
COMMUNICATIONS 

Without interstate mixing the conjugate does not function as 
a phototropic assembly, and absorbed photons are converted 
into heat within about 50 ps. Interstate mixing extends the over- 
all timescale for charge recombination to about 40 ps, but the 
phototropic process itself continues for milliseconds. This is 
because diffusional charge recombination occurs between sepa- 
rated 7[: radical cations, and is followed by slower reinsertion of 
the dication into the receptor (see Figure 1). In contrast to the 
case with MV.2PF6, where the acceptor is nonfluorescent and 
separation of the RIP is minimal, formation of free DAP.2PF6 
as a transitory species can be followed by fluorescence spec- 
troscopy using two-color (or delayed pulse) excitation. Back- 
ground fluorescence, being set by the amount of free DAP-2PF6, 
can be suppressed with excess CE10, while the rate of reinsertion 
of DAP.2PF6 into the cavity is solvent-dependent. Similar be- 
havior is found for ADIQ-2PF,, but the level of background 
fluorescence is too high for practical application. With complex 
1, however, laser-induced fluorescence selectively tracks the 
evolution and disappearance of free diazapyrenium dications. 

Enperimenlai Section 
DAP.2PF6 [ l l ]  and CElO (171 were prepared by literature methods. ADIQ.2PF6 
was available from earlier work [l l] .  All compounds gave satisfactory analytical 
data that were consistent with their assigned structures. Fast kinetic measurements 
were made with nanosecond and sub-picosecond laser flash photolysis equipment, 
built for this purpose, similar to that described previously [l l] .  The excitation wave- 
length was 440 nm. Decay kinetics were obtained by collecting transient differential 
absorption spectral profiles at about 50 delay times. Binding constants were deter- 
mined by fluorescence spectroscopy with about 50 different concentrations ofcrown 
ether being added to a solution of fluorophore in acetonitrile. 
X-ray structure analysis of 1: C,8H,,F,,N,0i,P2, M, = 1122.88, yellow prisms, 
0.1 5 x 0.20 x 0.45 mm, measured at 293(2) K;  triclinic, Pi, Q = 11.284(2), b = 

1342(4) A', pca,cd = 1.389 mgm-3, Enraf-Nonius CAD-4 diffractometer, Mo,, ra- 
diation (2 = 0.71069 A), g = 0.179 mm-', w/26 scan, 26g60"; of 7524 reflections 
measured, 6509 were independent; $-scan absorption correction, T,,, = 0.94. 
TmBx =1.00. The structure was solved with direct methods (SHELXS-86), and re- 
fined on F z  (SHELXL-93; non-hydrogen atoms, except disordered F atoms, were 
refined anisotropically. and H atoms at calculated positions in riding mode). 
R ,  = 0.0959 for 6494 reflections (F0>40(F)), wR, = 0.2949 for all data, 
GOF = 1.0086, 330 parameters, Ap,,, = 1.042 eA-' in the vicinity of a severely 
disordered solvent molecule. Crystallographic data (excluding structure factors) for 
the structures reported in this paper have been deposited with the Cambridge Crys- 
tallographic Data Centre as supplementary publication no. CCDC-100343. Copies 
of the data can be obtained free of charge on application to The Director, CCDC, 
12 Union Road, Cambridge CBZIEZ, UK (fax: int. code +(1223)336-033; e-mail: 
deposit@chemcrys.cam.ac.uk) 
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11.211(2), c =12.043(2)A, 3~ = 99.95(3), a =106.28(3), y =107.15(3)", V =  
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Novel Zwitterionic DiaIIyhirconium Complexes : 
Synthesis, Structure, Polymerization Activity, 
and Deactivation Pathways** 
Gerard0 Jimenez Pindado, Mark Thornton-Pett, 
Marco Bouwkamp, Auke Meetsma, Bart Hessen,* 
and Manfred Bochmann* 

Group 4 metallocene complexes are becoming increasingly 
important as "single-site" catalysts for the polymerization of 
a-~lefins,"~ and the number of industrial processes based on Cp 
complexes is growing rapidly.[21 The catalytically active species 
are electron-deficient complexes of the type [Cp,MR] + 

(M = Ti, Zr, Hf), which are usually generated in situ by react- 
ing a neutral metal alkyl complex with cation-generating activa- 
tors such as methylaluminoxane (MAO) or, in aluminum-free 
systems, M+[B(C,F,)J (M = HNMe,Ph, CPh,), to give ion 
pairs [Cp,MR]+X- [X = Me-MAO, B(C,F,),].['] Zwitterionic 
complexes such as [Cp;Zr(m-C,H,Et)B(C,H,Et),], [Cp,ZrMe- 
(p-Me)B(C,F,),], [Cp*TiMe,(p-Me)B(C,F,),] (Cp* = tetra- 
methylcyclopentadienyl), [Zr(CH,Ph),(q-Ph)BPh,I, and [Zr- 
(CH,Ph),(q6-PhCH2)B(C6F5),] have proved to be useful cata- 
lyst precursors; r3- 71 here the active species is generated by dis- 
sociation into ion pairs. More recently Erker et al. prepared 
zwitterionic allylic complexes [Cp,M(q3-C,H4CH,)B(C,F,),1 
by treating zirconocene and hafnocene butadiene complexes 
with B(C,F5), . These compounds are less electron-deficient 
than the alkyl complexes mentioned above and achieve an elec- 
tron count of 18 through a weak Zr-F coordination.'" 

Structural and catalytic studies have so far mainly concentrat- 
ed on the chemistry of highly reactive 14-electron alkyl complex- 
es [Cp,MMe]+ (M = Ti, Zr, Hf). The isoelectronic cationic 
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diallyl complexes of the type [CpM(y3-allyl),]+ should exhibit a 
similarly promising reactivity. We describe here the synthesis, 
catalytic activity, and structural characterization of the first 
zwitterionic diallylzirconium complexes. The ability of these 
species to undergo unusually facile C- H activation illustrates 
the remarkable difference in reactivity between mono-Cp 
[CpM(allyl),] + ions and the more familiar metallocene ana- 
logues [Cp,MR]+ (R = alkyl, allyl). 

Treatment of a solution of [Cp"Zr(y3-C3H,){y4-CH,C(Me)- 
C(Me)CH,)] (la) [Cp" = 1,3-(SiMe,),C,H3] in toluene with 
B(C,F,), at - 78 "C leads to a color change from red to orange. 
Monitoring this reaction by NMR spectroscopy in CD,Cl, be- 
tween - 70 and 20 "C reveals the formation of a single chiral 
complex; seven 'H NMR resonances for allylic ligands (five 
from the y3-C,H, ligand, two from the y3-dienyl unit) appear 
together with two broadened doublets for the -CH,-B moiety at 
6 = - 0.33 and - 1.78 (Table 1). These data are consistent with 
an attack by B(C,F,), exclusively on one of the terminal carbon 
atoms of the diene ligand to give the zwitterionic diallyl complex 
2a [Eq. (a)]. The unusually high-field shifted 'HNMR reso- 

i a, R, = 1,3-(SiMe,j2, Y = H, 2 = Me 

1 b. R, = 1,3-(SiMe,),, Y = Me, Z = H 

iC, R,= Me,, Y = Me, Z = H 

i 
2a - c 

nances for the CH,-B moiety suggest possible C-H . . . Zr 
bonding. 

The ' 'B  NMR singlet of 2a at 6 = - 12.0 confirms the forma- 
tion of a triarylborate. The I9F NMR spectrum shows six reso- 
nances for the ortlzo-F atoms of three inequivalent C,F, groups, 
whose rotation about the B-C, and B-CH, bonds is evidently 
highly hindered. All six o-F signals have chemical shifts between 
6 = - 129 and -- 135 and remain unchanged on cooling to 
- 85 "C; a high-field shift of one of the o-F signals, which might 
indicate a metal-fluorine 

Compound 2a is isolated as air-sensitive orange crystals (83 % 
yield) that are thermally stable at room temperature. Cooling 
solutions of 2a in toluene to -16°C afforded orange-yellow 
crystals of 2a. toluene suitable for X-ray The 

is not observed. 

sterically demanding ligands of the zwitterionic molecule (Fig- 
ure 1 )  prevent any close intra- or intermolecular M . . . F interac- 
tions. The Zr-C distances in the [Cp'Zr(allyl),]+ core corre- 
spond closely to the values of the neutral allyl precursor. The 
cationic 14-electron fragment is stabilized by two agostic inter- 
actions with the B-CH, group [ Z r . . . H  2.29(5) and 
2.30(5) 

Compound 2a crystallizes with one molecule of toluene, 
which in the crystal is associated with one of pentafluorophenyl 
rings; the distances between the plane of the six-membered ring 
of the toluene molecule and the best least-squares plane through 
the C,F, group are relatively short (3.17-3.45 A). This solvent 
binding is reminiscent of the well known 1 : 1 stacking phases 
formed between benzene and hexafluorobenzene.['*] 

Mixtures of l a  activated with one equivalent B(C,F,), in 
toluene catalyze the polymerization of ethene under mild condi- 
tions (Table 2). While the M ,  values are within the expected 
range, the broadening of the polydispersities with rising poly- 

Table 1. Selected spectroscopic data 
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22:  ' H N M R  (300 MHz, CD,CI,, -40°C; C atom numbering as in Figure 1). 
6 = -1.78, -0.33 (brs, I H each; H,CB), 0.19,0.36(s, 9 Hedch: SiMe), 1.41,2.52 
(d, J = 8 3 Hz, 1 H each; CCH,), 1.68,l 76 (s, 3 H  each, diene-Me); 1.96 (m, 2 H), 
2 .66(br .d , lH) ,3 .19(d ,  J=15.3HzlH;14or16-CH,),5.96(m,lH,15-CH), 
6.51, 6.96 (m, l H ,  4,5-C,H3), 6.44 (m, l H ,  2-C5H,); "C NMR (75.4MHz, 
CD,CI,, -40°C). 6 = - 0.55, -0.23 (q, J = 119.1, 119 6 Hz; SiMej, 16.93, 23.77 
(4. J=129.5, 127.8Hz, diene-Me), 31.09 (vbr. t, CH,B), 59.64 (t. J=150.1 Hz, 
C~,).67.12,71.03(t,J=155.9,158.6Hz,CH,ofC3H,),112.9l (m,8-C).117.53 
(d,J=170.5Hz;2-C5H3),124.0, 131.45(d,J=169.8,172.0Hz:4,5-C5H3),125.28, 

(96.2MH2, CD6C12, -40°C): 6 = -11.99; I9F NMR (CD,CI,, -50°C): 
6 =  -129.6, -132.2, -130.0, -132.6, -134.0,-134.7(d,3J(F.F)=19.6Hz,1F 

129.26~m,1.3-C,H,),138.06(m,7-C),14077(d,J=153.2Hz, 11-CH); "BNMR 

each;o-F), -159.9, -160.1, -160.6(t, 3J(F,F) =19.7 Hz,I Feach;p-F); -164.2, 
-165.1, -165.6, -167.0(rn,2F, lF,2F, lF;m-F) 
2b: ' H N M R  ([D,]toluene, 300MHz, -30°C): 6 = -1.68 (s. br, 1 H;  BCH,), 
-1.58 (d, J=14.4Hz,  1 H ;  BCH,), -022, 0.09 (s, 9 H  each: SiMe), 0 9 2  (d, 
J = 5.61 Hz, 3 H ;  Me), 2.21, 1.98 (m, 1 H;  diene-CH,), 1.65. 2.00 (dd, J =13.4, 
3Hz,1H;CK,ofCAH,j,1.71 (m,lH;CHMeofC,H,),4.58(dd,J=14.0.9.9Hz, 
1 H ;  diene-CH), 5.01 (m. 1 H;  CH of C,H,), 5.17 (m, 1 H ,  diene-CHj. 5.87, 5.93, 
6.63 (m, each l H ,  C,H,); "C NMR ([D,]toluene, - S O T ) :  6 = - 0.91. -0.71 
(SiMe), 18.49 (Me), 28.0 (br., BCH,), 57.58 (diene-CH,). 61.18 (CH, of C,H,), 
83 45 (diene-CHMe), 106.45 (diene-CH), 118.56, 124.43, 125.61 (2,4,5-C,H3), 
126.35 (br., 1,3-C,H3), 133.09 (diene-CH), 137.37 (CH of C,H,), 137.23 
(J(C,F) = 242.25 Hz, m-C, C,F,), 139.42 (J(C,Fj = 235.0 Hz. p-C, C,F,), 148.23 
(J(C,F) = 238.47 Hz, o-C, C,F,); "BI'H) NMR ([D,]toluene, -60-Cj: 
6 = -12.58; I9F NMR ([D,]toluene, -60°C). 6 = -131.2, -132.9. -135 1 (br. 
s, 1 F, 4F, and 1 F ;  o-F); -158.9 (vbr. s, 3F;p-F) ;  -164.3 (br s, 6F, m-F) 
3a: 'H NMR (300 MHz, ~ 2O'C): 6 = -1.87 (br. s, 1 H ,  BCH?); 0.12, 0.23 (s, 9 H  
edch;SIMe); 1.29(d,J= 5 . 4 H z ; l H ,  =CH,ofdiene),l.49(br.s,1H,BCH2), 1.67 
(s,9H;CMe,),1.80,2.05(s,3Heach;diene-Me),2.06(d,J=l6.0HzlH;CH,of 
C,H,), 2.18 (m, 1 H, J = 16.0 Hz; CH, of C,H,), 2.28 (d, J = 5.4 Hz, 1 H;  =CH, 
of diene), 3.66, 3.97 (m, 1 H each; CH, of C,H,). 5.00, 5.01. 5.33 (m, 1 H each; 
C,H,), 5.15 (m, 1 H ,  CH of C,H,); I3C NMR (CD,CI,, -20 'C): 6 = - 0.27, 
-0.03 (4, J=119.3 Hz; SiMe), 21.83, 24.93 (9, J=125.0. 126.3 Hz; diene-Me), 
26.72 (br. s, BCH,), 29.64 (q, J = 129.5 Hz; C(CH,),), 47.1 ( t .  J = 151 0 Hz, diene- 
CH,),60.09(s,CMe3),6l.05,68.25(t,J =158.8,161.0 Hz;CH,ofC,H,), 109.1 (d, 
J =170.0 Hz; 2-C,H3), 117.71 (d, J =172 8 Hz; 4,5-C5H,). 118 03. 118.81 ( s ,  
=CMe),120.20(m, 1.3-C5H,),120.89(t, J =150 1 Hz;CHofC,H,),  124.6(ipso-C, 
BCGF,), 136.54 (J(C,F) = 255.8 Hz; m-C, C,F,), 138.24 (J(C.F) = 249.7 Hz; p-C, 
C,F,), 147.97 (J(C,Fj = 247.5 Hz; o-C, C,F,), 159.06 (s, CN): i 'B{iH} NMR 
(CD,CI,, -20°C): 6 = -14.02; 19F NMR (CD,CI,, 10°C): 6 = -131.5 (t, br, 
6 F ;  o-F), - 163.1 (t, 'J(F,F) = 19.8 Hz, 3 F ;  p-F); - 167.1 (br. 6 F ;  m-F) 
4b: ' H  NMR ([D,]toluene, 300 MHz, 25 'C): 6 = - 0.14, 0.05 (s, each 9 H ,  SiMe), 
0.59, 2.19 (t, br, J = 8.9 Hz, each 1 H; CH,), 2.21 (d, J = 12.6 Hz, 1 H; BCH), 5.99 
(t, br, 1 H, CH=CB), 6.23 (q, J = 9.2 Hz, 1 H;  CH,=CH), 6.48 (t. J = 2.2 Hz, 1 H; 
2-C,H3), 6.65, 7.59 (br. s, 1 H each; 4.5-C5H,); I3C NMR (CD,CI,, -2O'C): 
6 = - 0 95, -0.73 (q, J = 119.5 Hz; SiMe), 67.62 (t, J = 150.0 Hz; CH,). 93.64 (d, 
J = 1 3 6 . 5 6 H ~ ,  BCH), 120.54, 129.53(d,J=170.55, 160.74H~.4.5-C,H,), 124.65 
(d, J=167.53 Hz; CH=CB), 127.22 (d, J=169.04 Hz; 2-C5H,), 135.64 (d, 
J=166.02 Hz; H,C=CH), 127.40, 134.56 (m; 1,3-C5H,); I'B{'H; NMR 
([D,ltoluene, 15°C): 6 = 43 (br. s); I9F NMR ([D,]toluene, -40 'C): o-F: 
6 = -114.1 (br. s; 2 F j ,  -130.1 (d, J(F,F) =19.7Hz, 2 F). --130.6 (br. s; 1 F), 
-169.9 (br. s, 1 F),p-F: 6 = -149.3(br. s ;  1 F ) ,  - 150.7 (1. 1 F. J(F,F) = 21 1 Hz), 
- 153.6 (t, 1 F ;  J(F,F) =19.7 Hz), m-F: 6 = -156.2, -156.5 (br. s, 1 F each, over- 
laps with the m-F signal of 4b'), - 161.2 (m. 4 F )  
4b': 'H NMR ([D,]toluene, 300 MHz, 25°C): 6 = - 0.15, 0.03 (s, 9H,  SiMe), 1.44 
(m, 1 H), 3.42 (dd, J =7.6, 6.6 Hz, 1 H ;  CH,), 5.10 (m. 1 H:  H,C=CH). 5.34 (d, 
J = 12.0 Hz; BCH), 5.82 (m, 1 H; CH=CB), 5.97, 7.01 (rn, 1 H each; 4,5-C,H3), 

(q, J=119.6Hz;  SiMe), 82.31 (t, J=152.82Hz; CH,), 97.17 (d, J=136.2Hz, 
BCH), 123.96, 134.05 (m, 1,3-C5H,), 125.68 (CH=CB); 125.9. 128.13 (4,5-C,H3); 

NMR ([D,]toluene, 15°C): 6 = 43 (br. s); I9F NMR ([D,]toluene. -4O'C): o-F: 
6 = - 1 1 8 . 7  (d, J(F,F)=25.4Hz, 2 F ) ,  -129.4 (br s. I F ) ,  -131.4 (d, 

J(F,F) =19.7 Hz), -152.2(t, 1 F, J(F,F) = 21.1 Hz);m-F:6 = -156(1 F,overlaps 
with the m-F signal of 4b), -157.1 (br. s, 1 F),  -160.5, - 162.2 (m, 2 F  each) 
4c: ' H N M R  ([D,]toluene, 500MHz. -30°C): 6 =1.53 (s, 1SH; Cp*). 2.38 (m, 
1 H ;  CKH), 2.63 (t, J =7.0 Hz, 1 H; C H H ) ,  4.68 (br m. 1 H. CN=CB), 5.04 (m, 
1 H ;  CH,=CH), 5.85 (d, J=12.7  Hz, 1 H ;  BCH); I3C{'H: NMR ([D,]toluene, 
125 MHz, -30°C): 6 =10.96 (Cp*-Me), 77.81 (CH,), 95.94 (BCH), 124.08 (Cp* 
ring), 125.95 (CH=CB), 126.91 (H,C=CH); I9F NMR (C,D5Br, 282 MHz, 
-3O"C)-o-F:6= -120.3(1F). -130.5(br., 1 F ) .  -130.55(d,J(F,F)=15Hz; 
2 F ) ,  - 1 3 6 S ( b r . , l F ) ,  -180 .0 (b r . , IF ) ;p -F :n '= - f535(1 , J (F ,F )=21Hz , l  
F ) ,  -154.2 (t, J (F ,F)=21 Hz, 1 F), -156.0 (t, J (F ,F)=  20Hz, 1 Fj; m-F: 
6 = -158.4(br,1 F j ,  -159.2(m,l F) ,  -160.2(br,1 F ) ,  - l61.9(m,l  F) ,  -163.7 

7.71 (t. J=~.~Hz,~H,~-C,H~);~~CNMR(CD~CI~, -2O'C):6= -1.39, -047 

129.68 (d, J =165.0 Hz; H,C=CH), 135.11 (d, J=172.06 Hz; 2-C,H3); IiB{IH) 

J(F,F)=16.9HZ.2Fj,  - 1 8 4 . l ( b r . S , l F ) ; p - F : 6 =  -151.6. -155.3(t, IFedch, 

(m, 2 F ) .  
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Figure I .  Structure of 2a (ORTEX [22] diagram). Thermal ellipsoids are shown at 
the 40% probability level. Selected bond lengths [A] and angles [“I: Zr(l)-C(6) 
2.331 (3, Zr(1) - C(7) 2.525(4), Zr(1) - C(8) 2.450(4), Zr(1) - C(9) 2.442(4), Zr(1) - 
C(14) 2.443(5), Zr(l)-C(15) 2.492(6), Zr(l)-C(16) 2.438(6), Zr(1)-C(1) 2.521(4), 
Zr(l)-C(2) 2.500(4), Zr( l)-C(3) 2.527(4), Zr( 1)-C(4) 2.509(5), Zr( 1)-C(5) 
2.484(4), Zr(l)-H(9a) 2.30(5). Zr(l)-H(9b) 2.29(5), C(6)-C(7) 1.425(7), C(7)- 

C(15)-C(16) 1.395(8); C(7)-C(6)-Zr(l) 80.6(3), C(8)-C(9)-B(l) 116.9(4), C(8)-C(9)- 
Zr( 1) 72.3(2), B( l)-C(9)-Zr( 1) 169.6(3) 

C(8) 1.388(7), C(8)-C(9) 1.508(6), C(9)-B(1) 1.714(6), C(14)-C(I5) 1.393(8), 

Table 2 Ethene polymenzations with la/B(C,F,), [a] 

Temperature Time Polymer Productivity [b] M ,  M J M ,  
[“CI [min] yield [g] 10-3 

0 3.5 0.144 98.7 201 3.5 
20 5 0.132 63.3 181 4.7 
44 10 0.180 43.2 107 5.2 
60 10 0.190 45.6 77.3 7.6 

[a] Conditions: la  (25 pmol), B(C6F5)> (25 prnol), toluene (20 mL), ethene 1 bar. 
[b] In 10’ g PE (mol Zr)-’h-’. 

merization temperature to values significiantly higher than 
those typically obtained for metallocenes may suggest the loss of 
active site uniformity. Such behavior may offer advantages 
where the desired polymer properties or processing parameters 
favor broader polydispersities.[’ 3.  

Treatment of 2a with excess tert-butylisocyanide at 0 “C leads 
to the immediate formation of the adduct 3a as yellow micro- 
crystals. Rather unexpectedly, warming the reaction mixture did 
not lead to an isocyanide insertion product but to the quantita- 
tive regeneration of la, together with tBuNC. B(C,F,), 
(CCIN = 2300 cm-I), which, to our knowledge, is the first ex- 
ample of a fully reversible formation of a [RB(C,F,),]- borate 
unit. By contrast, di-Cp complexes such as [Cp,Zr- 
{ C,H,CH, -B(C6F5)3}] readily give the expected isocyanide in- 
sertion products.[8b1 

The reaction of B(C6FJ3 with the butadiene complexes lb 
and l c  gives the corresponding zwitterionic complexes 2b and 
2c, respectively. The spcctroscopic data of these compounds are 
very similar to those of 2a. Both catalyze the polymerization of 
ethene but are thermally less stable than the sterically more 
hindered 2a and decompose by an unexpected C-H activation 
pathway, in which 2-butene is eliminated and a C6F5 group 
migrates from boron to zirconium to give 4 [Eq. (b)]. In the case 

4b, 4c 4b 

of 2b, this reaction sequence is very facile even at - 60 oC.[’sl 
The transformation of the four-coordinate borate in 2b into a 
three-coordinate boryl in 4b is reflected in the change in the “B 
NMR signal from about 6 = - 12 to 6 = + 43. Compound 4b 
is accompanied by a second, fluxional isomer 4b‘. The C,Me, 
complex 2c is more stable and rearranges to 4c with 
rl,,  ~ 2 0  min in C6D, and 2-3 min in C6D5Br at room temper- 
ature. 

The X-ray structure analysis of 4c.0.5 Et,O (Figure 2)[16] 
shows a trigonal-planar B(C6F5)2 unit; one o-F atom is coordi- 
nated to the metal center (6(19F) = -179.8). The ZrC, core 
has the familiar metallacyclopentene envelope conformation. 

Figure2. Structure of 4c. Selected bond lengths [A] and angles I”]: Zr(l)-C(ll) 
2.314(3), Zr( 1)-C( 12) 2.451(3), Zr(l)-C(l3) 2.458(3), Zr(1)-C( 14) 2.481(2), 
Zr( 1)-C(27) 2.31 5(2), Zr( 1)- F(1) 2.4292( 1 5 ) ,  C( 11 )-C(I 2) 1.414(4), C( 12)-C( 13) 
1.375(4), C( 13)-C(14) 1.454(3), B(1)-C( 14) 1.488(3), B(l)-C(20) 1.582(4), B(1)- 
C(21) 1.590(3), C(lS)-F(l) 1.380(3), C(19)-F(S) 1.351(3); F(l)-Zr(l)-C(27) 
100.47(7). B( 1 )-C( l4)-C( 13) 126.3(2), C( 11 )-C( 12)-C( 13) 121.8(2), C( 12)-C( 13)- 
c(14) i20.5(2) 

Surprisingly, the diene unit is oriented approximately orthogo- 
nal to the Cp ring and does not fall into either of the usual 
“prone” and “supine” categories.“ ’I The distribution of the 
bond lengths in the ZrC,B unit, in particular the relatively short 
B-C(H) bond (1.485 A), suggests that the zwitterionic reso- 
nance structure B may dominate over formulation A.[’*] 

A B 

2360 0 WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1997 0570-0833/97/3621-2360 $17.50+.50/0 Angew. Chem. I n f .  Ed. Engl. 1997, 36, No 21 



COMMUN tCATIONS 

The results establish cationic 14-electron mono-Cp complexes 
as a new class of polymerization catalysts; their reactivity pat- 
terns, however, differ markedly from the behavior of the better- 
known di-Cp systems 

Experimental Section 
All synthetic procedures were carried out under dry nitrogen using Schlenk tech- 
niques. NMR spectra were recorded on Bruker 300 and 500 MHz instruments. 
Compounds l a -  Ic were synthesized according to literature procedures [19]. 
2a: B(C,F,), (0.89 g, 1.73 mmol) in toluene (20 mL) was added to a solution of l a  
(0 73 g, 1.72 mmol) in tclluene (30 mL) at -78 "C. The mixture was stirred at this 
temperature for 30 min and then allowed to warm to room temperature. The color 
of the mixture changed instantaneously from red to dark orange. Concentration of 
the solution to 20 mL followed by cooling to - 16°C afforded orange crystals of 
2a.toluene (1.298. 1.38mmo1, 80%). Elemental analysis (%): Calcd for 
C,,H,,BF,,Si,Zr-C,H; C 52.6, H 4.3; found: C 51.8, H 4.5 
3a: fBuNC (0.21 mL, 1 .h6 mmol) was added to a solution of 2a (0.96 g, 0.93 mmol) 
in toluene (10 mL) at 0 'C. The resulting yellow mixture was concentrated and 
cooled to - 16 'C to give yellow crystals of 3a (0.79 g, 0.77 mmol, 83%'). Elemental 
analysis (X): Calcd for C,,H,,BF,,NSi,Zr. C 50.4, H 4.5, N 1.4; found: C 50.6, H 
4.7, N 1.3. I R  (NuJo~):  i. = 2179cm-' (C=N). 
2b: This compound is thermally sensitive and was therefore generated in solution 
and characterized spectroscopically. B(C,F,), (52 mg, 0.1 mmol) in [D,]toluene 
(0.2 mL) was added to a solution of l b  (42 mg, 0.1 mmol) in [D,]toluene (0.3 mL) 
at -60 C The orange solution contained 2b, together with some 4b and 4b'. 
4b The compound was generated in situ from l b  and B(C,F,), (1 equiv) in 
[DJtoluene at 0 C; it slowly decomposed in solution at room temperature. 
4c: A solution of B(C,F,), (0.228 g, 0.44 mmol) in benzene (S mL) was added to a 
solution of Ic (0.148 g, 0.44 mmol) in benzene ( 5  mL) at room temperature. The 
resulting orange solution was stirred at ambient temperature for 40 min during 
which the solution turned red. The solvent was removed in vacuo and the residue 
was extracted with diethyl ether. Concentration and cooling of the solution to 
-70°C yielded 4c-0.5Et20 as a red crystalline solid (0.141 g, 0.20mmo1, 46%). 
Elemental analysis (%): Calcd for C,,H,,BF,,Zr.0.S(C2H,),0: C 48.8, H 3.0, Zr 
10.9; found. C 4X.5. H 3.0. Zr 10.8. 
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