

0040-4039(95)02347-X

An Excellent Nickel Boride Catalyst for the *cis*-Selective Semihydrogenation of Acetylenes

Jaesung Choi and Nung Min Yoon*

Department of Chemistry, Sogang University, Seoul 121-742, Korea

Abstract: Internal alkynes were hydrogenated quantitatively to the corresponding cis-alkenes over nickel boride (Ni₂B), prepared on borohydride exchange resin (BER) in methanol under hydrogen atmosphere. Further hydrogenation was very slow under the reaction conditions, and pure cis-alkenes were conveniently isolated in excellent yields. Hydroxy and ester functional groups did not interfere with the semihydrogenation.

The catalytic *cis*-selective semihydrogenation of acetylenes on heterogeneous catalysts is one of the important methods in organic synthesis.¹⁻³ Indeed, the synthesis of pure *cis*-olefins is often a key step during the synthesis of important substances such as pheromones² or other natural products.³ Although numerous studies have been devoted to this problem, no catalyst of general applicability has been reported so far that exhibits a quantitative yield of *cis*-olefins.⁴⁹ Ni-based catalysts such as P-2 nickel⁴ and Nic,⁵ and Pd-based catalysts such as Lindlar catalyst,⁶ Pdc,⁷ Pd/W,⁸ and montmorillonite-diphenylphosphine-palladium(II) chloride complex⁹ are reported to be excellent for both quantitative bond selectivity (alkene / [alkene + alkane] ratio) and stereoselectivity (Z / [Z + E] ratio). However, all of these hydrogenations must be interrupted at the point of one equiv of hydrogen absorption; and some of these methods require a considerable work in the preparation of catalysts. Moreover, none of these catalysts gives complete selectivity.

Recently, we studied the reducing properties of borohydride exchange resin¹⁰-nickel boride (BER-Ni₂B) in methanol, and reported that this system is excellent for the selective reductions of halides,^{11(a),(b)} nitro compounds,^{11(a)} and azides.^{11(d)} In the course of these studies, we found that Ni₂B prepared on BER has an excellent selectivity in the semihydrogenation of acetylenes.

The semihydrogenation of 2-butyne-1,4-diol is representative. A nickel boride catalyst¹² was prepared on resin by adding nickel acetate (0.1 mmol) to BER¹⁰ (1.0 mmol) in methanol (7 mL) at 0 °C under hydrogen atmosphere (1 atm).¹³ Immediately, black coating of nickel boride was observed. 2-Butyne-1,4-diol (1.0 mmol) in methanol (1.0 mL) was added together with *n*-decane as an internal standard. Glpc analysis showed that *cis*-2-butene-1,4-diol had been formed quantitatively in 60 min and remained unchanged until 180 min. In a preparative run, 2-butyne-1,4-diol (10 mmol) was treated with BER (10 mmol) and Ni(OAc)₂ (1 mmol). After 1 h reaction at 0 °C, Ni₂B-BER was filtered; and the methanol was removed by rotary evaporator to give

Scheme 1

$$R^{1} - = R^{2} \qquad \xrightarrow{H_{2} / Ni_{2}B-BER}_{0.5 - 3 h} \qquad \xrightarrow{R^{1} - R^{2}}_{H H} \qquad \xrightarrow{R^{1} - R^{2}}_{H H}$$

R¹, R² = Alkyl, Aryl, -CH₂OH, -COOMe

pure cis-2-butene-1,4-diol in 94% isolated yield.

The results are summarized in Table 1. As shown there, all the alkynes tested were hydrogenated quantitatively to give the corresponding *cis*-alkenes. The semihydrogenation of 2-hexyne was completed in 45 min and remained unchanged until 90 min. A small amount of hexane (1%) was noticed after 120 min (entry 1). The hydrogenation of 3-hexyne was similar to 2-hexyne (entry 2); but 1-phenyl-1-propyne was

 Table 1. The Semihydrogenation of Representative Alkynes by using Ni₂B-BER in Methanol under Hydrogen

 Atmosphere

entry	alkyne	temp.(°C)	time(min)	products (%)
1	2-hexyne	0	45	<i>cis</i> -2-hexene (100) [*]
			9 0	<i>cis</i> -2-hexene (100)
			120	cis-2-hexene (99)
				hexane (1)
2	3-hexyne	0	60	cis-3-hexene (100)
			120	<i>cis</i> -3-hexene (100)
			180	cis-3-hexene (99)
				hexane (1)
3	1-phenyl-1-propyne	0	180	cis-1-phenyl-1-propene (100)
			360	cis-1-phenyl-1-propene (100)
4	2-butyne-1,4-diol	0	60	cis-2-butene-1,4-diol (100) [94] ^b
			180	cis-2-butene-1,4-diol (100)
5	dimethyl acetylenedicarboxylate	-15	120	dimethyl maleate (100) [96]
			180	dimethyl maleate (100)
6	1-hydroxy-1-phenyl-2-octyne	20°	30	cis-1-hydroxy-1-phenyl-2-octene (100) [95]
			120	cis-1-hydroxy-1-phenyl-2-octene (100)
7	3-hydroxy-1-phenyl-1-octyne	20°	180	cis-3-hydroxy-1-phenyl-1-octene (100) [98]
			360	cis-3-hydroxy-1-phenyl-1-octene (100)

*Estimated by Glpc. ^b Isolated yields. ^cOnly 5% hydrogenation in 1 h at 0 °C.

hydrogenated somewhat more slowly, the semihydrogenation being completed in 180 min. No sign of overhydrogenation to propylbenzene was noticed until 360 min (entry 3). 2-Butyne-1,4-diol was readily hydrogenated at the similar rate with that of 3-hexyne (entry 4). The two hydroxy groups of 2-butyne-1,4-diol showed almost no effect on hydrogenation. On the other hand, dimethyl acetylenedicarboxylate was hydrogenated rapidly at 0 °C. The semihydrogenation was completed in 30 min, and 5% of overhydrogenation to dimethyl succinate was observed in 60 min. Fortunately, however, the selectivity could be enhanced by lowering the reaction temperature. Thus the semihydrogenation was completed in 120 min at -15 °C and remained unchanged until 360 min (entry 5). Sterically bulky propargyl alcohols were hydrogenated very slowly at 0 °C, showing only 5% hydrogenation in 1 h. However, the hydrogenations of 1-hydroxy-1-phenyl-2-octyne and 3-hydroxy-1-phenyl-1-octyne proceeded smoothly at 20 °C, the semihydrogenations being completed in 30 and 180 min, and remained unchanged until 120 and 360 min respectively (entries 6 and 7). The excellent selectivity seems to be due to the steric effect of bulky cis-alkenes, the corresponding semihydrogenated products; for a simple alkyne, such as 1-phenyl-1-propyne, exhibits considerable overhydrogenation at 20 °C.¹⁴ Another advantage of the procedure is the simple work up. Since the reaction proceeds quantitatively, the separation of BER-Ni,B by filtration and the evaporation of the solvent give essentially pure cis-alkenes.

In conclusion, the nickel boride catalyst prepared on BER in methanol is an excellent catalyst for the semihydrogenation of internal alkynes. The corresponding *cis*-alkenes are hereby obtained quantitatively for the first time.

Acknowledgement: This work was supported by Organic Chemistry Research Center / KOSEF.

REFERENCES AND NOTES

- (a) Friefelder, M. Practical Catalytic Hydrogenation; Wiley-Interscience: New York, 1971. (b) Rylander,
 P. Hydrogenation Methods; Academic Press: New York, 1985.
- Mori, K. The Synthesis of Insect Pheromones. In *The Total Synthesis of Natural Products*; ApSimon, J., Ed.; Wiley Interscience: New York, 1981; Vol. 4, p 1.
- 3. See, for example: (a) Bartlett, P. A. Tetrahedron 1980, 36, 3. (b) Ackroyd, J.; Scheinmann, F. Chem. Soc. Rev. 1982, 11, 321.
- (a) Brown, H. C.; Brown, C. A. J. Am. Chem. Soc. 1963, 85, 1005.
 (b) Brown, C. A.; Ahuja, V. K. J. Chem. Soc., Chem. Commun. 1973, 553.
 (c) Brown, C. A.; Ahuja, V. K. J. Org. Chem. 1973, 38, 2226.
- 5. Brunet, J. J.; Gallois, P.; Caubere, P. J. Org. Chem. 1980, 45, 1937.
- 6. (a) Lindlar, H. Helv. Chim. Acta 1952, 35, 446. (b) Lindlar, H.; Dubuis, R. Org. Synth. 1966, 46, 89.
- 7. Brunet, J. J.; Caubere, P. J. Org. Chem. 1984, 49, 4058.
- 8. Ulan, J. G.; Maier, W. F. J. Org. Chem. 1987, 52, 3132.
- (a) Choudary, B. M.; Sharma, G. V. M.; Bharathi, P. Angew. Chem. Int. Ed. Engl. 1989, 28, 465. (b) Sharma, G. V. M.; Choudary, B. M.; Ravichandra Sarma, M.; Koteswara Rao, K. J. Org. Chem. 1989,

23, 2997.

- 10. Borohydride Exchange Resin was prepared as follows: An aqueous solution of sodium borohydride (1 M, 500 mL) was stirred with wet chloride-form anion exchange resin [Amberlite IRA-400 (20 50 mesh), 200 g] for 15 min. The resulting resin was washed thoroughly with distilled water (3 x 100 mL). The borohydride form anion exchange resin was then dried in vacuo at 60 °C for 5 h to give 102 g of dried borohydride exchange resin (BER). The dried resin was analyzed for borohydride content by hydrogen evolution on acidification with 2 N HCl and the average hydride content of BER was found to be 3.0 mmol of BH₄ per gram. The dried resin was stored under nitrogen in refrigerator (~ 4 °C). The hydride content was constant over 6 weeks.
- (a) Yoon, N. M.; Lee, H. J.; Ahn, J. H.; Choi, J. J. Org. Chem. 1994, 59, 4687. (b) Yoon, N. M.; Choi, J.; Lee, H. J. Bull. Korean Chem.Soc. 1993, 14, 543. (c) Yoon, N. M.; Choi, J. Synlett 1993, 135. (d) Yoon, N. M.; Choi, J.; Shon, Y. S. Synth. Commun. 1993, 23, 3047.
- 12. Three successive semihydrogenations of 2-butyne-1,4-diol could be carried out over the same catalyst, all in 1.0 h; however, the rate dropped sharply thereafter.
- 13. In the presence of Ni₂B, BER decomposes slowly in methanol evolving hydrogen. Therefore, the hydrogenation proceeds without supply of external hydrogen; however the hydrogenation is very slow. For example the hydrogenation of 2-butyne-1,4-diol proceeds only 24% in 1 h and 60% in 6 h.
- 14. Overhydrogenated propylbenzene (9%) and isomerized *trans*-1-phenyl-1-propene (1%) were observed together with 90% of *cis*-1-phenyl-1-propene in 60 min.

(Received in Japan 7 November 1995; revised 6 December 1995; accepted 7 December 1995)