), 3.75-3.71(dd, 3H418, }=12), 4.13-4.10(t, 2H, J=6), 4.19-4.16(t, 2H,
J=6), 6.92-6.89(m, 1H), 7.15-7.13(d, 1H, J=8.4R777.33(m, 1H), 8.13(s, 1H, ex), 8.67(s, 1H, ex®98s, br, 1H, ex)**C
NMR (151 MHz, DMSO-g¢): § 161.64, 156.85, 154.86, 133.41, 129.59, 122.68,2B] 111.45, 74.63, 71.99, 65.15, 62.76,
31.91, 27.39; HRMS calcd. forygH,,BrNsO; [M-HBr+H] ": 412.0979. found: 412.0983.

4.2.16 2,4-Diamino-5-(3'-(3"-bromo-phenoxy)propyloxy)-H3riaza-9-oxa-spiro[5.5]undeca-1,3-diene hydrotice (A16)

White solid yield: 56.6%, mp: 210-212 °C; HPLC: 58% (£=11.398 min); *H NMR (400 MHz, DMSO-g): 6 1.70-
1.67(d, 2H, J=12.8), 2.02(br, s, 2H), 2.19-2.12¢, J=6), 3.53-3.47(t, 2H, J=12), 3.80-3.77(dd, 2$4.4, 3=12), 4.13-
4.04(m, 4H), 7.00-6.96(dd, 1H;=P.4, 3=8), 7.17-7.12(m, 2H), 7.27-7.23(m, 1H), 8.10(s, &), 8.68(s, 1H, ex), 9.02(s, 1H,
ex); "°C NMR (151 MHz, DMSO-g): 6 161.59, 159.77, 156.82, 131.73, 124.08, 122.60,881 114.46, 74.93, 72.17, 64.94,
62.83, 31.58, 27.32; HRMS calcd. foreB,,BrNsO; [M-HBr+H]": 412.0979. found: 412.0982.

4.3 General Procedurefor the Synthesis of B1-B12 series

The mixture of substituted phenoxypropylolRydroxylamine hydrochlorides (0.005 mol), dicyamdide (0.4 g, 0.005
mol) and EtOH (25 ml) was refluxed for 5h, follwbg being cooled to room temperature. To a suspangidhe resulting
biguanide hydrochlorides in absolute EtOH (25 m#svadded conc. HCI (0.15 ml), was stirred at roemperature for 4 days
to 15 days. After evaporation of the solvent, tgidue was triturated with acetone. The solid wakected by filtration and
washed again with ether and dried under oven.ai@des were recrystallized from ethanol-water betoralysis.

4.3.1 2,4-Diamino-5-(3'-(4"-bromo-phenoxy)propyloxy)- 153riaza-9thia-spiro[5.5]undeca-1,3-diene hydrochloride (B1)

White solid yield: 52.9%, mp: 212-214 °C (detit NMR (400 MHz, DMSO-g): § 2.03-2.00(m, 4H), 2.17-2.14(t, 2H,
J=6), 2.77-2.67(m, 2H), 2.88(br, s, 2H), 4.10-4daD(4H, 4=6, 3=12.8), 6.95-6.89(dd, 2H,,34.4, J=14.4), 7.46-7.41(t, 2H,
J=8.8), 7.88(s, br, 1H, ex), 8.08(s, 1H, ex), &6aGH, ex), 9.14(s, 1H, exy’C NMR (151 MHz, DMSO-g): § 161.28, 158.08,
156.86, 132.63, 117.30, 112.57, 74.87, 73.80, 62786, 23.61; HRMS calcd. foryE,,BrNsO,S [M-HCI+H]*: 428.0750.
found: 428.0745

4.3.2 2,4-Diamino-5-(3'-(4"-chrolo-phenoxy)propyloxy)315-triaza-9thia-spiro[5.5]undeca-1,3-diene hydrochloride (B2)

White solid yield: 25.5%, mp: 226-228 °C (dec); HPL99.93% ((=11.658 min);"H NMR (400 MHz, DMSO-g): ¢
2.06(s, 4H), 2.16-2.13(t, 2H, J=6), 2.52-2.50(m,),2M83(br, s, 2H), 4.09-4.04(m, 4H), 7.00-6.96@Hi), 7.33-7.29(m, 2H),
8.07(s, 1H, ex), 8.62(s, 1H, ex), 8.94(s, 1H, &é5¢; NMR (151 MHz, DMSO-g): § 161.25, 157.64, 156.92, 129.72, 124.86,
116.76, 74.86, 73.86, 64.75, 27.38, 23.62; HRM8ctdbr G¢H,;CINsO,S [M-HCI+H]™: 384.1255. found: 384.1256.

4.3.3 2,4-Diamino-5-(3'-(2",4"-dichrolo-phenoxy)propyig-1,3,5-triaza-Shia-spiro[5.5]undeca-1,3-diene hydrochloride (B3)

White solid yield: 45.3%, mp: 210-212 °C (dec); HPL99.81% (=12.855 min);"H NMR (400 MHz, DMSO-g): ¢
2.05(s, 4H), 2.20-2.19(t, 2H, J=6), 2.49-2.44(m),2H89(br, s, 2H), 4.11-4.08(t, 2H, J=6), 4.2074t12H, J=6), 7.21-7.19(d,
1H, J=8.8), 7.39-7.36(dd,1H,=P.4, 3=8.8), 7.56-7.55(d, 1H, J=2.4), 7.82(s, br, 1H, &J0(s, 1H, ex), 8.66(s, 1H, ex), 9.23(s,
1H, ex); *C NMR (151 MHz, DMSO-g): § 161.28, 156.85, 153.21, 129.71, 128.69, 125.02,812 115.59, 74.40, 73.83,
65.58, 27.30, 23.63; HRMS calcd. foreB,:Cl,NsO,S [M-HCI+H]": 418.0866. found: 418.0871.



4.3.4 2,4-Diamino-5-(3'-(4"-methoxy-phenoxy)propyloxy)315-triaza-Shia-spiro[5.5]undeca-1,3-diene hydrochloride (B4)

White solid yield: 58.6%, mp: 220-222 °&4 NMR (400 MHz, DMSO-g): d 2.07(s, 4H), 2.15-2.12(t, 2H, J=6), 2.55-
2.50(m, 2H), 2.87(br, s, 2H), 3.69(s,3H), 4.09-4m02H), 6.91-6.85(m,4H), 8.07(s, 1H, ex), 8.67(, ex);*C NMR (151
MHz, DMSO-g): ¢ 161.26, 156.93, 153.97, 152.76, 115.96, 115.104/53.86, 64.87, 55.87, 27.59, 23.61; HRMS cdiad.
C17H25N5038 [M'HC|+H]+: 380.1751. found: 380.1750.

4.3.5 2,4-Diamino-5-(3'-(4"-tert-butyl-phenoxy) propylox$, 3,5-triaza-9-thia-spiro[5.5]undeca-1,3-dieneltogchloride (B5)

White solid yield: 57.3%, mp: 232-234 °C; HPLC: B9% (k=14.986 min);"H NMR (400 MHz, DMSO-g): 6 1.25(s,
9H), 2.05(s, 4H), 2.17-2.13(t, 2H, J=6), 2.50-2mM5@H), 2.88(br, s, 2H), 4.09-4.06(t, 4H, J=6),%@86(d, 2H, J=8.8), 7.30-
7.28(t, 2H, J=8.8), 8.07(s, 1H, ex), 8.68(s, 1H, 8x18(s, 1H, ex)!*C NMR (151 MHz, DMSO-g): § 161.27, 156.91, 156.54,
143.33, 126.55, 114.49, 74.93, 73.82, 64.25, 38282, 27.55, 23.57; HRMS calcd. fo5o83:N50,S [M-HCI+H]*: 406.2271.
found: 406.2274.

4.3.6 2,4-Diamino-5-(3'-(2"-chrolo-phenoxy)propyloxy)315-triaza-9-thia-spiro[5.5]undeca-1,3-diene hytitodde (B6)

White solid yield: 25.5%, mp: 226-228 °C (detit NMR (400 MHz, DMSO-g): 6 2.05(s, 4H), 2.22-2.19(t, 2H, J=6),
2.45-2.42(d, 2H, J=13.6), 2.91(br, s, 2H), 4.2004M, 4H), 6.98-6.94(m, 1H), 7.18-7.16(m, 1H), 7829(m, 1H), 7.43-
7.40(m, 1H), 7.84(s, br, 1H, ex), 8.10(s, 1H, &®5(s, 1H, ex), 9.32(s, 1H, eXfC NMR (151 MHz, DMSO-g): § 161.28,
156.89, 154.04, 130.35, 128.90, 122.13, 121.80,44144.48, 73.83, 65.08, 27.42, 23.60; HRMS calod.C;¢H,,CIN5O,S
[M-HCI+H] *: 384.1255. found: 384.1259.

4.3.7 2,4-Diamino-5-(3'-(3"-chrolo-phenoxy)propyloxy)315-triaza-9-thia-spiro[5.5]undeca-1,3-diene hyditodde (B7)

White solid yield: 30.8%, mp: 209-211 °&4 NMR (400 MHz, DMSO-g): ¢ 2.07(s, 4H), 2.18-2.15(t, 2H, J=6), 2.50-
2.47(d, 2H, J=12), 2.93(br, s, 2H), 4.14-4.06(m),4H04-6.93(m, 3H), 7.33-7.29(t, 1H, J=8), 7.85(s, 1H, ex), 8.08(s, 1H,
ex), 8.66(s, 1H, ex), 9.27(s, 1H, eXC NMR (151 MHz, DMSO-g): § 161.26, 159.75, 156.91, 134.25, 131.37, 121.18,06]
114.11, 74.81, 73.85, 64.80, 27.34, 23.62; HRM8ctdbr G¢H,;CINsO,S [M-HCI+H]™: 384.1255. found: 384.1261.

4.3.8 2,4-Diamino-5-(3'-(2"-bromo-phenoxy)propyloxy)-153riaza-9-thia-spiro[5.5]undeca-1,3-diene hydfodde (B8)

White solid yield: 41.6%, mp: 214-216 °&4 NMR (400 MHz, DMSO-g): § 2.06(s, 4H), 2.22-2.19(t, 2H, J=6), 2.46-
2.42(d, 2H, J=14), 2.89(br, s, 2H), 4.20-4.12(m),4493-6.89(m, 1H), 7.16-7.14(d, 1H, J=8.4), 77333(m, 1H), 7.59-7.57(m,
1H), 7.86(s, br, 1H, ex), 8.12(s, 1H, ex), 8.6@(d, ex), 9.22(s, 1H, ex)°C NMR (151 MHz, DMSO-g): 6 161.27, 156.90,
154.87, 133.37, 129.57, 122.64, 114.29, 111.4645{473.83, 65.06, 27.44, 23.60; HRMS calcd. fagHz,BrNsO,S [M-
HCI+H]": 428.0750. found: 428.0747.

4.3.9 2,4-Diamino-5-(3'-(3"-bromo-phenoxy)propyloxy)- 153riaza-9-thia-spiro[5.5]undeca-1,3-diene hydfodde (B9)

White solid yield: 22.5%, mp: 210-212 °&4 NMR (400 MHz, DMSO-g): § 2.07(s, 4H), 2.17-2.14(t, 2H, J=6), 2.50-
2.47(d, 2H, J=14), 2.91-2.93(d, 2H, J=5.6), 4.1864m, 4H), 7.00-6.97(dd, 1H;=P.4, 3=8), 7.18-7.12(m, 2H), 7.27-7.23(t,
1H, J=8), 7.84(s, br, 1H, ex), 8.08(s, 1H, ex),686 1H, ex), 9.25(s, 1H, ex)*C NMR (151 MHz, DMSO-g): § 161.25,
159.79, 156.92, 131.70, 124.07, 122.61, 117.92,47144.81, 73.86, 64.82, 27.35, 23.63; HRMS cdlod.C,¢H,,BrNs0,S
[M-HCI+H] ": 428.0750. found: 428.0744.

4.3.10 2,4-Diamino-5-(3'-(2",3"-dichrolo-phenoxy)propylg-1,3,5-triaza-9-thia-spiro[5.5]undeca-1,3-dienkydrochloride
(B10)

White solid yield: 50.3%, mp: 223-225 °C (dec); HRL100.00% @=12.457 min);"H NMR (400 MHz, DMSO-g): 6
2.04(s, 4H), 2.23(br, s, 2H), 2.42-2.40(d, 2H, J=892(br, s, 2H), 4.13-4.10(t, 2H, J=8), 4.23-4t22H, J=4), 7.24-7.18(m,
2H), 7.37-7.32(t, 1H, J=8), 7.82(s, br, 1H, exL&s, 1H, ex), 8.71(s, 1H, ex), 9.40(s, 1H, éJ;NMR (151 MHz, DMSO-g):
0 161.26, 156.87, 155.63, 132.72, 129.13, 122.64.52 112.87, 74.38, 73.83, 65.79, 27.32, 23.61M8Rcalcd. for
C16H21CloN50,S [M-HCI+H]™: 418.0866. found: 418.0869.

4.3.11 2,4-Diamino-5-(3'-(3",4"-dichrolo-phenoxy)propylg-1,3,5-triaza-9-thia-spiro[5.5]undeca-1,3-dienkydrochloride
(B11)

White solid yield: 38.7%, mp: 229-231 °C; HPLC: 28% (=13.119 min);*H NMR (400 MHz, DMSO-g): ¢ 2.06(s,
4H), 2.16(br, s, 2H), 2.51-2.50(m, 2H), 2.94(br2H), 4.14-4.11(m, 4H), 7.02-6.99(dd, 1H74, }=8), 7.28-7.27(d, 1H, J=4),
7.54-7.52(d, 1H, J=8), 7.82(s, br, 1H, ex), 8.13(3, ex), 8.70(s, 1H, ex), 9.44(s, 1H, e¥C NMR (151 MHz, DMSO-g): 6
161.26, 158.30, 156.89, 132.11, 131.46, 123.03,.9516116.02, 74.73, 73.85, 65.29, 27.25, 23.64; I9RNalcd. for
C16H21C|2N5023 [M'HC|+H]+: 418.0866. found: 418.0866.

4.3.12 2,4-Diamino-5-(3'-(2",4",5"-trichrolo-phenoxyjyloxy)-1,3,5-triaza-9-thia-spiro[5.5]undeca- 1,8k hydrochloride
(B12)

White solid yield: 23.9%, mp: 220-222 °C (dett NMR (400 MHz, DMSO-g): 6 2.07(s, 4H), 2.24(br, s, 2H), 2.52-
2.47(m, 2H), 2.96(br, s, 2H), 4.17-4.13(m, 4H),7{s3 1H), 7.67(s, 1H), 7.87(s, br, 1H, ex), 8.12(4, ex), 8.67(s, 1H, ex),



9.17(s, 1H, ex)!*C NMR (151 MHz, DMSO-g): § 161.28, 156.84, 153.65, 130.99, 123.33, 121.62,98] 74.29, 73.84, 69.49,
66.18, 33.53, 29.16, 27.17, 23.67; HRMS calcdGH,ClsNsO,S [M-HCI+H]*: 452.0476. found: 452.0482.
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Table 1 in vitro hDHFR inhibitory activity and in vitro anti-proliferative activity
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(a) Values are means of three experiments.
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Table 2. The anticancer effect of compound A2 in an established nude mice A549 model.

Dose  Treatment

RTV, X £SD

d4 d8 di1 di5 di8 d22

Group
(mg/kg)  regimen d1l
Control 1.00£0.00
MTX 2 ipX14 1.00+0.00
A2 50 ipX14 1.00£0.00

1.76+0.46 2.4610.46 3.19+0.54 4.28+0.64 5.901+0.94 7.77£1.20

1.334+0.11*  1.6510.23** 1.9410.23** 2.36+0.36%* 2.91+0.42** 3.82+0.60**

(24.65%)° (32.69%) (29.19%) (44.97%) (50.65%) (50.84%)

1.45+0.18 2.10+0.36  2.6710.46 3.22+0.54** 3.97+0.75** 4.91+0.66**

(17.58%) (14.50%) (16.34%) (24.73%) (32.81%) (36.80%)

*P<0.05 versus control, **P<0.01 versus control, (a)value in the () was tumor growth inhibition rate

Table 3. The change in body weight of the nude mice

Gose Treatment

Body weight (g), X £SD

Group
(mg/kg) regimen di da d8 di1 d1s dis d22
Control 24.73+1.33 24.84+1.22 25.194+1.38 24.99+0.97 25.41+1.04 25.66+1.16 25.59+1.16
MTX 2 ipX14 25.28+0.97 25.47+0.99 24.881+0.82 23.98+0.58* 21.85+2.23** 21.62+£2.87** 21.40+
2.79**
A2 50 ipX14 23.65+1.01 23.53+1.23 23.17£1.14* 22.97+2.28* 23.63+2.13 23.65+1.98* 23.47+£1.96*

*P<0.05 versus control, **P<0.01 versus control,
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Figure 1. Structures of reported DHFR inhibitors.
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Figure 2. The conformations of PHE31 in 1U72 (white) and in
3NXV (purple).



Figure 3. (A)The binding mode of MTX (grey) with hDHFR (PDB
ID: 1U72), (B)The docking pose of compound MO (purple) with
hDHFR compared with the binding mode of MTX (yellow) in
X-ray (PDB ID: 1U72), (C) Molecular surface of active-site in MTX
(yellow) in X-ray, (D) Molecular surface of active-site in MO

(purple)-hDHFR docking result
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Figure 4. The docking result of compound A2 with hDHFR
(1U72)
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Scheme 1. Synthesis of A1-A16 and B1-B12. Reagents and
conditions: (a) dibromoalkane, K,CO3;, CHsCN, reflux, 8 h; (b)
NaOH, DMF, 8-24 h; (c) NaOH, EtOH, reflex 10 h; (d) conc. HClI,
EtOH, reflex 5 h; (e) EtOH, reflex 5-10h; (f) conc. HCI, ethanal,
rt. ; (g) 10% Pb/C, 90% EtOH, 1MPa, rt.



Highlights

1. A novel series of dihydro-1,3,5-triazine derivatives bearing a heteroatom spi
ro-ring were designed and synthesized.

2. Docking studies showed the binding mode of triazaspirodiene derivatives to
inhibit hDHFR.

3 Compound A2, A5, B1, and B3 had potent inhibitory activites against hDHF
R, which was superior to MTX and the leading compound.

4. 24 Compounds showed anti-tumor activities toward several tumor cell lines
with ICso values ranging from 0.79 to 0.001 uM, which was superior to MT
X.



