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Summary: The deprotonation of a dicarbamate, derived from (S)-butane-13-diol, by sec-butyllithium takes 
an highly diastereoselective, but opposite, direction in the presence of (-)-sparteine and of tetramethyl- 
ethylenediamine (TMEDA ), respectively. The (S)-pentane-1,4-diol derivative shows the same stereochemical 
preference under both conditions. 

As recently found by us, non-functionalized ]'2 and hereto-substituted achiral O-alkyl carbamates are 
depmtonated by sec-butyllithium/(-)-spartein¢ to form configurationally stable, homochiral lithium carb- 
anions which yield with electrophiles E/X the appropriate substitution products with >95% ee. 1 In all in- 
vestigated cases, the chiral base system exhibits a high and reliable tendency for the abstraction of the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  D,- HO~OH 
5 

l°> 
R o t O R  c)d) ~ RO OR c)d) ~ . 

ref. 3 
H IHI Er H ~t 2 E/ 

Scheme I 
H O ~ O H  

H [I-IJ JI-II H 

l a  n = l  
b n = 2  

b) 

R O T O R  

H H H H 

2a - c  3a-c 4a-c 

% ~ f " ~ O  " f ~ O  for 4 see Table 1 
2,3,4 a n = 1 R = Cby ,%~ and Scheme 2 

b n = 2  R=Cby 
c n=l R=Cbx Cbx= ~ o N ~  Cby= ~00 N~i  i . 

a) 3 eq. Nail, tetrahydrofuran, 30 min, r.t. b) 2eq. CICbx or ClCby, tetrahydrofuran, 16 h, reflux, c) 2a, ©, 3a, ¢: 
1.4 eq. s-BuLi/(-)-sparteine, ether, -78"C, 2-3 h. c) 2b, 3b: 2.0 eq. s-BuLI/(-)-sparteine, toluene, -78"C, 4-6h. 
d) 2a, c, 3a, c: 1.5 eq. CH31; 2b, 3b: 2.6 eq. CH31. e) 0.5 eq. CH3SO3H, methanol, reflux, 16h; excess Ba(OH)2, 
methanol, reflux, 4h. 
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si-proton at the prostereogenic methylene group. Repeated application of this procedure to a dicarbamate 2 
should allow the double chain-elongation of an achiral alkanediol 1 by two elecu:ophiles EIIX and EI2X to 
afford enantioroerically pure diols 5. To our best knowledge, no other straightforward roethods exist for 
achieving this goal (Scheme 1). 

The repeated deprotonation and methylation of 2b in the presence of (-)-sparteine via the monomethyl 
derivative 3b 3 afforded the diastereomerically and enantiomerically pure dicarbamate 4b 5 of (S,S)-2,5- 
hcxanediol with 51% yield in a one-pot procedure. The 1,3-dicarbamate 3a 3 gave rise to the (S,S)-dia- 
stereomer 4a 5 contaminated by few of the (R,S)-meso-coropound ~ (Table 1). It is obvious, that in both 
cases, a high reagent-controlled stereoselecfion is operating in the deprotonation step. 
The intrinsic diastereoselectivities were determined by carrying out the analogous experiments under the in- 
fluence of the achiral diamine TMEDA (Scheme 2), revealing a surprisingly high chiral induction caused by 
the stereogenic centre in the 8- (3b) or y-position (3a). In addition, the asymmetric induction is operating in 
opposite directions (Table 1). The 1,4-dicarbarnate 3b, via carbanion 6b and path A, exhibits the same 
stereocheroical preference as in the presence of (-)-sparteine to yield the main product (S,S)4b. However, 
the 1,3-dicarbamate 3a furnishes almost exclusively the meso-coropound 8a, indicating that now the dia- 
stereomeric cad)anion 7a (path B) is the precursor. The slighthly decreased stereoselectivity (16:1) in the 
sparteine-assisted reaction also demonstrates the coropetition of two antagonistic chiral inductions, in which 
the external one is roost powerful. The origins for the high internal diastereoselection are under in- 
vestigation. 6 We assume in our working hypothesis that the remote carbamoyloxy residue acts as a ligand to 
the lithium cation. Preliminary experiments lead to the suggestion that both the kinetic preference in the 
deprotonation step and the stabilities of the diastereomeric lithium-TMEDA complexes 6 and 7 lead into the 
direction as expressed by the product ratios 7 in Table 1. 
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a) 3a: 1.4 eq. s-BuLVl"MEDA, ether, -78"C, 2-3h; 3b: 2eq. s-BuLi/TMEDA, toluene, -78"C, 4-6h. 
b) 0.5 eq. CH3SO3H, methanol, reflux, 16h; excess Ba(OH)2, methanol, reflux, 4h. 
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Table 1: Diastereodivergent Dimethylation 

Educt Diamine Products a) 
yield(%) b) Ratio(S,S):(R,S) c) [(Z]D 20d) 

3a (-)-sparteine 4a+8a 56 94:6 +31.3 e) 
3a TMEDA 4a+8a 44 2:98 + 0.3 e) 
3b (-)-sparteine 4b+8b 510 >98:2 +13.4s) 
3b TMEDA 4b+Sb 60 88:12 +11.5 h) 

a) Satisfactory elemental analyses obtained from all products, b) Combined yield after LC purification. 
c) Values from 13C-NMR or GC analysis, d) Optical rotation of the mixture 4 and 8 (optically inactive). 
e) c = 1, acetone, f) Based on 2b. g) c = 1, CH2CI 2. h) c ,, 0.9, CH2CI 2. 

The removal of the carbamoyl groups 1.2 in 4a and 4b yields practically enantiopure (S,S)-diols 5a s (85% 
yield) and 5b9(87% yield), respectively. From 9a 1°, meso-2,4-pentanedio111 was obtained by the same 
deprotection procedure (82% yield). The diastereodivergency observed in the deprotonation of 3a (or related 
compounds) can be advantageously utilized when different elecn'ophiles El1X and EI2X are used, as is 
demonstrated by the synthesis of the diastereomeric a-hydroxy-'plactones 1112 and 1212. In addition, the 
reagent-controlled double substitution permits an easy access to (2R, 5S)-2,5-dlhydroxyalkanoic acids and 
their esters from achiral c,,~dicarbamates, disclosed for 1313 in Scheme 3. 
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a) 3b: 4.5 eq. s-BuLV(-)-sparteina, toluene, -78"C, 4-6h; 3o: 1A eq. s-BuU/(-)-sparleine, ether, -78"0, 2-3h. 
b) 1.4 eq. s-BuLi/TMEDA, ether, -78"C, 2-3h. c) 3b: CO 2, toluene, -78"C, 16h; 3¢: CO2, ether, -78"C, 16h. 
d) 5N HCI, reflux, 16h.a) CH2N2, CH3OH, ether, r.t., 2h 
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