This article was downloaded by: [University of California Davis] On: 23 November 2014, At: 16:57 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Synthetic Approaches to Sporochnols A-C

A. Srikrishna^a, G. Satyanarayana^a & M. R. Prasad^a ^a Department of Organic Chemistry, Indian Institute of Science, Bangalore, India Published online: 16 Aug 2006.

To cite this article: A. Srikrishna , G. Satyanarayana & M. R. Prasad (2005) Synthetic Approaches to Sporochnols A-C, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 35:12, 1687-1698, DOI: 10.1081/SCC-200061679

To link to this article: <u>http://dx.doi.org/10.1081/SCC-200061679</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Synthetic Approaches to Sporochnols A–C

A. Srikrishna, G. Satyanarayana, and M. R. Prasad

Department of Organic Chemistry, Indian Institute of Science, Bangalore, India

Abstract: Formal total synthesis of sporochnols A–C, hydroxyphenyl substituted monoterpenes isolated from the Caribbean brown alga *Sporochnus bolleanus* exhibiting feeding deterrent property toward herbivorous fish, is described.

Keywords: Sporochnols, sesquiterpene, Claisen rearrangement

In a variety of marine organisms, chemical defense is common phenomenon as part of the self-defense mechanism to protect themselves from higher animals. During their investigations on the families of chemically defended tropical marine algae, Shen et al.^[1] have reported the isolation and structure elucidation of one major, sporochnol A **1**, and two minor, sporochnols B **2** and C **3**, metabolites from the brown alga *Sporochnus bolleanus*, which was found to be rejected by the Caribbean surgeon fish. It was found that the major metabolite sporochnol A **1**, when incorporated into a palatable food, deterred feeding by a mixed species group of herbivorous Caribbean parrotfishes. Structures of sporochnols A–C **1–3** were established from their spectral data, and compounds **2** and **3** were found to be 1:1 mixtures of diastereomers. Feeding deterrence toward herbivorous fish exhibited by sporochnol A made the compounds **1–3** interesting

Received in India February 11, 2005

Address correspondence to A. Srikrishna, Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India. Fax: 91-80-23600683; 23600529; E-mail: ask@orgchem.iisc.ernet.in

synthetic targets.^[2] Herein, we report our approaches toward the synthesis of sporochnols A-C 1-3.

It was contemplated that sporochnols $A-C \ 1-3$ could be obtained from the pentenoate 4 via alkylation with dimethylallyl bromide followed by decarboxylation and hydrolysis of the methyl ether. The pentenoate 4, containing the requisite quaternary carbon atom, could be obtained from the acetophenone 5 via the cinnamyl alcohol 6 employing a Claisen rearrangement-based methodology, Scheme 1.

The synthetic sequence starting from 4-methoxyacetophenone **5** is depicted in Schemes 2 and 3. First, synthesis of the pentenoate **4** was accomplished via the alcohol **6**. Thus, Horner–Wadsworth–Emmons reaction of the acetophenone **5** with triethyl phosphonoacetate and sodium hydride in refluxing THF furnished a 91 *E*,*Z*-mixture of the cinnamate **7** in 95% yield. Regioselective reduction with lithium aluminium hydride (LAH) in ether at a low temperature transformed the cinnamate **7** into the allyl alcohol **6** in 97% yield. Johnsons' one-pot ortho ester variation^[3] of the Claisen rearrangement was employed for the conversion of the allyl alcohol **6** into the pentenoate **4**. Thermal activation of the allyl alcohol **6** with triethyl orthoacetate and a catalytic amount of propionic acid in a sealed tube at 180°C for 48 h furnished the pentenoate **4** in 69% yield, creating the requisite quaternary carbon atom, whose structure was established from its spectral data. Generation of enolate of the ester **4** with lithium diisopropylamide (LDA) in THF at -70° C and alkylating with dimethylallyl bromide furnished the hexenoate **8** in 74%

Scheme 1.

Synthetic Approaches to Sporochnols A-C

Scheme 2. Reagents, conditions, and yields: (a) $(EtO)_2P(O)CH_2COOEt$, NaH, THF, reflux, 10h, 95%; (b) LAH, Et_2O , $-70^{\circ}C \rightarrow -20^{\circ}C$, 1h, 97%; (c) $CH_3C(OEt)_3$, EtCOOH, sealed tube, 180°C, 48 h, 69%; (d) LDA, THF, $-70^{\circ}C \rightarrow RT$, Me₂C=CHCH₂Br, 16 h, 74%; (e) 20% KOH in MeOH, reflux, 48 h; (f) i. (COCl)₂, C₆H₆, RT, 2 h; ii. *N*-hydroxypyridine-2-thione Na salt, C₆H₆, DMAP, reflux, 1 h; (g) ^{*n*}Bu₃SnH, C₆H₆, AIBN, reflux, 14 h; 36% (from the ester **8**).

yield. Next, attention was turned to decarboxylation for the conversion of the hexenoate **8** into the methyl ether **9** of sporochnol A, and Barton's radicalmediated decarboxylation method^[4] was chosen. Base-catalyzed hydrolysis of the hexenoate **8** furnished the acid **10**, which was converted into the N-hydroxypyridinethione ester **11** via the corresponding acid chloride. Treatment of the ester **11** with tributyltin hydride in the presence of azobisisobutyronitrile (AIBN) in refluxing benzene, however, failed to produce the expected product **9**, and generated the rearrangement product **12**, whose structure was deduced from the spectral data, in particular ¹H and ¹³C NMR.

Scheme 3. Reagents, conditions, and yields: (a) LAH, Et₂O, 0°C, 1 h, 92%; (b) PCC, silica gel, CH₂Cl₂, RT, 0.5 h, 88%; (c) Ph₃P=CHOMe, THF, 0°C \rightarrow RT, 40 min, 70%; (d) 3 N HCl, THF, RT, 1.5 h, 87%; (e) Ph₃P=CMe₂, THF, RT, 1 h, 78%; (f) reference 2 g.

Formation of the diene 12 from the ester 11 can be readily explained as shown in Scheme 4. The homoallyl radical 13 formed from the ester 11 undergoes 3-*exo* trig cyclization to generate the cyclopropylmethyl radical 14. Opening of the cyclopropylmethyl radical 14 generates the more stable benzylic radical 15, which abstracts hydrogen from tinhydride leading to the diene 12.^[5] Generation of the rearranged product 12 in the radical-mediated decarboxylation prompted us to alter the strategy, and a homologation and Wittig reaction was contemplated for the conversion of the pentenoate 4 into the diene 9, which is depicted in Scheme 3. The ester 4 was converted into the aldehyde 16 employing a two-step protocol. Thus,

Scheme 4.

Synthetic Approaches to Sporochnols A-C

reduction of the pentenoate **4** with LAH in ether furnished the alcohol **17**, which upon oxidation with pyridinium chlorochromate (PCC) and silica gel in methylene chloride generated the pentenal **16** in 81% yield. Wittig reaction of the aldehyde **16** with methoxymethylenetriphenylphosphorane followed by hydrolysis of the resultant enol ether **18** with 3*N* hydrochloric acid furnished the hexenal **19** in 61% yield. Finally, Wittig reaction with isopropylidinetriphenylphosphorane in THF transformed the hexenal **19** into sporochnol A methyl ether **9** in 78% yield, which exhibited spectral data identical to that reported in the literature. Because the conversion of the ether **9** into sporochnols A–C **1–3** has already been reported, ^[2g] the present sequence constitutes the formal total synthesis of sporochnols A–C.

In conclusion, we have developed an efficient methodology for the synthesis of sporochnols A-C, which can be extended to several analogues.¹

EXPERIMENTAL

IR spectra were recorded on a Jasco FTIR 410 spectrophotometer. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded on JNM λ -300 spectrometer, using 1:1 mixture of CDCl₃ and CCl₄ as solvent. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to either internal tetramethylsilane (for ¹H) or the central line (77.0 ppm) of CDCl₃ (for ¹³C). In the ¹³C NMR spectra,

¹Synthesis of a keto analogue **I** of sporochnols has also been accomplished in $\approx 35\%$ yield starting from the alcohol **17** via the bromide as depicted. Spectral data for the ketone **I**: IR (neat): ν_{max}/cm^{-1} 1712, 1609, 1512, 915. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 7.16 (2 H, d, *J* 8.7 Hz, H-2' and 6'), 6.78 (2 H, d, *J* 8.7 Hz, H-3' and 5'), 5.94 (1 H, dd, *J* 17.7 and 10.8 Hz, H-7), 5.07 (1 H, dd, *J* 10.8 and 0.9 Hz), and 5.02 (1 H, dd, *J* 17.7 and 0.9 Hz) [H-8], 3.77 (3 H, s, OCH₃), 2.47 (1 H, septet, *J* 6.9 Hz), 2.35–2.10 (2 H, m, H-4), 2.10–1.85 (2 H, m, H-5), 1.32 (3 H, s, *tert*-CH₃), 1.01 (3 H, d, *J* 6.9 Hz), and 1.02 (3 H, d, *J* 6.9 Hz) [CH(CH₃)₂]. ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 213.4 (C, C-3), 157.8 (C, C-4'), 146.7 (CH, C-7), 138.4 (C, C-1'), 127.6 (2 C, CH, C-2' and 6'), 113.6 (2 C, CH, C-3' and 5'), 112.1 (CH₂, C-8), 55.0 (CH₃, OMe), 43.3 (C, C-6), 40.9 (CH, C-2), 36.0 (CH₂), 34.2 (CH₂, *tert*-CH₃), 25.5 (CH₃), 18.4 [2 C, CH₃, CH(CH₃)₂].

the nature of the carbons (C, CH, CH₂, or CH₃) was determined by recording DEPT-135 spectra and is given in parentheses. Low-resolution mass spectra were recorded using Shimadzu QP-5050A GCMS instrument using direct inlet mode. Relative intensities are given in parentheses. High-resolution mass spectra were recorded on a Micromass Q-TOF micromass spectrometer using electron spray ionization mode.

Ethyl E-3-(4-methoxyphenyl)but-2-enoate (7): A suspension of sodium hydride (667 mg, 60% dispersion in oil, 16.7 mmol) in hexanes under nitrogen atmosphere was magnetically stirred for 10 min and the solvent was syringed out. The oil-free NaH was then suspended in dry THF (4 ml) and cooled in an ice bath. Triethyl phosphonoacetate (3.43 ml, 17.3 mmol) was added dropwise and the reaction mixture was stirred for 30 min at rt. A solution of 4-methoxyacetophenone 5 (1 g, 6.7 mmol) in dry THF (2 ml) was added dropwise to the reaction mixture and refluxed for 10 h. It was cooled, quenched by careful addition of saturated aqueous NH₄Cl solution, and extracted with ether $(4 \times 5 \text{ ml})$. The ether extract was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate-hexane (120) as eluent furnished 9.1 diastereomers of the cinnamate 7 (1.4 g, 95%) as oil. IR (neat): 1574, 1513. ¹H NMR (300 MHz, $\nu_{\rm max}/{\rm cm}^{-1}$ 1711, 1626, 1604, $CDCl_3 + CCl_4$): peaks resulting from the major isomer δ 7.42 (2 H, d, J 8.7 Hz, H-2' and 6'), 6.84 (2 H, d, J 8.7 Hz, H-3' and 5'), 6.06 (1 H, s, H-2), 4.18 (2 H, q, J 7.2 Hz, OCH₂CH₃), 3.81 (3 H, s, OCH₃), 2.55 (3 H, s, H-4), 1.31 (3 H, t, J 7.2 Hz, OCH₂CH₃). Peaks resulting from the minor isomer: δ 7.14 (2 H, d, J 8.7 Hz, H-2' and 6'), 6.82 (2 H, d, J 8.7 Hz, H-3' and 5'), 5.82 (1 H, s, H-2), 4.02 (2 H, q, J 7.2 Hz, OCH₂CH₃), 3.80 (3 H, s, OCH₃), 2.16 (3 H, s, H-4), 1.14 (3 H, t, J 7.2 Hz, OCH₂CH₃). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 166.5 (C, OC=O), 160.4 (C, C-3), 154.7 (C, C-4'), 134.4 (C, C-1'), 127.6 (2 C, CH, C-2' and 6'), 115.4 (CH, C-2), 113.8 (2 C, CH, C-3' and 5'), 59.4 (CH₂, OCH₂CH₃), 55.1 (CH₃, OMe), 17.7 (CH₃, C-4), 14.5 (CH₃, OCH₂CH₃). Peaks resulting from the minor isomer: δ 165.7 (C, OC=O), 159.5 (C, C-3), 154.5 (C, C-4'), 132.6 (C, C-1'), 128.6 (2 C, CH, C-2' and 6'), 117.2 (CH, C-2), 113.2 (2 C, CH, C-3' and 5'), 59.5 (CH₂, OCH₂CH₃), 55.0 (CH₃, OMe), 27.4 (CH₃, C-4), 14.3 (CH₃, OCH₂CH₃). Mass: m/z 220 (M⁺, 97%), 175 (100), 174 (45), 148 (82), 115 (28), 103 (20), 91 (32).

E-3-(4-methoxyphenyl)but-2-enol (6): To a cold $(-90^{\circ}C)$, magnetically stirred solution of the cinnamate 7 (1.05 g, 4.8 mmol) in dry ether (10 ml) was added LAH (181 mg, 4.8 mmol) and stirred for 1 h. The reaction mixture was then diluted with ether (30 ml) and carefully quenched with water (5 ml). The organic layer was separated and the aqueous phase extracted with ether (20 ml). The combined organic phase was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and purification of the

Synthetic Approaches to Sporochnols A-C

residue over a silica-gel column using ethyl acetate – hexane (120 to 15) as eluent furnished the alcohol **6** (848 mg, 99%) as a colorless solid.^[6] Mp 51–53°C. IR (neat): ν_{max}/cm^{-1} 3340, 3247, 1607, 1514, 1029. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 7.28 (2 H, d, *J* 8.7 Hz, H-2' and 6'), 6.78 (2 H, d, *J* 8.7 Hz, H-3' and 5'), 5.86 (1 H, t, *J* 6.6 Hz, H-2), 4.28 (2 H, d, *J* 6.6 Hz, CH₂OH), 3.78 (3 H, s, OCH₃), 2.02 (3 H, s, H-4), 1.86 (1 H, brs). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 159.0 (C, C-4'), 137.2 (C), 135.3 (C), 126.8 (2 C, CH, C-2' and 6'), 125.0 (CH, C-2), 113.6 (2 C, CH, C-3' and 5'), 59.8 (CH₂, OCH₂), 55.0 (CH₃, OMe), 16.0 (CH₃, C-4). Mass: 178 (M⁺, 31%), 163 (21), 136 (10), 135 (100), 121 (15), 105 (15), 91 (20).

Ethyl 3-methyl-3-(4-methoxyphenyl)pent-4-enoate (4): A solution of the allyl alcohol 6 (1 g, 5.6 mmol), triethyl orthoacetate (5 ml, 28.1 mmol), and a catalytic amount of propionic acid was placed in a sealed tube and heated to 180°C for 2 days in an oil bath. The reaction mixture was then cooled, diluted with ether (10 ml), washed with 3 N of aqueous HCl (10 ml), followed by saturated NaHCO₃ solution (10 ml) and brine, and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate-hexane (1:50) as eluent furnished the pentenoate 4 (960 mg, 69%) as oil. IR (neat): ν_{max}/cm^{-1} 1734, 1609, 1512, 917. ¹H NMR (300 MHz, $CDCl_3 + CCl_4$): δ 7.18 (2 H, d, J 8.7 Hz, H-2' and 6'), 6.77 (2 H, d, J 8.7 Hz, H-3' and 5'), 6.10 (1 H, dd, J 17.4 and 10.5 Hz, H-4), 5.08 (1 H, d, J 10.5 Hz) and 5.02 (1 H, d, J 17.4 Hz) [H-5], 3.96 (2 H, q, J 7.2 Hz, OCH₂CH₃), 3.75 (3 H, s, OCH₃), 2.72 and 2.66 (2 H, AB q, J 13.8 Hz, H-2), 1.52 (3 H, s, tert-CH₃), 1.10 (3 H, t, J 7.2 Hz, OCH₂CH₃). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 170.8 (C, OC=O), 157.9 (C, C-4'), 146.0 (CH, C-4), 137.9 (C, C-1'), 127.4 (2 C, CH, C-2' and 6'), 113.4 (2 C, CH, C-3' and 5'), 112.0 (CH2, C-5), 59.8 (CH2, OCH2), 54.9 (CH3, OMe), 45.7 (CH₂, C-2), 42.9 (C, C-3), 25.7 (CH₃, tert-CH₃), 14.2 (CH₃, OCH₂CH₃). Mass: 248 (M⁺, 8%), 162 (12), 161 (100), 91 (14). HRMS: m/z calcd. for C₁₅H₂₀O₃Na (M + Na): 271.1310. Found: 271.1306.

Ethyl 2-[2-(4-methoxyphenyl)but-3-en-2-yl]-5-methylhex-4-enoate (8): To a cold (-70° C), magnetically stirred solution of LDA [prepared from diisopropylamine (0.28 ml, 2.03 mmol) and ^{*n*}BuLi (2.4 *M* in hexane, 0.81 ml, 1.9 mmol)] in dry THF (3 ml) was added a solution of the ester 4 (100 mg, 0.4 mmol) in dry THF (2 ml), and the reaction mixture stirred for 40 min at the same temperature. The enolate thus formed was treated with prenyl bromide (0.24 ml, 2.03 mmol) and stirred for 16 h at rt. It was then diluted with water (5 ml) and extracted with ether (2 × 10 ml). The combined ether extract was washed with 3 N of HCl, followed by brine, and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate–hexane (149) as eluent furnished a 21 diastereomeric mixture of the ester **8** (70 mg, 74% based on starting material consumed). IR (neat): ν_{max}/cm^{-1} 1732, 1726, 1611, 1513, 919. ¹H NMR (300 MHz, $CDCl_3 + CCl_4$, 21 mixture of diastereomers): δ 7.26–7.18 (2 H, m, H-2" and 6"), 6.60-6.40 (2 H, m, H-3" and 5"), 6.35 (dd, J 17.7 and 10.8 Hz) and 6.15 (dd, J 17.1 and 10.5 Hz) [1 H, H-3'], 5.22-4.90 (3 H, m, H-4 and 4'), 4.10-3.60 (2 H, m, OCH₂), 3.76 and 3.75 (3 H, s, OCH₃), 2.82-2.60 (1 H, m), 2.42-1.50 (2 H, m), 1.63 (3 H, s) and 1.47 (3 H, s) $[2 \times \text{olefinic CH}_3]$, 1.47 (3 H, s, *tert*-CH₃), 1.09 (t, J 7.2 Hz) and 0.97 (t, J 6.9 Hz) [3 H, OCH₂CH₃]. ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 173.8 and 173.7 (C, OC=O), 157.8 and 157.9 (C, C-4"), 144.4 and 144.0 (CH, C-3'), 137.9 and 137.8 (C), 133.1 and 133.0 (C), 127.7 and 127.8 (2 C, CH, C-2" and 6"), 121.8 and 121.9 (CH, C-4), 113.4 and 113.3 (2 C, CH, C-3" and 5"), 112.6 (CH₂, C-4'), 59.6 (CH₂, OCH₂CH₃), 55.6 and 55.7 (CH, C-2), 55.0 (CH₃, OMe), 45.8 and 45.7 (C, C-2'), 27.2 (CH₂, C-3), 25.9 (CH₃), 21.2 and 21.3 (CH₃), 17.7 and 17.8 (CH₃), 14.1 and 14.3 (CH₃, OCH₂CH₃). Mass: 316 (M⁺, 2%), 162 (14), 161 (100), 160 (4), 159 (4), 146 (5). HRMS: m/z calcd. for $C_{20}H_{28}O_3Na$ (M + Na): 339.1936. Found: 339.1938. Further elution furnished starting material (26 mg).

3-[1-(4-Methoxyphenyl)ethyl]-6-methylhepta-1,5-diene (12): To a magnetically stirred solution of 20% KOH in methanol (3 ml) was added the ester 8 (55 mg, 0.17 mmol) and refluxed for 50 h. The reaction mixture was cooled, taken in water (10 ml), and washed with CH₂Cl₂ (5 ml). The aqueous layer was acidified with 3 N of HCl and extracted with CH_2Cl_2 (3 × 5 ml). The organic extract was washed with brine and dried (Na₂SO₄). Evaporation of the solvent furnished the acid 10 (50 mg, 99%). To a magnetically stirred solution of the acid 10 (50 mg, 0.17 mmol) in dry benzene (2 ml) at 0° C was added oxalyl chloride (0.11 ml, 1.22 mmol) and stirred for 2 h at rt. Evaporation of the solvent and excess oxalyl chloride under reduced pressure afforded the acid chloride, which was taken in dry benzene (2 ml), added to a magnetically stirred solution of 2-thiopyridine-1-oxide sodium salt (39 mg, 0.26 mmol) and a catalytic amount of DMAP in dry benzene (3 ml), and the resulting reaction mixture was refluxed for 1 h. To the ester 11 thus formed was added dropwise a solution of tributyltin hydride and a catalytic amount of AIBN in dry benzene (5 ml) over a period of 5 min and refluxed for 14 h. The reaction mixture was cooled, washed with 1% ammonia solution, and extracted with ether $(3 \times 5 \text{ ml})$. The combined ether extract was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using hexane as eluent furnished a 32 diastereomeric mixture of the diene 12 (15 mg, 36%) as oil. IR (neat): ν_{max}/cm^{-1} 1511, 910. ¹H NMR (300 MHz, CDCl₃ + CCl₄, 3:2 mixture of the diastereomers): δ 7.10–6.95 (2 H, m) and 6.85–6.72 (2 H, m) [Ar-H], 5.43 (ddd, J 18.9, 10.2 and 8.4 Hz) and 5.57 (ddd, J 19.2, 9.9 and 9.0 Hz) [1 H, H-2], 5.11-4.80 (3 H, m, H-1 and 5), 3.77 (3 H, s, OCH₃), 2.56 (quintet, J 6.9 Hz) and 2.70 (d of q, J 6.9 and 5.7 Hz) [1 H], 2.20-1.60 (3 H, m), 1.64 and 1.68 (3 H, s), 1.42 and 1.53 (3 H, s) $[2 \times \text{olefinic CH}_3]$, 1.15 (d, J 7.5 Hz) and 1.23 (d, J 7.5 Hz) [3 H, sec-CH₃]. ¹³C NMR (75 MHz, CDCl₃ + CCl₄, 32 mixture of the diastereomers): δ 157.8 (C, C-4″), 140.4 and 141.2 (CH, C-2), 136.6 and 138.5 (C), 131.8 and 131.7 (C), 129.2 and 128.4 (2 C, CH, C-2″ and 6″), 123.1 and 122.8 (CH, C-5), 115.5 and 115.6 (CH₂, C-1), 113.2 and 113.6 (2 C, CH, C-3″ and 5″), 55.1 (CH₃, OMe), 50.9 and 51.7 (CH), 42.0 and 42.6 (CH), 30.7 and 31.4 (CH₂), 25.9 (CH₃), 19.3 and 19.9 (CH₃), 17.9 and 18.0 (CH₃). Mass: 244 (M⁺, 2%), 221 (3), 136 (10), 135 (100), 105 (9), 91 (7). HRMS: m/z calcd. for C₉H₁₁O (M-C₈H₁₃): 135.0810. Found: 135.0815.

3-Methyl-3-(4-methoxyphenyl)pent-4-en-1-ol (17): To an ice-cold, magnetically stirred solution of the ester 4 (645 mg, 2.6 mmol) in dry ether (10 ml) was added LAH (99 mg, 2.6 mmol) and stirred for 1 h. The reaction mixture was then diluted with ether (20 ml) and carefully quenched with water (5 ml). The organic layer was separated and the aqueous phase was extracted with ether (15 ml). The combined organic phase was washed with brine and dried (Na_2SO_4) . Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate-hexane (120 to 15) as eluent furnished the alcohol 17 (494 mg, 92%). IR (neat): $v_{\text{max}}/\text{cm}^{-1}$ 3370, 1634, 1609, 1580, 1513, 916. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 7.16 (2 H, d, J 8.7 Hz, H-2' and 6'), 6.77 (2 H, d, J 8.7 Hz, H-3' and 5'), 5.96 (1 H, dd, J 17.4 and 10.5 Hz, H-4), 5.06 (1 H, d, J 10.5 Hz) and 5.02 (1 H, d, J 17.4 Hz) [H-5], 3.74 (3 H, s, OCH₃), 3.60-3.35 (2 H, m, H-1), 2.20-1.90 (3 H, m, H-2 and OH), 1.34 (3 H, s, tert-CH₃). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 157.7 (C, C-4'), 146.9 (CH, C-4), 138.7 (C, C-1'), 127.3 (2 C, CH, C-2' and 6'), 113.5 (2 C, CH, C-3' and 5'), 111.6 (CH₂, C-5), 59.5 (CH₂, C-1), 54.9 (CH₃, OMe), 43.3 (CH₂, C-2), 42.5 (C, C-3), 25.6 (CH₃). Mass: m/z 206 (M⁺, 8%), 162 (12), 161 (100), 146 (11), 135 (9), 121 (9), 115 (10), 91 (20). HRMS: m/z calcd. for $C_{13}H_{18}O_2Na$ (M + Na): 229.1204. Found: 229.1206.

3-(4-Methoxyphenyl)-3-methylpent-4-enal (16): To a magnetically stirred solution of the primary alcohol **17** (404 mg, 2.0 mmol) in dry CH₂Cl₂ (3 ml) was added a homogeneous mixture of PCC (1.3 g, 5.9 mmol) and silica gel (1.3 g) and stirred vigorously for 30 min at RT. The reaction mixture was then filtered through a small silica-gel column and the column was eluted with excess CH₂Cl₂. Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate-hexane (140 to 120) as eluent furnished the pentenal **16** (352 mg, 88%) as an oil.^[7] IR (neat): $\nu_{\text{max}}/\text{cm}^{-1}$ 2737, 1719, 1677, 1635, 1608, 1510, 920. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 9.51 (1 H, t, *J* 3 Hz, CHO), 7.20 (2 H, d, *J* 8.7 Hz, H-2' and 6'), 6.81 (2 H, d, *J* 8.7 Hz, H-3' and 5'), 6.05 (1 H, dd, *J* 17.7 and 10.5 Hz, H-4), 5.16 (1 H, d, *J* 10.5 Hz) and 5.07 (1 H, d, *J* 17.7 Hz) [H-5], 3.76 (3 H, s, OCH₃), 2.75 and 2.66 (2 H, d of AB q, *J* 15.0 and 3.0 Hz, H-2), 1.48 (3 H, s, *tert*-CH₃). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 201.7 (CH, CHO), 158.1 (C, C-4'), 145.4 (CH, C-4), 137.2 (C, C-1'), 127.3 (2 C,

CH, C-2' and 6'), 113.8 (2 C, CH, C-3' and 5'), 112.7 (CH₂, C-5), 54.9 (CH₃, OMe), 53.3 (CH₂, C-2), 42.2 (C, C-3), 26.3 (CH₃).

4-(4-Methoxyphenyl)-4-methylhexa-1,5-dienyl methyl ether (18): To a magnetically stirred suspension of methoxymethyltriphenylphosphonium chloride (984 mg, 2.9 mmol) in dry THF (4 ml) at 0°C was added a solution of ⁿBuLi (1.95 *M* in hexane, 1.12 ml, 2.2 mmol) dropwise and the resulting dark red solution was stirred for 15 min at rt. To a magnetcially stirred solution of the aldehyde 16 (178 mg, 0.87 mmol) in dry THF (1 ml) at 0° C was added the dark-red-colored solution of methoxymethylenetriphenlyphosphorane and stirred for 40 min at rt. Saturated aq. NH₄Cl solution (5 ml) was added to the reaction mixture and extracted with ether $(2 \times 10 \text{ ml})$. The combined ether extract was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using hexane as eluent furnished the enol ether 18 (141 mg, 70%) as oil. IR (neat): $v_{\text{max}}/\text{cm}^{-1}$ 1664, 1654, 1609, 1511, 915. ¹H NMR (300 MHz, $CDCl_3 + CCl_4$, 54 mixture of E,Z-isomers): δ 7.21 and 7.19 (2 H, d, J 9.0 Hz, H-2' and 6'), 6.79 and 6.80 (2 H, d, J 9.0, Hz, H-3' and 5'), 6.20 (d, J 12.9 Hz) and 5.84 (m of d, J 6.0 Hz) [1 H, H-1], 6.00 (dd, J 17.4 and 10.8 Hz) and 5.99 (dd, J 17.4 and 10.8 Hz) [1 H, H-6], 5.13-4.80 (2 H, m, H-6), 4.45 (t of d, J 12.9 and 7.8 Hz) and 4.15 (quintet, J 6.9 Hz) [1 H, H-2], 3.77 and 3.76 (3 H, s), 3.53 and 3.40 (3 H, s), 2.50 (d of AB q J 12.9 and 7.5 Hz) and 2.32 (1 H, dd, J 7.5 and 2.7 Hz) [H-3], 1.32 and 1.30 (3 H, s, tert-CH₃). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 157.6 (C, C-4'), 148.6 and 147.2 (CH), 147.0 (CH), 139.2 and 139.1 (C, C-1'), 127.7 and 127.6 (2 C, CH, C-2' and 6'), 113.3 and 113.2 (2 C, CH, C-3' and 5'), 111.7 and 111.6 (CH₂, C-6), 103.1 and 98.7 (CH, C-2), 59.3 and 55.7 (CH₃, OCH₃), 55.0 (CH₃, ArOMe), 43.8 (C), 39.6 and 35.1 (CH₂, C-3), 25.3 and 24.9 (CH₃).

4-(4-Methoxyphenyl)-4-methylhex-5-enal (19): A solution of the enol ether **18** (141 mg, 0.6 mmol) in THF (3 ml) and 3 N of HCl (3 ml) was magnetically stirred for 1.5 h at rt. The reaction mixture was diluted with water (5 ml) and extracted with ether (3 × 7 ml). The combined ether extract was washed with aqueous NaHCO₃ and brine, and dried (Na₂SO₄). Evaporation of the solvent and purification of residue over a silica-gel column using ethyl acetate–hexane (1:49 to 1:20) as eluent furnished the aldehyde **19** (115 mg, 87%) as oil. IR (neat): ν_{max}/cm^{-1} 2721, 1723, 1634, 1609, 1580, 1512, 917. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 9.67 (1 H, s, CHO), 7.18 (2 H, d, *J* 8.7 Hz, H-2' and 6'), 6.81 (2 H, d, *J* 8.7 Hz, H-3' and 5'), 5.96 (1 H, dd, *J* 17.1 and 10.5 Hz, H-5), 5.11 (1 H, d, *J* 10.5 Hz) and 5.04 (1 H, d, *J* 17.1 Hz) [H-6], 3.77 (3 H, s, OCH₃), 2.40–2.19 (2 H, m, H-2), 2.19–1.70 (2 H, m, H-3), 1.34 (3 H, s, *tert*-CH₃). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 201.6 (CH, CHO), 157.9 (C, C-4'), 146.2 (CH, C-5), 138.0 (C, C-1'),

127.5 (2 C, CH, C-2' and 6'), 113.6 (2 C, CH, C-3' and 5'), 112.3 (CH₂, C-6), 55.0 (CH₃, OMe), 43.0 (C, C-4), 39.9 (CH₂), 32.5 (CH₂), 25.1 (CH₃).

3-(4-Methoxyphenyl)-3,7-dimethylocta-1,6-diene (methyl ether of sporo**chnol A 9):** To a cold $(0^{\circ}C)$, magnetically stirred suspension of isopropyltriphenylphosphonium bromide (420 mg, 1.1 mmol) in dry THF (3 ml) was added a solution of "BuLi (1.9 M in hexane, 0.41 ml, 0.78 mmol) dropwise and the resulting red-colored solution was stirred for 15 min at rt. The isopropylidene-triphenylphosphorane thus formed was added to a magnetically stirred solution of the aldehyde 19 (34 mg, 0.15 mmol) in THF (1 ml) and the reaction mixture was stirred for 1 h at rt. Saturated aq. ammonia solution (3 ml) was added to the reaction mixture and extracted with ether $(3 \times 5 \text{ ml})$. The combined ether extract was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and purification of residue over silver nitrate-impregnated silica-gel column using hexane as eluent furnished the diene 9 (30 mg, 77%) as oil. IR (neat): v_{max}/cm^{-1} 3081, 1633, 1609, 1580, 1512, 913. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 7.18 (2 H, d, J 8.7 Hz, H-2' and 6'), 6.78 (2 H, d, J 8.7 Hz, H-3' and 5'), 5.98 (1 H, dd, J 17.4 and 10.8 Hz, H-2), 5.05-5.00 (1 H, m), 5.04 (1 H, d, J 10.8 Hz) and 4.99 (1H, d, J 17.4 Hz) [H-1], 3.77 (3 H, s, OCH₃), 2.00-1.50 (4 H, m), 1.64 (3 H, s) and 1.50 (3 H, s) $[2 \times \text{olefinic-CH}_3]$, 1.34 (3 H, s, tert-CH₃). ¹³C NMR (75 MHz, $CDCl_3 + CCl_4$): δ 157.6 (C, C-4'), 147.3 (CH, C-2), 139.3 (C, C-7), 131.0 (C, C-1'), 127.6 (2 C, CH, C-2' and 6'), 125.0 (CH, C-6), 113.4 (2 C, CH, C-3' and 5'), 111.5 (CH₂, C-1), 55.0 (CH₃, OMe), 43.7 (C, C-3), 41.3 (CH₂, C-4), 25.8 (CH₃), 25.3 (CH₃), 23.4 (CH₂, C-5), 17.7 (CH₃). Mass: 244 (M⁺, 5%), 162 (20), 161 (100), 146 (8), 134 (8), 121 (9), 91 (11).

ACKNOWLEDGMENTS

We thank the C. S. I. R., New Delhi, India, for the award of a research fellowship to GS, and Indian Institute of Science for providing Young Science Fellowship of IISc to MRP.

REFERENCES

- 1. Shen, Y.-C.; Tsai, P. I.; Fenical, W.; Hay, M. E. Phytochemistry 1993, 32, 71.
- (a) Takahashi, M.; Shioura, Y.; Murakami, T.; Ogasawara, K. *Tetrahedron:* Asymmetry **1997**, 8, 1235; (b) Fadel, A.; Vandromme, L. *Tetrahedron:* Asymmetry **1999**, 10, 1153; (c) Li, Y.; Yuan, H.; Lu, B.; Li, Y.; Teng, D. J. Chem. Res., Synop. **2000**, 530; (d) Kita, Y.; Furukawa, A.; Futamura, J.; Ueda, K.; Sawama, Y.; Hamamoto, H.; Fujioka, H. J. Org. Chem. **2001**, 66, 8779; (e) Luchaco-Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H.

Angew. Chem., Int. Ed. Engl. **2001**, *40*, 1456; (f) Bassindale, M. J.; Hamley, P.; Harrity, J. P. A. *Tetrahedron Lett.* **2001**, *42*, 9055; (g) Ohira, S.; Kuboki, A.; Hasegawa, T.; Kikuchi, T.; Kutsukake, T.; Nomura, M. *Tetrahedron Lett.* **2002**, *43*, 4641; (h) Shan, S.; Ha, C. *Synth. Commun.* **2004**, *34*, 4005.

- Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741.
- (a) Barton, D. H. R.; Crich, D.; Motherwell, W. B. J. Chem. Soc., Chem. Commun. 1983, 939; (b) Barton, D. H. R.; Bridon, D.; Fernandez-Picot, I.; Zard, S. Z. Tetrahedron 1987, 43, 2733.
- 5. Newcomb, M.; Glenn, A. G.; Williams, W. G. J. Org. Chem. 1989, 54, 2675.
- 6. Srikrishna, A.; Reddy, T. J.; Kumar, P. P.; Vijaykumar, D. Synlett. 1996, 67.