View Article Online / Journal Homepage / Table of Contents for this issue

Nitroxides: Photochemical Synthesis of Trimethylisoquinuclidine N-Oxyl

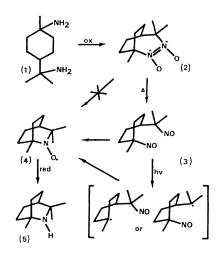
By ANDRÉ RASSAT* and PAUL REY

(Laboratoire de Chimie Organique Physique, Centre d'Etudes Nucléaires de Grenoble, Cedex No. 85, F.38-Grenoble-Gare, France)

Summary The title compound has been prepared by photochemical denitrosation of 1,8-dinitroso-*p*-menthane.

STABLE nitroxides are generally prepared by oxidation of the corresponding amines or hydroxylamines,¹ or by organometallic coupling with nitro-compounds.²

Radical addition to C-nitroso-derivatives,3 although


 $R^{1} + R^{2}N = O \rightarrow R^{1}R^{2}N - O$

effective in producing various nitroxides, has only been

applied to the preparation of the stable caryophyllene iodonitrosite. $\!\!\!^4$

We have investigated the possibility of photochemical denitrosation of a dinitroso-compound into a nitroso-alkyl radical giving a stable nitroxide by internal "spin trapping".

1,8-Diamino-*p*-menthane (1) (mixture of *cis*- and *trans*isomers) is oxidized by *m*-chloroperbenzoic acid in methylene chloride⁵ to a complex mixture, from which a crystalline product (m.p. 161°) is precipitated by diethyl ether [23% yield from the starting *cis*-*trans*-mixture of diamine (1)]. This colourless product turns blue on melting. Slightly

CHEMICAL COMMUNICATIONS, 1971

soluble in cyclohexane, it dissolves readily in boiling cyclohexane giving a blue solution, u v $\epsilon_{274} = 9750$,⁶ n m r and microanalysis $(C_{10}H_{18}N_2O_2)$ consistent with the azodioxy-structure (2)

When a boiling cyclohexane solution of (2) is irradiated with a 75 w (visible light) tungsten lamp, it gives an esr signal whose intensity reaches a maximum after 1 h, the solution being orange-yellow By careful distillation of the solvent (azeotropic distillation with acetone), and chromatography on alumina, a red paramagnetic liquid (m p $ca 4^{\circ}$) is obtained in 72% yield, \dagger u v $\epsilon_{450} = 10.4$, $\epsilon_{238} = 2480$, esr (triplet of triplets $a_{\rm N} = 1740$ Oe, $a_{\rm H} = 350$ Oe), \ddagger and mass spectra (M 168) are in agreement with structure (4) §

This radical can be reduced by lithium in liquid ammonia to the secondary amine (5) [u v, n m r data, and microanalysis of its picrate are consistent with the structure (5)] (Received, May 28th, 1971, Com 875)

† Irradiation, under the same conditions, of a cold colourless methylene chloride solution of the diazoxy compound (2) leads to a quantitative recovery of the starting material

This esr spectrum is identical with that observed from another azabicyclo[2,2]octane nitroxide obtained by independent synthesis 7

§ Its globular structure makes this radical a potential spin label in plastic crystals

¹ O L Lebedev, M L Khidekel, and G A Razuvaev, Doklady Akad Nauk S.S S R, 1961, 140 1327, R Briere, H Lemaire and A Rassat Bull Soc chim France, 1965, 3273 ² A K Hoffmann, W G Hodgson, D L Maricle, and W H Jura, J Amer Chem Soc, 1964, 86, 631, R Briere and A Rassat, Bull

- ⁸ P Rey, These de 3eme cycle, Grenoble, 1967