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Sunwnury: BF3*OEtZ in methylene chloride at 25°C for 2 hours or less is shown 
to be effective for easy conversion of tertiary alcohols into the corresponding 
thermodynamically most stable alkenes. 

Attempting to deprotect a tertiary alcohol t-butyldimethylsilyl ether,1 we unexpectedly discovered that 

boron-trifluoride etherate produced the corresponding alkene with excellent regiocontrol and in good yield (eq 1).3 

Subsequently we have found that l-3 equivalents of BF3*OEt2 in methylene chloride at 2YC converts also tertiary 

alcohols themselves into the corresponding alkenes. These dehydrations are fast, mild, regioselective, and 

experimentally simple. This BFT*OEtz procedure regularly gives cleaner dehydration products usually in higher 

yields than do established dehydrating agents such as the Burgess reagent,4 tbionyl chlotide/triethylamine (a typical 

E2 elimination),5 orp-toluenesulfonic acid/benzene (a typical Et elimination),6 and BFs*OEtz compares favorably 

also with many other dehydrating agents. 7 Results of this operationally convenient, gram-scale BF3*0Et2 

dehydrating procedure with 9 different tertiary alcohols arc summarized in Table I. 
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Table I. BF3bOEt2 Dehydration of 3” Alcohols at 25 “C in CH2Cl2. 
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a. BF3,OEtz reaction time. b. Reaction temperature was 0 “C. 
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A typical experimental procedure is as follows: An oven-dried 100 mL 1-necked round-bottomed flask was 

charged with 1-methyl-4-phenylcyclohexanol(l.186 g, 6.20 mmol) and methylene chloride (30 mL). The solution 

was cooled to O’C and treated with freshly distilled BF?*OEtz (920 pL, 7.50 mmol) via a gas-tight syringe. The 

reaction mixture was warmed to room temperature, stirred for one hour, and quenched with saturated NaHC03 

solution (30 mL) at 0°C. The aqueous layer was separated and extracted twice with methylene chloride (20 mL x 

2). The combined organic layers were washed with saturated NaCl solution (30 mL), dried over anhydrous 

MgS04, filtered, and concentrated to afford a mixture of I-methyl-4-phenylcyclohexene and 1-methylene-4- 

phenylcyclohexane (1.143 g, 100%) in 99.6:0.4 ratio as determined by analytical glc analysis. Short-path silica 

gel column chromatography with pentane and subsequent bulb-to-bulb distillation gave 1-methyl-4- 

phenylcyclohexene (0.983 g, 92%) with NMR characteristics identical to those reported$ IH NMR (CDCl3,4OO 

MHz) 6 5.48 (m, IH), 2.72 (m, lH), 2.30-1.80 (m, 4H), 1.69 (s, 3H), 1.82-1.60 (m, 2H); l3C NMR (CDC13, 

100 MHz) 6 147.29, 133.97, 128.30, 126.88, 125.89, 120.83, 40.04, 33.58, 30.72, 30.07, 23.53. 

Control experiments showed that secondary alcohols (e.g. cis- and crans-4-t-butylcyclohexanol) are stable 

to these BF3*0Et2 reaction conditions. Other control experiments showed that BF3*OEt2 under these conditions 

isomerized less stable to more stable alkenes (e.g. 1-methylene-4-phenylcyclohexane into I-methyl-4- 

phenylcyclohexene and 2-methyl-1-octadecene into 2-methyl-2-octadecene).9 Dehydration and double bond 

isomerization of the tertiary decal01 in Table I regioselectively into the corresponding bis-endocyclic octalin in good 

yield is noteworthy when compared with literature precedent. lo The optimal reaction times, ranging from 10 

minutes to 2 hours, were determined via tic analysis of small aliquots of the BFj*OEt2 reaction mixtures; 

prolonged reaction times and higher reaction temperatures in the BFj*OEtz reactions caused deterioration of the 

alkene products probably via carbocation intermediates. The ratios in Table I of alkene isomers produced by 

BF3*0Et2 were similar to the alkene isomer ratios formed by TsOH/benzene via a carbocation pathway, but the 

yields in the BF3*OEt2 dehydrations were consistently and considerably higher. Both BF3*0Et2 and 

TsOH/benzene converted axial and equatorial steroidal alcohols into the same ratio of alkenes, in contrast to the 

SOClfit3N results (Table I). Neopenlylic tertiary alcohols 1-3 as well as tertiary alcohols 4 and 5 that are prone to 

carbocation rearrangements or alkylation reactions gave unsatisfactory mixtures of products when exposed to 

BF3*OEt2; although Lewis basic diethyl ether in place of methylene chloride as solvent slowed the dehydration 

reaction, this ethereal solvent did not prevent skeletal rearrangement, for example, of spirobicyclic alcohol 3. 
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Despite its very broad appeal as a cheap, readily-available, and easily-handled Lewis acid,” surprisingly 

BF3*0Etz has not been used previously in a systematic way to convert tertiary alcohols into alkenes.2g3v12 This 

report shows that many types of structurally different tertiary alcohols can be dehydrated rapidly, easily, and 

cleanly using BF3*OEt2. This simple procedure should be useful in many diverse applications. 
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