

www.elsevier.nl/locate/carres

CARBOHYDRATE RESEARCH

Carbohydrate Research 326 (2000) 161-175

Synthesis of glycosyl(thio)ureido sugars via carbodiimides and their conformational behaviour in water

Victor Manuel Díaz Pérez^a, Carmen Ortiz Mellet^{a,*1}, José Fuentes^a, José Manuel García Fernández^{b,*2}

^a Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Aptdo. 553, E-41071 Seville, Spain

^b Instituto de Investigaciones Químicas, CSIC, Américo Vespucio s/n, Isla de la Cartuja, E-41092 Seville, Spain

Received 3 December 1999; accepted 20 January 2000

Abstract

The preparation of sugar ureas and thioureas by nucleophilic addition of water or hydrogen sulfide, respectively, to sugar-derived carbodiimides has been examined. Acetic acid efficiently catalysed the formation of ureas, whereas silica gel was found to be a more convenient catalyst in the case of the thioxo analogues. The procedures have been exploited in the development of an amine- and isocyanate-free synthesis of urea- and thiourea-tethered pseudooligosaccharides via the corresponding glycosylcarbodiimido sugars. The fully unprotected compounds adopted, preferentially, the (Z,Z) configuration at the pseudoamide bonds in water solution. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Sugar ureas; Sugar thioureas; Sugar carbodiimides; Oligosaccharide mimics; Pseudooligosaccharides

1. Introduction

Glycosylureido sugars are found in nature as constituents of the glycocynnamoylspermidines [1,2], a unique group of broad-spectrum aminoglycoside antibiotics isolated from *Nocardia* bacteria [3,4]. Although this family of pseudooligosaccharides, having a urea intersaccharide bridge as the main structural feature, have been known for more than 20 years, the chemical synthesis of structurally related fragments has never been reported before, probably because of the lack of suitable synthetic methodologies compatible with the polyfunctionality of carbohydrates. The recorded examples of synthetic compounds having two monosaccharide frameworks joined through a urea bridge are limited to symmetric N,N'-bis(glycosyl) derivatives [5].

Thiourea-linked pseudooligosaccharides, both symmetric and unsymmetric, have been previously prepared by the coupling reaction of sugar isothiocyanates and amino sugars [6-18]. A parallel synthetic scheme using isocyanates is, however, problematic. First, the synthesis of isocyanates involves highly toxic phosgene or phosgene substitutes and they are themselves hazardous to work with [19]. Secondly, whereas isothiocyanates exhibit a total chemoselectivity towards amino groups in the presence of hydroxyl groups [14–18], using

¹ *Corresponding author.

² *Corresponding author. Tel.: + 34-95-4489559; fax: + 34-95-4460565; e-mail: jogarcia@cica.es

the much more reactive isocyanates implies O-selective protection at the amino sugar counterpart. If acyl protecting groups are required, inter- and intra-molecular $O \rightarrow N$ acyl migration may seriously impede the final yield, a drawback already encountered in the thioxo series [7,8,13].

We now report a synthesis of glycosylureido and glycosylthioureido sugars that avoids the use of sugar-derived isocyanates and amines using sugar carbodiimides as the key intermediates. The methodology is compatible with acyl and acetal *O*-protecting groups. A conformational study of the fully unprotected (thio)urea-tethered pseudooligosaccharides in aqueous solution is included.

2. Results and discussion

We have previously shown [20,21] that the reaction of O-protected azidodeoxysugars 1-3with isothiocyanates in the presence of triphenylphosphine provides an efficient access to unsymmetric sugar carbodiimides, probably through transient triazenophosphorane intermediates [21]. Further transformation of the carbodiimide adducts into the corresponding ureas was first optimised on the methylcarbodiimido sugars 4a-6a. Addition of water to a solution of the carbodiimides in toluene in the presence of acetic acid resulted in clean reactions to give 7a-9a in quantitative yield. The same protocol applied to the pseudodi- and pseudotrisaccharides 4b,c-6b,c afforded the per-O-protected N'-(β -D-glucopyranosyl)- and N'-(β -cellobiosyl)ureido derivatives (7b-9b and 7c-9c, respectively). Completion of the reaction was confirmed by the disappearance of the $v_{\rm NCN}$ absorption (2150– 2135 cm^{-1}) in the IR spectra of the reaction mixtures.

Since a main concern during the isolation of the carbodiimide precursors is the formation of ureas by the action of moisture [21], the one-pot transformation of azides into ureas by reaction with the corresponding triphenyl phosphine-isothiocyanate system and in situ addition of water-acetic acid to the preformed carbodimide was found advantageous. Using this procedure, overall yields above 85% were achieved for the $1-3 \rightarrow 7a, b, c-$ 9a,b,c conversion. Sequential Zemplén deacetylation and trifluoroacetic acidcatalysed acetal hydrolysis, when appropriate, afforded the fully unprotected target derivatives 10a,d,e-12a,d,e. The IR, MS, microanalytical, ¹H (Table 1) and ¹³C NMR data (Table 2) fully agreed with the proposed structures (Scheme 1).

Our next interest was to implement this strategy for the access to the thioxo analogues. No reaction was observed after bubbling dry hydrogen sulfide through a solution of the carbodiimides 4a-6a in toluene, whereas addition of acetic acid resulted in incomplete conversions after prolonged reaction times. Moreover, formation of the corresponding ureas became a significant side reaction under these conditions.

The observation that silica gel was able to catalyse water addition to the carbodiimide group during TLC or column chromatography separations prompted us to check it as a catalyst for the analogous addition of hydrogen sulfide. When the reaction was carried out at 0 °C in the presence of activated silica gel, total consumption of the starting material 4a-**6a** occurred after 5-6 h, with isolated yields on the target thioureas 13a - 15a ranging from 86 to 90%. The methodology was further validated by the preparation of the $(1 \rightarrow 6)$ thiourea-linked pseudodisaccharides 13b-15b from the corresponding glucosylcarbodiimido sugars 4b-6b. After the deprotection steps, the fully unprotected 6-deoxy-6-methylthioureido sugars (16a-18a) and the known [17] 6-deoxy-6-[N'-(β -D-glucopyranosyl)]thioureido derivatives (16d-18d) were obtained in high yield (Scheme 2).

The ¹H (Table 1) and ¹³C NMR spectra (Table 2) of compounds **13a,b**–**18a,b** recorded at 300 K exhibited broad signals indicative of the existence of slow rotating processes around the NH–C(=S) bonds. A better resolution was achieved at 313 K. The presence of the thiourea functional group was confirmed by the characteristic ¹³C resonance of the thiocarbonyl group ($\delta_{C=S}$ 184–179.1 ppm), whereas the ⁴C₁ (D) conformation and β anomeric configuration of the glycosylthioureido substituent was evident from the ³J_{H,H} values around the pyranose ring.

Table 1										
¹ H NMR	data for the	new urea	and thiourea	derivatives	7a-c to 9a-c,	10a,d,e to	12a,d,e,	13a,b to	15a,b and 1	6a-18a

	Unit	Chemical shifts (δ)									
		H-1	H-2	H-3	H-4	H-5	H-6a	H-6b			
7a ^{a,c}	Ι	5.51d	4.30dd	4.59dd	4.23dd	3.92ddd	3.56dd	3.18dd			
7b ^{a,c}	I	5.51d	4.31dd	4.60dd	4.19dd	3.85m	3.60bd	3.20dd			
	II	5.16t	4.91t	5.30t	5.06t	3.82ddd	4.29dd	4.07dd			
7c ^{b,c}	I	5.48d	4.29dd	4.58dd	4.16dd	3.82bd	3.54m	3.17bdd			
	II	5.05t	4.79t	5.25t	3.53t	3.68ddd	4.43dd	4.09dd			
	III	4.48d	4.91t	5.12t	5.05t	3.63ddd	4.35dd	4.02dd			
8a ^{b,c}	I	5.97d	4.55d	4.17d	4.25d	3.60ddd	3.53bd	3.26dd			
8b ^{b,c}	I	5.91d	4.49d	4.14d	4.15dd	3.54m	3.45m	3.17m			
	II	5.10t	4.82t	5.23t	4.98t	3.76ddd	4.24dd	4.00dd			
8c ^{b,c}	I	5.97d	4.55d	4.18d	4.20dd	3.60td	3.51bs	3.24ddd			
	II	5.07t	4.80t	5.25dd	3.74t	3.69ddd	4.44dd	4.12dd			
	III	4.49d	4.91dd	5.13t	5.06t	3.65ddd	4.36dd	4.02dd			
9a ^{a,c}	Ι	4.90d	4.83dd	5.46t	4.91t	3.86m	3.48bd	3.29dd			
9b ^{b,c}	I	4.89d	4.78dd	5.42t	4.81t	3.82dd	3.46bdd	3.24bdd			
	II	5.12t	4.86t	5.28t	5.0t	3.78ddd	4.28dd	4.04dd			
9c ^{b,c}	I	4.80d	4.79dd	5.44t	4.90m	3.83m	3.47m	3.24m			
	II	5.05t	4.82t	5.27t	3.75t	3.68ddd	4.43dd	4.11dd			
	II	4.49d	4.90m	5.12t	5.06t	3.64ddd	4.36dd	4.02dd			
10a ^{b,d}	Ια	5.07d	3.61dd	3.67dd	3.77bd	3.90ddd	3.20dd	3.09dd			
	Ιβ	4.38d	3.31dd	3.43dd	3.71d	3.51ddd	3.22dd	3.12dd			
10d ^{b,d}	Ια	5.10d	3.65dd	3.70dd	3.82d	3.96m	3.28m	3.16m			
	Ιβ	4.41d	3.34t	3.49dd	3.76d	3.57m	3.31dd	3.19m			
	ΙΙ	4.69d	3.25t	3.40t	3.24t	3.36m	3.74bd	3.59m			
10e ^{a,c}	Ια	5.63d	4.19dd	4.23dd	4.35dd	n.a. ^g	n.a. ^g	n.a. ^g			
	Ιβ	4.94d	3.89m	4.01dd	4.29d	n.a. ^g	n.a. ^g	n.a. ^g			
	ΙΙ	4.90d	3.72dd	3.849m	3.82t	3.89m	4.30da	4.12dd			
	ΙΙΙ	5.22d	3.79t	4.07t	4.01t	4.06m	4.32d	4.18da			
11a ^{b,d}	Ια	5.12d	3.44dd	3.61t	3.21t	3.73ddd	3.40dd	3.26dd			
	Ιβ	4.53d	3.14dd	3.39t	3.22t	3.26m	3.46dd	3.22dd			
11d ^{b,d}	Ια	5.06d	3.38dd	3.55t	3.16t	3.70ddd	3.41dd	3.24dd			
	Ιβ	4.48d	3.08dd	3.24t	3.16t	3.22m	3.47dd	3.19dd			
	ΙΙ	4.69d	3.23t	3.40t	3.21t	3.35m	3.74bd	3.56dd			
11e ^{a,d}	Ια Ιβ ΙΙ ΙΙΙ	5.57d 4.95d 5.22d 4.89d	3.89dd 3.68t 3.78t 3.71dd	4.07t 3.85t 4.00m 3.89t	3.647t 3.60dd 3.80t	3.90m 3.83m 4.06m 3.87m	4.22m 3.98da 3.21da 4.29da	3.76dd 3.74m 4.17da 4.11dd			
12a b,d	Ι	4.62d	3.38dd	3.49t	3.15t	3.47ddd	3.40dd	3.12dd			
$12d^{b,d}$	I	4.66d	3.22dd	3.51t	3.17t	3.52m	3.47dd	3.42dd			
	II	4.70d	3.26t	3.40t	3.21t	3.36ddd	3.74dd	3.57dd			
12e ^{b,d}	I	4.64d	3.41dd	3.51t	3.15d	3.44ddd	3.42dd	3.21dd			
	II	4.37d	3.18dd	3.36t	3.28t	3.34m	3.78bd	3.59dd			
	III	4.72d	3.25t	3.51t	3.14dd	3.46m	3.79bd	3.66bdd			
13a ^{a,c,e}	Ι	5.44d	4.25dd	4.55dd	4.20dd	4.08m	3.90m	3.39ddd			

Table 1 (Continued)

	Unit	Unit Chemical shifts (δ)						
		H-1	H-2	H-3	H-4	H-5	H-6a	H-6b
13b ^{a,c,e}	I II	5.50d 5.54m	4.30dd 4.96t	4.59dd 5.29t	4.19dd 5.05t	3.94m 3.83ddd	3.4 4.29dd	5m 4.08dd
14a ^{a,c,e}	Ι	5.97d	4.56d	4.20d	4.28dd	3.70td	3.76m	3.52ddd
14b ^{a,c,e}	I II	5.97d 5.65bt	4.57d 4.94t	4.25-4 5.34t	4.19m 5.05t	3.66m 3.84ddd	3.4 4.30dd	9m 4.10dd
15a ^{a,c,e}	Ι	4.94d	4.83dd	5.48t	4.90t	3.98ddd	3.93ddd	3.59dt
15b ^{a,c,e}	I II	4.94d 5.72dd	4.81dd 4.96t	5.46t 5.44t	4.84t 5.08t	3.94m 3.83ddd	3.70– 4.31dd	3.30m 4.09dd
16a ^{b,d,e}	Ια Ιβ	5.43d 4.75d	3.99dd 3.667dd	4.03dd 3.82dd	4.15bd 4.10bd	4.40bt 4.04m	3.95m 3.95m	3.78m 3.78m
17a ^{b,d,f}	Ια Ιβ	5.45d 4.86d	3.77dd 3.47dd	3.94t 3.72t	3.55t 3.56t	4.17ddd 3.80ddd	3.1° 3.1°	7sa 7sa
18a ^{b,d,e}	Ι	5.51d	4.27d	4.38t	4.03t	4.47ddd	4.58dd	4.37dd
		Coupling $J_{1,2}$	constants (Hz) $J_{2,3}$	J _{3,4}	$J_{4,5}$	J _{5,6a}	J _{5,6b}	$J_{6a,6b}$
7a ^{a,c}	Ι	5.0	2.4	7.9	1.8	3.7	8.6	14.2
7b ^{a,c}	I II	4.9 9.4	2.4 9.4	7.8 9.4	1.6 9.4	4.0	9.3 1.9	13.7 12.4
7c ^{b,c}	I II III	4.9 9.6 8.5	2.4 9.6 8.5	7.9 9.6 8.5	1.5 9.6 8.5	1.4 4.3	8.0 4.4 2.1	12.0 12.1 12.5
8a ^{b,c}	I	3.6	0	3.8	7.0		6.9	14.2
8b ^{b,c}	I II	3.7 9.5	0 9.5	4.2 9.5	9.5	4.2	2.0	12.4
8c ^{b,c}	I II III	3.7 9.4 7.8	0 9.4 9.2	3.9 8.9 9.2	7.0 8.9 9.2	3.6 1.8 4.3	7.0 4.5 2.3	13.1 12.2 12.4
9a ^{a,c}	Ι	3.6	9.7	9.7	9.7		5.6	14.4
9b ^{b,c}	I II	3.5 9.5	9.8 9.5	9.8 9.5	9.8 9.5	4.6 4.3	6.0 2.0	15.1 12.5
9c ^{b,c}	I II II	3.6 9.4 8.0	10.1 9.4 9.3	10.1 9.4 9.3	9.4 9.3	1.7 4.3	5.6 2.2	12.2 12.5
10a ^{b,d}	Ια Ιβ	3.8 8.0	10.4 9.7	3.2 3.4	0 0	5.8 5.6	7.8 7.8	14.4 14.4
10d ^{b,d}	Ια Ιβ ΙΙ	3.7 7.8 9.2	9.3 7.8 9.2	3.2 3.1 9.2	0 0 9.2	5.8		10.3 10.5
10e ^{a,c}	Ια Ιβ ΙΙ ΙΙΙ	4.5 7.9 8.0 9.3	10.0 9.8 7.8 9.3	3.9 3.9 9.0 9.3	0 0 9.0 9.3		5.4	12.4 12.3

Table 1 (Continued)

	Unit	Coupling constants (H ₂)								
		$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,6a}$	$J_{5,6b}$	$J_{6a,6b}$		
11a ^{b,d}	Ια Ιβ	3.8 8.0	9.6 9.2	9.6 9.2	9.6 9.2	3.5 2.5	6.3 6.2	14.2 14.4		
11d ^{b,d}	Ια Ιβ ΙΙ	3.7 8.1 9.1	9.5 9.2 9.1	9.5 9.2 9.1	9.5 9.2 9.1	2.5 1.8	5.4 7.9 4.6	14.1 14.2 12.5		
11e ^{a,d}	Ια Ιβ ΙΙ	4.2 8.1 9.2	9.0 8.1 9.2	9.0 8.1	9.0 9.2		5.7	14.5 14.0 12.5		
12a ^{b,d}	T	3.8	9.6	9.6	9.6	26	7.0	12.0		
12d ^{b,d}	I I II	3.2 9.3	9.3 9.3	9.3 9.3	9.3 9.3	2.7 2.1	3.8 5.5	14.5 12.3		
12e ^{b,d}	I II III	3.4 8.0 9.3	9.2 9.3 9.3	9.2 9.3 9.3	10.1 9.3 8.2	4.5	6.4 5.3	14.5 12.6 12.1		
13a ^{a,c,e}	Ι	5.0	2.4	7.9	1.8		8.2	14.1		
$13b^{a,c,e}$	I II	5.0 9.5	2.3 9.5	7.9 9.5	1.6 9.5	4.3	2.0	12.4		
14a ^{a,c,e}	Ι	3.7	0	4.0	4.4	7.1	7.1	12.7		
14b ^{a,c,e}	I II	3.7 9.5	0 9.5	9.5	9.5	4.4	2.2	12.4		
15a ^{a,c,e}	Ι	3.7	9.8	9.8	9.8	2.7	5.9	14.5		
$15b^{a,c,e}$	I II	4.2 9.4	9.8 9.4	9.8 9.4	9.8 9.4	4.7	2.2	12.4		
16a ^{b,d,e}	Ια Ιβ	3.7 7.9	10.3 10.0	3.2 3.5	0 0	6.4	6.4			
17a ^{b,d,e}	Ια Ιβ	3.8 8.4	9.8 8.8	9.8 8.8	9.8 8.8	6.4 6.6	3.0 2.8			
18a ^{a,d,f}	Ι	3.7	9.7	9.7	9.7	2.6	6.7	13.7		

^a At 300 MHz.

^g Not assigned.

The efficiency of this methodology to prepare fully acylated derivatives such as **12b,c** and **15b** is noteworthy. Previous attempts to obtain **15b** by coupling of 2,3,4,6-tetra-Oacetyl- β -D-glucopyranosyl isothiocyanate [7,22] and methyl 2,3,4-tri-O-acetyl-6-amino-6-deoxy- α -D-glucopyranoside [23] resulted in extensive acyl migration to the more basic primary amino group.

Conformational data on ureido and thioureido sugars in solution are scarce and limited to O-protected derivatives in organic solvents [8,9,11,13,24–27]. In order to determine the conformational properties of these

^b At 500 MHz.

^c In CDCl₃.

^d In D_2O .

^e At 313 K. ^f At 343 K.

Table 2 ¹³C NMR data for the new urea and thiourea derivatives 7a–c to 9a–c, 10a,d,e to 12a,d,e, 13a,b to 15a,b and 16a–18a

	Unit	it Chemical shifts (δ)							
		C-1	C-2	C-3	C-4	C-5	C-6		
7a ^{a,c}	Ι	96.1	70.5	70.6	71.4	67.1	40.8		
7b ^{a,c}	I	96.1	70.4	70.6	70.9	66.9	40.6		
	II	80.1	71.4	72.8	68.1	72.9	61.7		
7c ^{b,c}	I	96.0	70.4	70.6	71.4	67.0	40.6		
	II	80.0	70.6	72.3	76.1	73.7	61.8		
	III	100.5	71.4	72.8	67.6	72.3	61.4		
8a ^{b,c}	Ι	106.1	83.7	74.8	80.3	71.4	42.9		
8b ^{b,c}	I	106.3	83.8	74.9	79.9	71.4	42.9		
	II	80.5	73.0	73.0	68.3	70.5	61.8		
8c ^{b,c}	I	106.3	83.7	73.9	80.0	71.4	42.5		
	II	80.5	72.8	70.7	76.2	74.8	61.8		
	III	100.5	71.4	72.3	67.7	71.8	61.5		
9a ^{a,c}	Ι	96.2	70.2	69.2	69.8	68.1	39.8		
9b ^{b,c}	I	96.6	70.5	69.9	69.3	68.3	40.1		
	II	80.2	70.9	72.9	68.0	73.1	61.8		
9c ^{b,c}	I	96.5	70.8	69.1	69.7	67.8	40.3		
	II	79.9	70.6	72.2	76.2	73.9	61.8		
	II	100.5	71.4	72.8	67.7	71.8	61.4		
10a ^{b,d}	Ια	92.4	69.0	69.2	69.4	68.3	40.4		
	Ιβ	96.5	71.9	72.8	68.9	73.6	40.4		
10d ^{b,d}	Ια	92.2	68.8	69.2	69.4	68.2	40.0		
	Ιβ	96.4	71.7	72.6	68.6	73.3	40.0		
	ΙΙ	80.9	76.4	77.0	69.0	71.8	60.5		
10e ^{a,c}	Ια	91.8	68.2	68.6	68.9	67.8	39.6		
	Ιβ	96.0	71.3	72.2	68.4	72.8	39.6		
	II	80.4	72.6	74.6	78.1	75.0	60.1		
	III	102.0	71.2	75.4	68.9	75.5	59.4		
11a ^{b,d}	Ια	92.0	71.5	72.5	70.9	70.3	40.7		
	Ιβ	95.8	74.7	75.3	70.7	74.1	40.7		
11d ^{b,d}	Ια	92.0	71.4	72.4	70.9	70.1	40.4		
	Ιβ	95.8	74.4	75.3	70.7	74.1	40.4		
	ΙΙ	80.9	76.5	77.0	69.3	71.9	60.6		
11e ^{a,d}	Ια	91.6	71.0	72.0	70.5	69.6	40.1		
	Ιβ	95.4	74.0	74.6	69.6	73.6	40.1		
	ΙΙ	80.4	72.6	74.9	77.8	75.0	59.4		
	ΙΙΙ	102.0	71.2	75.4	68.9	75.5	60.1		
12a ^{b,d}	Ι	99.4	71.3	73.2	70.8	71.6	40.9		
$12d^{b,d}$	I	99.2	71.1	73.0	70.3	71.3	40.5		
	II	81.1	76.7	77.1	69.5	72.0	60.7		
12e ^{b,d}	I	99.1	71.0	72.8	70.2	71.2	40.4		
	II	80.9	73.1	75.0	78.2	75.4	59.9		
	III	102.5	71.7	75.8	69.4	75.9	60.5		
13a ^{a,c,e}	Ι	96.1	70.4 ^c	70.5°	71.4	66.4	44.8		

13b ^{a,c,e}	I	96.1	70.4	70.5	70.5	66.2	45.2
	II	82.6	71.2	72.7	68.1	73.9	61.6
14a ^{a,c,e}	Ι	106.3	83.9	74.9	80.0	71.3	46.8
14b ^{a,c,e}	I	106.4	83.9	75.0	80.3	72.7	46.7
	II	83.1	71.2	72.7	68.3	73.3	61.6
15a ^{a,c,e}	Ι	96.8	70.9	69.7	69.8	68.2	44.8
15b ^{a,c,e}	I	96.6	70.6	69.6	69.5	68.4	44.5
	II	82.8	70.8	72.8	67.7	73.3	61.7
16a ^{b,d,e}	Ια	92.5	68.4	69.1	69.5	68.5	44.5
	Ιβ	96.6	71.9	72.7	68.9	73.0	44.5
17a ^{b,d,e}	Ια	91.8	71.2	72.2	71.0	69.7	44.6
	Ιβ	95.6	73.9	75.1	70.6	73.9	44.6
18a ^{b,d,e}	Ι	102.4	74.4	76.2	73.1	74.4	48.0

^a At 75.5 MHz.

^b At 125.5 MHz.

Table 2 (Continued)

^c In CDCl₃.

families of pseudooligosaccharides in water solution, NMR experiments for the methyl 6-deoxy-6-[N'- β -D-glucopyranosyl(thio)ureido]- α -D-glucopyranosides (**15d** and **18d**) were recorded in 9:1 H₂O-D₂O mixtures. A NOESY spectrum at 10 °C showed intensecross-peaks for the NH/NH' and NH'/H-2 resonances. These data strongly support a major (Z,Z) configuration at the pseudoamide bonds and the anti relative disposition between the H-1 and N'H protons (Fig. 1(A)).

The anti-Z conformational arrangement at the glycosidic segment is in agreement with previous data on carbohydrate derivatives bearing a pseudoamide group at a secondary position, both in organic solvents [8,9,11] and in the solid state [28,29]. A similar confirmation has also been recently reported for the *N*-glycosylamide segment of $(1 \rightarrow 6)$ -linked saccharopeptides [30]. In contrast, the E-disposition has been shown to be favoured for NH-(C=S) bonds located at the primary C-6 position in chloroform-d solution, due to intramolecular hydrogen-bonding stabilisation [11,13,22,24]. The strong preference for the 1,3-parallel disposition of the (thio)urea NH protons in water is, probably, a consequence of the formation of three-centred intermolecu-

^d In D₂O.

^e At 313 K.

lar hydrogen bonds, with the oxygen atom of a water molecule acting as acceptor (Fig. 1(B)). Related supramolecular structures involving urea or thiourea derivatives and oxygen ligands have previously been characterised [31,32].

In summary, we have developed a mild and efficient method to prepare glycosyl-(thio)ureido sugars via carbodiimide intermediates. The synthetic scheme involves readily available azidodeoxy sugars [33] and glycosyl isothiocyanates [34,35] as starting materials, avoiding hazardous isocyanate and amine reagents. The method is particularly attractive for the preparation of acylated derivatives, since the $O \rightarrow N$ acyl migration problems associated to acylated amino sugars are prevented. The fully unprotected pseudooligosaccharides were found to be stable and to exist in the major (Z,Z) rotameric form in water solution.

3. Experimental

General methods.—A Perkin-Elmer model 141 MC polarimeter and 1 dm tubes were used for measurement of specific rotations. IR spectra were recorded on a Bomem Michelson MB-120 FTIR spectrophotometer. ¹H and ¹³C NMR spectra were recorded at 500 (125.7), 400 (100.6) and 300 (75.5) MHz with, respectively, Bruker 500 AMX and DRX, 400 DRX and 300 AMX spectrometers. Chemical shifts are given in ppm with reference to Me₄Si as internal standard. Assignments of ¹H and ¹³C signals were assisted by 2D COSY, 1D and HETCOR experiments. TOCSY 2DNOESY experiments were carried out at 500 MHz and 283 K, with a mixing time of 400 ms. FAB mass spectra were obtained with a Kratos MS-80 RFA instrument. The operating conditions were the following: the primary beam consisted of Xe atoms with a maximum energy of 8 keV; the samples were dissolved in *m*-nitrobenzyl alcohol, and the positive ions were separated and accelerated over a potential of 7 kV; NaI was added as cationising agent. TLC was performed with E. Merck precoated TLC plates, Silica Gel 30F₂₄₅, with visualisation by UV light and by charring with

10% H_2SO_4 . Column chromatography was carried out with Silica Gel 60 (E. Merck, 230–400 mesh). Deacetylations were carried out using the Zemplén technique (catalytic NaOMe in MeOH). Hydrolysis of acetal protecting groups were effected by treatment with 9:1 TFA–water in a rotatory evaporator for 10 min. The fully unprotected compounds were purified by gel permeation chromatography (GPC) using Sephadex G-10 (Pharmacia-Abersham) as stationary phase and eluting with 1:1 MeOH–water. Microanalyses were performed by the Instituto de Investigaciones Químicas (CSIC, Seville).

General procedure for the preparation of sugar ureas.—(a) From sugar carbodiimides: To a solution of the corresponding carbodiimido sugar $4\mathbf{a}-\mathbf{c}$, $5\mathbf{a}-\mathbf{c}$ or $6\mathbf{a}-\mathbf{c}$ [21] (0.5 mmol) in toluene (3 mL) was added glacial acetic acid (0.1 mL) and water (0.05 mL). The reaction mixture was stirred at room temperature (rt) for 15 min, then concd and the residue purified by column chromatography using the eluent indicated in each case for the R_f value, to give $7\mathbf{a}-\mathbf{c}$, $8\mathbf{a}-\mathbf{c}$ or $9\mathbf{a}-\mathbf{c}$, respectively, as amorphous solids in 96–99% yield.

(b) One-pot preparation of ureas from sugar azides: to a solution of the corresponding 6-azido-6-deoxy sugar 1-3 [36] (0.5 mmol) and methyl, 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl [25], or 2,3,6,2',3',4',6'-hepta-*O*-acetyl- β -cellobiosyl isothiocyanate [37] (0.55 mmol) in toluene (3 mL) was added triphenylphosphine (0.55 mmol) in toluene (3 mL). The mixture was stirred for 45 min at rt and then acetic acid (0.1 mL) and water (0.05 mL) were added. After stirring for 15 min, the reaction mixture was concd and the residue purified by column chromatography as above. By this procedure, yields above 85% based on the starting azide were obtained in all cases.

6-Deoxy-1,2:3,4-di-O-isopropylidene-6-(N'methylureido)-α-D-galactopyranose (7a).— Yield: 153 mg (97%); $[α]_D^{22} - 36.9°$ (c 1.2, CH₂Cl₂); R_f (EtOAc) 0.40; IR (KBr): v_{max} 3347, 2988, 2936, 1632, 1582, 1383, 1254, 1211, 1071 and 1003 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): Table 1 and δ 5.02 (bs, 2 H, 2 NH), 2.75 (s, 3 H, N'Me), 1.50 1.44, 1.34 and 1.32 (4 s, each 3 H, 4 Me); ¹³C NMR (75.5 MHz, CDCl₃): Table 2 and δ 168.1 (CO urea), 109.2,

Scheme 1.

108.7 (2 CMe_2), 27.9 (MeN), 27.0 (2 C), 26.9 and 25.9 (4 Me); FABMS: m/z 339 (100%, $[M + Na]^+$) and 317 (80, $[M + H]^+$). Anal. Calcd for C₁₄H₂₄N₂O₆: C, 53.15; H, 7.65; N, 8.85. Found: C, 53.08; H, 7.99; N, 8.83.

6-Deoxy-1,2:3,4-di-O-isopropylidene-6- $[N'-(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranosyl)-$

ureido]- α -D-*galactopyranose* (**7b**).—Yield: 304 mg (96%); $[\alpha]_D^{22} - 21.5^\circ$ (*c* 1.1, CH₂Cl₂); R_f (3:1 CCl₄-acetone) 0.28; IR (KBr): v_{max} 3370, 2988, 2938, 1753, 1659, 1562, 1377, 1229 and 1067 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): Table 1 and δ 5.48 (bs, 1 H, N'H), 5.19 (bs, 1 H, NH), 2.08, 2.06, 2.03, 2.02 (4 s, each 3 H,

4 Ac), 1.45, 1.44, 1.34 and 1.33 (4 s, each 3 H, 4 Me); ¹³C NMR (75.5 MHz, CDCl₃): Table 2 and δ 170.8, 170.6, 169.5, 169.3 (4 CO ester), 156.4 (CO urea), 109.3, 108.7 (2 CMe₂), 27.5 (2 C), 25.9, 25.8, (4 Me) and 20.5 (4 C, 4 *Me*CO); FABMS: *m*/*z* 655 (100%, [M + Na]⁺). Anal. Calcd for C₂₇H₄₀N₂O₁₅: C, 51.26; H, 6.37; N, 4.43. Found: C, 51.46; H, 6.37; N, 4.47. 6-Deoxy-6-[N'-(2,3,6,2',3',4',6'-hepta-Oacetyl-β-cellobiosyl)ureido]-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (7c).—Yield: 451 mg (98%); $[\alpha]_{D}^{22} - 21.5^{\circ}$ (c 0.9, CH₂Cl₂); R_f (3:1 CCl₄-acetone) 0.22; IR (KBr): v_{max} 3389, 2940, 1753, 1650, 1377, 1229 and 1040 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 5.41 (bd, 1 H, $J_{1',N'H}$ 9.5 Hz, N'H), 5.21 (bs, 1

Fig. 1. (A) Preferred conformation at the (thio)urea region for the pseudodisaccharides **15d** and **18d** in 9:1 H₂O–D₂O showing the observed NOE contacts; (B) probable stabilization of the Z,Z rotamer at the pseudoamide bonds by formation of three-centered hydrogen bonds with water molecules.

H, NH), 2.10, 2.08, 2.02, 2.01, 2.00, 1.99, 1.97 (7 s, each 3 H, 7 Ac), 1.47, 1.42, 1.31 and 1.30 (4 s, each 3 H, 4 Me); ¹³C NMR (75.5 MHz, CDCl₃): Table 2 and δ 171.0, 170.4, 170.1, 169.3, 169.2, 168.9, 169.1 (7 CO ester), 156.3 (CO urea), 109.3, 108.7 (2 *C*Me₂), 25.8 (2 C), 24.8, 24.1 (4 Me), 20.7, 20.6, 20.5 and 20.4 (*Me*CO); FABMS: *m*/*z* 943 (100%, [M + Na]⁺). Anal. Calcd for C₃₉H₅₆N₂O₂₃: C, 50.87; H, 6.13; N, 3.04. Found: C, 50.83; H, 6.28; N, 3.04.

6-Deoxy-1,2:3,5-di-O-isopropylidene-6-(N'methylureido)-α-D-glucofuranose (**8a**).—Yield: 155 mg (98%); $[α]_D^{22}$ + 14.0° (*c* 1.1, CH₂Cl₂); R_f (3:1 CCl₄-acetone) 0.23; IR (KBr): v_{max} 3364, 2988, 2936, 1643, 1574, 1221, 1167 and 1003 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 5.15 (bs, 2 H, 2 NH), 2.73 (s, 3 H, N'Me), 1.46, 1.32, 1.31 and 1.30 (4 s, each 3 H, 4 Me); ¹³C NMR (125.5 MHz, CDCl₃): Table 2 and δ 159.3 (CO urea), 112.0 (*CMe*₂ dioxolane), 100.7 (*CMe*₂ dioxane) [38], 26.8 (MeN), 26.9, 26.7, 24.0 and 23.3 (4 Me); FABMS: m/z 339 (100%, [M + Na]⁺). Anal. Calcd for C₁₄H₂₄N₂O₆: C, 53.15; H, 7.65; N, 8.85. Found: C, 53.14; H, 7.59; N, 8.85.

6-Deoxy-1,2:3,5-di-O-isopropylidene-6-[N'- $(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranosyl)$ ureido]- α -D-glucofuranose (8b).—Yield: 310 mg (98%); $[\alpha]_{D}^{22}$ + 6.9° (c 1.1, CH₂Cl₂); R_f (3:1 CCl_4 -acetone) 0.27; IR (KBr): v_{max} 3383, 2991, 2943, 1753, 1697, 1562, 1230 and 1035 cm^{-1} ; ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 5.87 (bs, 1 H, N'H), 3.37 (bs, 1 H, NH), 1.99, 1.97, 1.95, 1.93 (4 s, each 3 H, 4 Ac), 1.40, 1.29, 1.25 and 1.24 (4 s, each 3 H, 4 Me); ¹³C NMR (125.5 MHz, CDCl₃): Table 2 and δ 170.8, 170.7, 169.9, 169.7 (4 CO ester), 156.8 (CO urea), 112.2 (CMe₂ dioxolane), 101.0 (CMe₂ dioxane) [38], 27.1, 26.5, 23.9, 23.8, (4 Me), 20.8, 20.7, 20.6 and 20.5 (4 MeCO); FABMS: m/z 655 (100%, $[M + Na]^+$). Anal. Calcd for C₂₇H₄₀N₂O₁₅: C, 51.26; H, 6.37; N, 4.43. Found: C, 51.14; H, 6.44; N, 4.42.

6-Deoxy-6-[N'-(2,3,6,2',3',4',6'-hepta-Oacetyl-β-cellobiosyl)ureido]-1,2:3,5-di-O-isopropylidene-α-D-glucofuranose (8c).—Yield: 442 mg (96%); $[\alpha]_{22}^{22}$ – 2.2° (c 0.8, CH₂Cl₂); R_f (3:1 CCl₄-acetone) 0.25; IR (KBr): v_{max} 3389, 2928, 2857, 1753, 1645, 1377, 1231 and 1038 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 5.45 (bs, 1 H, N'H), 4.92 (s, 1 H, NH), 2.10, 2.08, 2.07, 2.05, 2.04, 2.00, 1.97 (7 s, each 3 H, 7 Ac), 1.34, 1.30, 1.27 and 1.24 (4 s, each 3 H, 4 Me); ¹³C NMR (75.5 MHz, CDCl₃): Table 2 and δ 171.1, 170.4, 170.1 (2 C), 169.3, 169.2, 168.9, (7 CO ester), 156.4 (CO urea), 112.2 (CMe₂ dioxolane), 100.9 (CMe₂ dioxane) [38], 29.6, 29.2, 27.0, 26.4 (4 Me), 20.7, 20.6, 20.5 and 20.4 (*Me*CO); FAMBS *m*/*z* 943 (100%. $[M + Na]^+$). Anal. Calcd for $C_{39}H_{56}N_2O_{23}$: C, 50.87; H, 6.13; N, 3.04. Found: C, 51.20; H, 5.84; N, 3.15.

2,3,4-tri-O-acetyl-6-deoxy-6-(N'-Methvl *methylureido*)- α -D-glucopyranoside (**9a**).— Yield: 180 mg (96%); $[\alpha]_{D}^{22} + 96.0^{\circ}$ (c 1.0, CH_2Cl_2 ; R_f (1:1 CCl_4 -acetone) 0.41; IR (KBr): v_{max} 3347, 2942, 1751, 1651, 1568, 1373, 1227 and 1045 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 3.39 (s, 3 H, OMe), 2.75 (s, 3 H, N'Me), 2.08, 2.06 and 2.00 (3 s, each H, 3 Ac); ¹³C NMR (125.5 MHz, CDCl₂): Table 2 and δ 170.1 (2 C), 169.8 (3 CO ester), 158.9 (CO urea), 55.0 (OMe), 29.8 (MeN) and 20.4 (3 C, 3 MeCO); FABMS: m/z 399 (100%, [M + Na]⁺). Anal. Calcd for $C_{15}H_{24}N_2O_9$: C, 47.87; H, 6.43; N, 7.44. Found: C, 47.63; H, 6.29; N, 7.63.

2,3,4-tri-O-acetyl-6-deoxy-6-[N'-Methvl $(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranosyl)$ *ureido*]-α-D-glucopyranoside (9b).—Yield: 336 mg (97%); $[\alpha]_{D}^{22} + 61.0^{\circ}$ (c 0.8, CH₂Cl₂); R_{f} (1:1 CCl₄-acetone) 0.64; IR (KBr): v_{max} 3406, 2960, 2851, 1753, 1648, 1560, 1228 and 1035 cm^{-1} ; ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 5.45 (bs, 1 H, N'H), 5.15 (t, 1 H, $J_{6a,NH} = J_{6b,NH}$ 6.1 Hz, NH), 3.35 (s, 3 H, OMe), 2.06, 2.04 (2 C), 2.01, 1.99, 1.98 and 1.95 (6 s, each 3 H, 7 Ac); ¹³C NMR (125.5 MHz, CDCl₃): Table 2 and δ 171.3, 170.7, 170.4, 170.1, 170.0, 169.9, 169.7, (7 CO ester), 156.3 (CO urea), 55.5 (OMe), 20.7 (2 C) y 20.6 (5 C) (7 MeCO); FABMS: m/z 715 (100%, $[M + Na]^+$). Anal. Calcd for $C_{28}H_{40}N_2O_{18}$: C, 48.55; H, 5.82; N, 4.04. Found: C, 48.14; H, 5.74; N, 4.29.

Methyl 2,3,4-tri-O-acetyl-6-deoxy-6-[N'-(2,3,6,2',3',4',6'-hepta-O-acetyl- β -cellobiosyl)ureido]- α -D-glucopyranoside (**9c**).—Yield: 485 mg (99%); $[\alpha]_{D}^{22}$ + 40.4° (c 1.1, CH₂Cl₂); R_{f} (1:1 EtOAc-petroleum ether) 0.15; IR (KBr): v_{max} 3407, 3135, 2957, 1755, 1646, 1562, 1377, 1229 and 1040 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 5.47 (bs, 1 H, N'H), 5.08 (bs, 1 H, NH), 3.36 (s, 3 H, OMe), 2.10, 2.07, 2.06, 2.03, 2.02, 2.01, 2.00, 1.99, 1.98 and 1.97 (10 s, each H, 10 MeCO); ¹³C NMR (125.5 MHz, CDCl₃): Table 2 and δ 171.4, 170.4, 170.1 (2 C), 169.9 (2 C), 169.8, 169.3, 169.2, 168.9 (10 CO ester), 156.0 (CO urea), 55.3 (OMe), 20.9, 20.8, 20.6 (2 C), 20.5 and 20.4 (*Me*CO); FABMS: *m/z* 1003 (100%, [M + Na]⁺). Anal. Calcd for C₄₀H₅₆N₂O₂₆: C, 48.98; H, 5.75; N, 2.87. Found: C, 49.01; H, 5.81; N, 2.87.

6-Deoxy-6-(N'-methylureido)-D-galactopyranose (10a).—Deacetalation of 7a (0.126 g, 0.4 mmol) and purification of the crude product by GPC yielded 10a (92 mg, 98%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_{D}^{22} + 43.4^{\circ}$ (c 1.3, H₂O); R_{f} (1:1 CH₂Cl₂-MeOH) 0.70; α : β ratio 1:1.8 (H-1 integration); ¹H NMR (500 MHz, D₂O): Table 1 and δ 2.52 (s, 3 H, N'Me); ¹³C NMR (75.5 MHz, D₂O): Table 2 and δ 159.4 (CO urea) and 26.4 (MeN); FABMS: m/z 259 $[M + Na]^+$). Anal. (100%, Calcd for C₈H₁₆N₂O₆: C, 40.68; H, 6.83; N, 11.86. Found: C, 40.79; H, 6.68; N, 11.91.

6-Deoxy-6-[N'-(β-D-glucopyranosyl)ureido]-D-galactopyranose (**10d**).—Zemplén deacetylation of **7b** (0.253 g, 0.4 mmol) followed by acetal hydrolysis and purification of the crude product by GPC yielded **10d** (149 mg, 97%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_{D}^{22}$ + 16.5° (*c* 0.8, H₂O); *R_f* (2:1:1 BuOH–AcOH–H₂O) 0.28; α:β ratio 1:2 (H-1 integration); ¹H NMR (500 MHz, D₂O): Table 1; ¹³C NMR (100.6 MHz, D₂O): Table 2 and δ 159.5 (CO urea); FABMS: *m/z* 407 (50%, [M + Na]⁺). Anal. Calcd for C₁₃H₂₄N₂O₁₁: C, 40.62; H, 6.29; N, 7.29. Found: C, 40.60; H, 6.22; N, 7.33.

6-Deoxy-6-[N'-(β-cellobiosyl)ureido]-Dgalactopyranose (10e).—Zemplén deacetylation of 7c (0.368 g, 0.4 mmol) followed by acetal hydrolysis and purification of the crude product by GPC yielded 10e (196 mg, 90%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_D^{22}$ + 16.5° (*c* 0.9, H₂O); R_f (2:1:1 BuOH–AcOH–H₂O) 0.24; α:β ratio 1:1.8 (H-1 integration); ¹H NMR (500 MHz, D₂O): Table 1; ¹³C NMR (125.5 MHz, D₂O): Table 2 and δ 159.0 (CO urea); FABMS: m/z 569 (100%, [M + Na]⁺). Anal. Calcd for C₁₉H₃₄N₂O₁₆: C, 41.76; H, 6.27; N, 5.13. Found: C, 42.04; H, 6.22; N, 5.14.

6 - Deoxy - 6 - (3 - methylureido) - D - glucopyranose (11a).—Deacetalation of 8a (0.126 g, 0.4 mmol) and purification of the crude product by GPC yielded 11a (92 mg, 98%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_{D}^{22} + 43.4^{\circ}$ (c 1.6, H₂O); R_{f} (1:1 CH₂Cl₂-MeOH) 0.67; α : β ratio 1:1.9 (H-1 integration); ¹H NMR (500 MHz, D_2O): Table 1 and δ 2.60 (s, 3 H, N'Me); ¹³C NMR (125.5 MHz, D_2O): Table 2 and δ 161.2 (CO urea) and 26.3 (MeN); FABMS: m/z 259 Calcd (100%, $[M + Na]^+$). Anal. for $C_8H_{16}N_2O_6$: C, 40.68; H, 6.83; N, 11.86. Found: C, 40.79; H, 6.81; N, 11.89.

6-Deoxy-6-[N'-(β-D-glucopyranosyl)ureido]-D-glucopyranose (11d).—Zemplén deacetylation of **8b** (0.253 g, 0.4 mmol) followed by acetal hydrolysis and purification of the crude product by GPC yielded 11d (149 mg, 97%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_{D}^{22}$ + 15.5° (*c* 2.0, H₂O); R_f (2:1:1 BuOH–AcOH–H2O) 0.23; α :β ratio 1:2.5 (H-1 integration); ¹H NMR (500 MHz, D₂O): Table 1; ¹³C NMR (100.6 MHz, D₂O): Table 2 and δ 161.1 (CO urea); FABMS: *m/z* 407 (50%, [M + Na]⁺). Anal. Calcd for C₁₃H₂₄N₂O₁₁: C, 40.62; H, 6.29; N, 7.29. Found: C, 40.62; H, 6.25; N, 7.32.

6 - Deoxy - 6 - $[N' - (\beta - cellobiosyl)ureido] - D$ glucopyranose (11e).—Zemplén deacetylation of 8c (0.368 g, 0.4 mmol) followed by acetal hydrolysis and purification of the crude product by GPC yielded 11e (186 mg, 85%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_{D}^{22} + 5.0^{\circ}$ (c 1.0, H₂O); R_{f} (2:1:1 BuOH-AcOH $-H_2O$) 0.18; α : β ratio 1:1. (H-1 integration); ¹H NMR (500 MHz, D₂O): Table 1; ${}^{13}C$ NMR (125.5 MHz, D₂O): Table 2 and δ 159.6 (CO urea); FABMS: m/z 569 (70%, $[M + Na]^+$). Anal. Calcd for $C_{19}H_{34}N_2O_{16}$: C, 41.76; H, 6.27; N, 5.13. Found: C, 41.65; H, 6.24; N, 5.13.

Methyl 6-deoxy-6-(N'-methylureido)- α -Dglucopyranoside (12a).—Zemplén deacetylation of 9a (0.150 g, 0.4 mmol) and purification of the crude product by GPC yielded 12a (96 mg, 96%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_D^{22} + 95.2^\circ$ (*c* 1.0, H₂O); R_f (2:1:1 BuOH–AcOH–H₂O) 0.48; ¹H NMR (500 MHz, D₂O): Table 1 and δ 3.23 (s, 3 H, OMe) and 2.60 (s, 3 H, N'Me); ¹³C NMR (75.5 MHz, D₂O): Table 2 and δ 161.6 (CO urea), 55.1 (OMe) and 26.7 (MeN); FABMS: m/z 273 (100%, [M + Na]⁺). Anal. Calcd for C₉H₁₈N₂O₆: C, 43.19; H, 7.25; N, 11.19. Found: C, 43.25; H, 7.54; N, 11.19.

Methvl 6-deoxy-6- $\lceil N' - (\beta - D - glucopyra - \beta - glucopyra - gl$ *nosyl*)*ureido*]- α -D-*g*lucopyranoside (12d).-Zemplén deacetylation of 9b (0.277 g, 0.4 mmol) and purification of the crude product by GPC yielded **12d** (146 mg, 92%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_{D}^{22} + 71.7^{\circ}$ (c 1.2, H₂O); R_{f} (2:1:1 $BuOH-AcOH-H_2O$) 0.21; ¹H NMR (500 MHz, D₂O): Table 1 and δ 3.29 (OMe); ¹³C NMR (75.5 MHz, D_2O): Table 2 and δ 159.8 (CO urea) and 55.0 (OMe); FABMS: m/z 421 $[M + Na]^+$). Anal. (100%, Calcd for $C_{14}H_{26}N_2O_{11}$: C, 42.21; H, 6.58; N, 7.03. Found: C, 42.31; H, 6.42; N, 7.08.

Methvl 6-deoxy-6- $[N'-(\beta$ -cellobiosyl)*ureido*]- α -D-glucopyranoside (12e).—Zemplén deacetylation of 9c (0.392 g, 0.4 mmol) and purification of the crude product by GPC yielded 12e (186 mg, 83%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_{D}^{22}$ + 34.1° (c 0.8, H₂O); R_f (2:1:1 BuOH-AcOH-H₂O) 0.10; ¹H NMR (500 MHz, D₂O): Table 1 and δ 3.24 (OMe); ¹³C NMR (125.5 MHz, D₂O): Table 2 and δ 159.7 (CO urea) and 54.9 (OMe); FABMS: m/z 583 (60%, $[M + Na]^+$). Anal. Calcd for $C_{20}H_{36}N_2O_{16}$: C, 42.86; H, 6.47; N, 5.00. Found: Č, 42.76; H, 6.49; N, 4.99.

General procedure for the preparation of sugar thioureas from sugar carbodiimides. Dry (CaCl₂) H₂S was bubbled through a suspension of the corresponding carbodiimide 4a,b-6a,b (1 mmol) and activated silica gel (0.7 g) in toluene (8 mL) at 0 °C for 5–6 h. The reaction mixture was then concentrated and the residue was extracted with EtOAc $(2 \times 5 \text{ mL})$, the organic solution was concd purified and the residue by column chromatography with the eluent indicated in each case to give 13a,b-16a,b as amorphous solids.

6-Deoxy-1,2:3,4-di-O-isopropylidene-6-(N'*methylthioureido*)- α -D-galactopyranose (13a). —Yield: 299 mg (90%); $[\alpha]_{D}^{22}$ – 45.9° (c 1.0, CH_2Cl_2); R_f (2:1 EtOAc-petroleum ether) 0.54; UV (CH_2Cl_2): 246 nm (ε_{mM} 8.1); IR (KBr): 3360, 3268, 2986, 2936, 1561, 1381, 1213 and 1069 cm⁻¹; ¹H NMR (300 MHz, CDCl_3 , 313 K) Table 1 and δ 6.54 (bq, 1 H, $J_{\rm N'H,Me}$ 4.8 Hz, N'H), 6.40 (bt, $J_{\rm NH,6a} = J_{\rm NH,6b}$ 4.4 Hz, NH), 2.91 (d, 3 H, MeN), 1.46, 1.38, 1.28 and 1.26 (4 s, each 3 H, 4 Me); ¹³C NMR (75.5 MHz, CDCl₃, 313 K): Table 2 and δ 183.1 (CS), 109.2, 108.8 (2 CMe_2), 30.4 (MeN), 25.8, 25.7, 24.7 and 24.1 (4 Me); FABMS: m/z 355 (100%, $[M + Na]^+$) and 333 $(30, [M + H]^+)$. Anal. Calcd for $C_{14}H_{24}N_2O_5S$: C, 50.58: H, 7.28; N, 8.43; S, 9.64. Found: C, 50.52; H, 7.33; N, 8.44; S, 9.61.

6-Deoxy-1,2:3,4-di-O-isopropylidene-6-[N'- $(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranosyl)$ *thioureido*]- α -D-galactopyranose (13b).-Yield: 421 mg (65%); $[\alpha]_D^{22} - 29.9^{\circ}$ (c 1.0, CH_2Cl_2 ; R_f (1:1 EtOAc-petroleum ether) 0.46; UV (CH_2Cl_2): 254 nm (ε_{mM} 16.6); IR (KBr): 3370, 2982, 2942, 1757, 1537, 1379, 1223 and 1040 cm⁻¹; ¹H NMR (300 MHz, $CDCl_3$ 313 K): Table 1 and δ 6.82 (bs, 1 H, N'H), 6.65 (bs, 1 H, NH), 2.07, 2.05, 2.02, 2.00 (4 s, each H, 4 Ac), 1.49 (s, 3 H, Me), 1.42 (s, 3 H, Me) and 1.31 (2 s, each 3 H, 2 Me); ¹³C NMR (75.5 MHz, CDCl₃ 313 K): Table 2 and δ 183.9 (CS), 171.2, 170.6, 169.8, 169.5 (4 CO), 109.4 (CMe₂), 108.8 (CMe₂), 26.9, 26.8, 24.8, 24.1 (2 CMe₂), 20.6 (2 C) and 20.4 (4 C, 4 MeCO); FABMS: m/z 671 (100%, $[M + Na]^+$) and 649 (35, $[M + H]^+$). Anal. Calcd for $C_{27}H_{40}N_2O_{14}S$: C, 49.99; H, 6.22; N, 4.32; S, 4.94. Found: C, 50.06; H, 6.27; N, 4.32; S, 4.67.

6-Deoxy-1,2:3,5-di-O-isopropylidene-6-(N'methylthioureido)-α-D-glucofuranose (14a).— Yield: 288 mg (87%); $[α]_D^{22}$ + 6.3° (*c* 0.9, CH₂Cl₂); R_f (2:1 EtOAc-petroleum ether) 0.51; UV (CH₂Cl₂): 258 nm (ε_{mM} 2.3); IR (KBr): 3324, 2986, 2936, 1557, 1377, 1219 and 1080 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 313 K): Table 1 and δ 6.55 (bs, 1 H, NH), 6.16 (bs, 1 H, NH), 3.00 (d, 3 H, $J_{Me,NH}$ 4.8 Hz, MeN), 1.47, 1.35, 1.34 and 1.31 (4 s, each 3 H, 4 Me); ¹³C NMR (75.5 MHz, CDCl₃, 313 K): Table 2 and δ 183.7 (CS), 112.3 (CMe₂ dioxolane), 101.1 (CMe₂ dioxane) [38], 30.9 (MeN), 27.0, 26.4, 24.1 and 23.8 (4 Me); FABMS: m/z 355 (90%, $[M + Na]^+$) and 333 (50, $[M + H]^+$). Anal. Calcd for C₁₄H₂₄N₂O₅S: C, 50.58; H, 7.28; N, 8.43; S, 9.64. Found: C, 50.69; H, 7.35; N, 8.40; S, 9.60.

6-Deoxy-1,2:3,5-di-O-isopropylidene-6-[N'- $(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranosyl)$ *thioureido*]-*a*-D-*glucofuranose* (14b).—Yield: 453 mg (70%); $[\alpha]_{D}^{22} - 5.9^{\circ}$ (c 1.0, CH₂Cl₂); R_{f} EtOAc-petroleum ether) 0.45; UV (1:1) (CH_2Cl_2) : 257 nm (ε_{mM} 28.1); IR (KBr) 3335, 2993, 2939, 1757, 1547, 1377, 1219 and 1033 cm^{-1} ; ¹H NMR (300 MHz, CDCl₃ 313 K): Table 1 and δ 7.00 (bs, 1 H, N'H), 6.46 (bs, 1 H, NH), 2.06, 2.05, 2.02, 2.01 (4 s, each 3 H, 4 Ac), 1.48, 1.40, 1.35 and 1.32 (4 s, each 3 H, 4 Me); ¹³C NMR (75.5 MHz, CDCl₃ 313 K): Table 2 and δ 184.4 (CS), 170.9, 170.3, 169.6, 169.4 (4 CO), 112.4 (CMe₂ dioxolane), 101.4 (CMe₂ dioxane) [38], 27.1, 26.4, 23.9, 23.8 (2 CMe_2), 20.6, 20.5 and 20.4 (4 MeCO); FABMS: m/z 671 (100%, $[M + Na]^+$) and 649 $[M + H]^+$). Calcd (65. Anal. for C₂₇H₄₀N₂O₁₄S: C, 49.99; H, 6.22; N, 4.32; S, 4.94. Found: C, 49.74; H, 6.07; N, 4.35; S, 4.98.

Methyl 2,3,4-tri-O-acetyl-6-deoxy-6-(N'*methylthioureido*)- α -D-glucopyranoside (15a).—Yield: 337 mg (86%); $[\alpha]_{D}^{22}$ + 124.0° (c 0.7, CH₂Cl₂); R_f (3:1 EtOAc-petroleum ether) 0.16; UV (CH₂Cl₂): 250 nm (ε_{mM} 9.9); IR (KBr): 3383, 3298, 1753, 1561, 1227 and 1044 cm^{-1} ; ¹H NMR (300 MHz, CDCl₃ 313 K): Table 1 and δ 6.29 (q, 1 H, $J_{\text{N'H.Me}}$ 4.8 Hz, N'H), 6.10 (t, 1 H, $J_{6a,NH} = J_{6b,NH}$ 5.9 Hz, NH), 3.40 (s, 3 H, OMe), 3.00 (d, 3 H, MeN), 2.07, 2.06 and 1.99 (3 s, 9 H, 3 MeCO); ¹³C NMR (75.5 MHz, CDCl₃ 313 K): Table 2 and δ 182.0 (CS), 170.2, 170.1, 169.8 (3 CO), 55.5 (OMe), 30.6 (MeNH), 20.6 and 20.5 (2C) (3 *Me*CO); FABMS: m/z 393 (100%, $[M + H]^+$). Anal. Calcd for $C_{15}H_{24}N_2O_8S$: C, 45.91; H, 6.16; N, 7.14; S, 8.17. Found: C, 45.95; H, 5.98; N, 7.11; S, 8.38.

Methyl 2,3,4-*tri*-O-*acetyl*-6-*deoxy*-6-[N'-(2,3,4,6-*tetra*-O-*acetyl*-β-D-*glucopyranosyl*)*thioureido*]-α-D-*glucopyranoside* (**15b**).— Yield: 439 mg (62%); $[\alpha]_{D}^{22}$ + 67.0° (*c* 0.9, CH₂Cl₂); *R_f* (1:1 EtOAc-petroleum ether) 0.35; UV (CH₂Cl₂): 255 nm (ε_{mM} 11.0); IR (KBr): 3368, 2955, 1748, 1537, 1371, 1230 and 1043 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 313 K): Table 1 and δ 6.80 (bs, 1 H, N'H), 6.60 (m, 1 H, NH), 3.39 (s, 3 H, OMe), 2.08, 2.06, 2.05, 2.02, 2.01, 2.00 and 1.98 (7 s, each 3 H, 7 Ac); ¹³C NMR (75.5 MHz, CDCl₃, 313 K): Table 2 and δ 184.5 (CS), 171.2, 170.4, 170.0, 169.9, 169.7, 169.6, 169.4 (7 CO), 55.6 (OMe), 20.5 and 20.4 (7 MeCO); FABMS: m/z 731 (85%, [M + Na]⁺) and 709 (20, [M + H]⁺). Anal. Calcd for C₂₈H₄₀N₂O₁₇S: C, 47.45; H, 5.69; N, 3.95; S, 4.52. Found: C, 47.47; H, 5.75; N, 3.97; S, 4.51.

6-Deoxy-6-(N'-methylthioureido)-D-galactose (16a). — Deacetalation of 13a (0.133 g, 0.4 mmol) and purification of the crude product by GPC yielded 16a (98 mg, 98%) as a white foam after freeze-drying from an aq soln; $[\alpha]_D^{22}$ + 46.8° (c 0.9, H₂O); R_f (45:5:3 EtOAc-EtOH-H₂O) 0.23; α:β ratio 1:1.7 (H-1 integration); UV (H₂O): 236 nm (ε_{mM} 9.9); ¹H NMR (500 MHz, D₂O, 313 K): Table 1 and δ 3.01 (s, 3 H, MeN); ¹³C NMR (75.5 MHz, D₂O, 313 K): Table 2 and δ 179.9 (CS) and 30.4 (MeN); FABMS: m/z 275 (100%, [M + Na]⁺). Anal. Calcd for C₈H₁₆N₂O₅S: C, 38.08; H, 6.39; N, 11.10; S, 12.71. Found: C, 38.02; H, 6.50; N, 11.12; S, 12.72.

6 - Deoxy - 6 - [N' - (β - D - glucopyranosyl)thioureido]-D-galactopyranose (16d).—Zemplén deacetylation of 13b (0.259 g, 0.4 mmol) followed by acetal hydrolysis and purification of the crude product by GPC yielded 16d (152 mg, 95%) as a white foam after freeze-drying from an aqueous solution; [α]_D²² + 28.0° (*c* 1.0, H₂O); lit. [11] [α]_D + 28.6° (*c* 1.0, H₂O). The ¹H and ¹³C NMR data were in full agreement with those reported in the literature [11].

6-Deoxy-6-(3-methylthioureido)-D-glucopyranose (17a).—Deacetalation of 14a (0.133 g, 0.4 mmol) and purifica-tion of the crude product by GPC yielded 17a (97 mg, 96%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_D^{22} + 30.6^\circ$ (*c* 0.8, H₂O); R_f (45:5:3 EtOAc-EtOH-H₂O) 0.24; α:β ratio 1:1.8 (H-1 integration); UV (H₂O): 236 nm (ε_{mM} 5.6); ¹H NMR (500 MHz, D₂O, 313 K): Table 1; ¹³C NMR (125.5 MHz, D₂O, 313 K): Table 2 and δ 180.1 (CS) and 31.1 (MeN); FABMS: m/z 275 (90%, [M + Na]⁺). Anal. Calcd for C₈H₁₆N₂O₅S: C, 38.08; H, 6.39; N, 11.10; S, 12.71. Found: C, 38.25; H, 6.37; N, 11.10; S, 12.78. 6-Deoxy-6-[N'-(β -D-glucopyranosyl)thioureido]-D-glucopyranose (17d).—Zemplén deacetylation of 14b (0.259 g, 0.4 mmol) followed by acetal hydrolysis and purification of the crude product by GPC yielded 17d (155 mg, 97%) as a white foam after freeze-drying from an aqueous solution; $[\alpha]_{D}^{22} - 64.5^{\circ}$ (*c* 0.9, H₂O); lit. [11] $[\alpha]_{D} - 65.8^{\circ}$ (*c* 1.0, H₂O). The ¹H and ¹³C NMR data were in full agreement with those reported in the literature [11].

6-deoxy-6-(3-methylthioureido)- α -Methvl D-glucopyranoside (18a).—Zemplén deacetylation of 15a (0.157g, 0.4 mmol and purification of the crude product by GPC yielded 18a (102 mg, 96%) as a white foam after freeze-drying from an aq soln; $[\alpha]_{D}^{22}$ + 88.0° (*c* 0.9, H₂O); R_{f} (4:1 CH₂Cl₂-MeOH) 0.25; UV (H₂O): 234 nm $(\varepsilon_{\rm mM} 12.6);$ ¹H NMR (300 MHz, D_2O , 343 K): Table 1 and δ 4.11 (s, 3 H, NMe) and 3.67 (s, 3 H, OMe); ¹³C NMR (75.5 MHz, D₂O, 313 K): Table 2 and δ 179.1 (CS), 58.1 (OMe) and 33.4 (MeN); FABMS: m/z 289 (100%, [M + Na]⁺) and 267 (10, $[M + H]^+$). Anal. Calcd for C₉H₁₈N₂O₅S: C, 40.59; H, 6.81; N, 10.52; S, 12.04. Found: C, 40.60; H, 6.70; N, 10.41; S, 12.04.

Methyl 6-deoxy-6-[N'-(β -D-glucopyranosyl)thioureido]- α -D-glucopyranoside (18d).— Zemplén deacetylation of 15b (0.283 g, 0.4 mmol) followed by acetal hydrolysis and purification of the crude product by GPC yielded 18d (155 mg, 94%) as a white foam after freeze-drying from an aq soln; $[\alpha]_D^{22}$ + 37.0° (c 1.0, H₂O); lit. [11] $[\alpha]_D$ + 37.7° (c 0.9, H₂O). The ¹H and ¹³C NMR data were in full agreement with those reported in the literature [11].

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica for financial support (grant no. PB 94/1440-C02-01).

References

 G.A. Ellestad, D.B. Cosulich, R.W. Broschard, J.H. Martin, M.P. Kunstmann, G.O. Morton, J.E. Lancaster, W. Fulmor, F.M. Lovell, J. Am. Chem. Soc., 100 (1978) 2515–2524.

- [2] K. Dobashi, K. Nagaoka, Y. Watanabe, M. Nishida, M. Hamada, H. Naganawa, T. Takita, T. Takeuchi, H. Umezawa, J. Antibiot., 38 (1985) 1166–1170.
- [3] S. Umezawa, T. Tsuchiya, in H. Umezawa, I.R. Hooper (Eds.), *Aminoglycoside Antibiotics*, Springer, Berlin, 1982, pp. 37–110.
- [4] H.A. Kirst, Aminoglycoside, macrolide, glycopeptide and miscellaneous antibacterial antibiotics, in M.E. Wolff (Ed.), *Burger's Medicinal Chemistry and Drug Discovery*, Vol. 2, fifth ed., Wiley, New York, 1996, pp. 463–525.
- [5] I. Goodman, Adv. Carbohydr. Chem., 13 (1958) 215-236.
- [6] Z.J. Witczak, Adv. Carbohydr. Chem. Biochem., 44 (1986) 91–145.
- [7] R. Babiano Caballero, J. Fuentes Mota, J.A. Galbis Pérez, *Carbohydr. Res.*, 154 (1986) 280–288.
- [8] M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios, J. Fuentes, J. Chem. Soc., Perkin Trans. 1, (1990) 495–501.
- [9] J. Fuentes Mota, T. Cuevas, M.A. Pradera, *Carbohydr. Res.*, 260 (1994) 137–144.
- [10] M. Shiozaki, T. Mochizuki, H. Hanzawa, H. Haruyama, *Carbohydr. Res.*, 288 (1996) 99–108.
- [11] J.M. García Fernández, C. Ortiz Mellet, V.M. Díaz Pérez, J.L. Jiménez Blanco, J. Fuentes, *Tetrahedron*, 52 (1996) 12947–12970.
- [12] S. Uppugunduri, J. Dakour, E. Kallin, T. Norberg, D. Zopf, A. Lundblad, *Glycoconjugate J.*, 8 (1991) 102–107.
- [13] J.M. García Fernández, J.L. Jiménez Blanco, C. Ortiz Mellet, J. Fuentes, J. Chem. Soc., Chem. Commun., (1995) 57–58.
- [14] J.M. García Fernández, C. Ortiz Mellet, S. Maciejewski, J. Defaye, *Chem. Commun. (Cambridge)*, (1996) 2741– 2742.
- [15] J.M. García Fernández, C. Ortiz Mellet, J.M. Benito, J. Fuentes, Synlett (1998) 316–318.
- [16] C. Ortiz Mellet, J.M. Benito, J.M. García Fernández, H. Law, K. Chmurski, J. Defaye, M.L. O'Sullivan, H.N. Caro, *Chem. Eur. J.*, 4 (1998) 2523–2531.
- [17] J.M. Benito, C. Ortiz Mellet, K. Sadalapure, T.K. Lindhorst, J. Defaye, J.M. García Fernández, *Carbohydr. Res.*, 320 (1999) 37–48.
- [18] M.I. García-Moreno, C. Ortiz Mellet, J.M. García Fernández, *Tetrahedron: Asymm.*, 10 (1999) 4271–4275.
- [19] R. Richter, H. Ulrich, Syntheses and preparative applications of isocyanates, in S. Patai (Ed.), *The Chemistry of Cyanates and Their Thio Derivatives*, *Part 2*, Wiley, Chichester, 1977, pp. 619–818.
- [20] J.M. García Fernández, C. Ortiz Mellet, V.M. Díaz Pérez, J. Fuentes, J. Kovács, I. Pintér, *Tetrahedron Lett.*, 38 (1997) 4161–4164.
- [21] J.M. García Fernández, C. Ortiz Mellet, V.M. Díaz Pérez, J. Fuentes, J. Kovács, I. Pintér, *Carbohydr. Res.*, 304 (1997) 261–270.
- [22] C. Ortiz Mellet, A. Moreno Marín, J.L. Jiménez Blanco, J.M. García Fernández, J. Fuentes, *Tetrahedron: Asymm.*, 5 (1994) 2325–2334.
- [23] I. Wawer, B. Piekarska-Bartoszewicz, A. Temeriusz, Carbohydr. Res., 267 (1995) 167–176.
- [24] J.L. Jiménez Blanco, J.M. Benito, C. Ortiz Mellet, J.M. García Fernández, Org. Lett., 1 (1999) 1217–1220.
- [25] M.J. Camarasa, P. Fernández-Resa, M.T. García-López, F.G. de las Heras, P.P. Méndez-Castrillón, A. San Félix, *Synthesis*, (1984) 509–510.
- [26] C. Ortiz Mellet, J.L. Jiménez Blanco, J.M. García Fernández, J. Fuentes, J. Carbohydr. Chem., 14 (1995) 1133–1152.

- [27] C. Marino, O. Varela, R.M. de Lederkremer, *Tetrahe*dron, 53 (1997) 16009–16016.
- [28] J.M. García Fernández, C. Ortiz Mellet, J.L. Jiménez Blanco, J. Fuentes, M.J. Diánez, M.D. Estrada, A. López–Castro, S. Pérez-Garrido, *Carbohydr. Res.*, 286 (1996) 55–65.
- [29] R. Anulewicz, I. Wawer, B. Piekarska-Bartoszewicz, A. Temeriusz, *Carbohydr. Res.*, 281 (1996) 1–10.
- [30] C.M. Timmers, J.J. Turner, C.M. Ward, G.A. van der Marel, M.L.C.E. Kouwijzer, P.D.J. Grootenhuis, J.H. van Boom, *Chem. Eur. J.*, 3 (1997) 1493–1496.
- [31] M.C. Etter, T.W. Panunto, J. Am. Chem. Soc., 110 (1988) 5896–5897.
- [32] J. Scheerder, J.F.J. Engbersen, D.N. Reinhoudt, Recl. Trav. Chim. Pays-Bas, 115 (1996) 307–320.

- [33] J.L. Jiménez Blanco, J.M. García Fernández, A. Gadelle, J. Defaye, *Carbohydr. Res.*, 303 (1997) 367–372, and refs therein.
- [34] J.M. García Fernández, C. Ortiz Mellet, Sulfur Rep., 19 (1996) 61–169.
- [35] J.M. García Fernández, C. Ortiz Mellet, Adv. Carbohydr. Chem. Biochem., 55 (2000), in press.
- [36] J.M. García Fernández, C. Ortiz Mellet, J. Fuentes, J. Org. Chem., 58 (1993) 5192–5197.
- [37] C. Ortiz Mellet, J.L. Jiménez Blanco, J.M. García Fernández, J. Fuentes, J. Carbohydr. Chem., 12 (1993) 487– 505.
- [38] A. Lipták, P. Násási, A. Neszmélyi, H. Wagner, Carbohydr. Res., 86 (1980) 133–136.