53

Chelation-Controlled 1,3-Asymmetric Induction in Radical Addition to γ -Hydroxy- and γ -Alkoxy- α -methylenecarboxylic Esters

Hajime Nagano,* Satoko Toi, and Tomoko Yajima

Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan Fax: +81-3-5978-5348; e-mail: nagano@hososipc.chem.ocha.ac.jp Received 29 September 1998

Abstract: The radical-mediated reactions of γ -hydroxy- and γ -alkoxy- α -methylenecarboxylic esters **3** (R¹ = Ph, *i*-Bu, and *t*-Bu, R² = H, Me, MOM, and MEM) with isopropyl iodide or cyclohexyl iodide performed in the presence of Lewis acids gave the *syn*-adducts **4** predominantly, whereas the *anti*-adduct **5** was the major product in the reaction of **3** (R¹ = Ph, R² = Me) with *t*-butyl iodide.

Key words: radical, 1,3-asymmetric induction, chelation, Lewis acid, γ -alkoxy- α -methylenecarboxylic esters

The chelate ring formation of radical intermediates with Lewis acid plays an important role in the stereochemical control of acyclic radical reactions.^{1,2} We have recently shown that the allylation of α -bromo- β -siloxy esters **1** conducted in the presence of Lewis acid proceeded through the transition state model **A** involving a sevenmembered chelate ring and yielded the *syn*-product **2** predominantly (Scheme 1).³ We now report the chelation controlled 1,3-asymmetric induction in radical addition to γ -hydroxy- and γ -alkoxy- α -methylenecarboxylic esters **3**. Little is known about 1,3-asymmetric induction in radical reactions.⁴

The Reformatsky reaction of aldehydes R¹-CH=O (R¹ = Ph, *t*-Bu, and *i*-Bu) with ethyl α -bromomethylacrylate gave racemic γ -hydroxy- α -methylenecarboxylic esters **3** in high yields ($\geq 86\%$).^{5,6} Methylation of the alcohol **3** (R¹ = Ph, R² = H) with methyl iodide and silver(I) oxide gave methyl ether **3** (R¹ = Ph, R² = Me) in 56% yield together with γ -lactone **6**. However, methyl ethers of the alcohols **3** (R¹ = *t*-Bu, and *i*-Bu, R² = H) were not obtained due to the formation of the corresponding γ -lactones. Methoxymethyl (MOM) and methoxyethoxymethyl (MEM) ethers **3** (R¹ = Ph, *t*-Bu, and *i*-Bu, R² = MOM and MEM) were prepared from the corresponding alcohols **3** (R¹ = Ph, *t*-Bu, and *i*-Bu, R² = H) following the standard procedures.

After a 10 min complexation time, the alkylation of acrylates **3** was conducted with alkyl iodide R³I (3 equiv.), *n*-Bu₃SnH (2 equiv.), and Et₃B (0.3 equiv.) as a radical initiator⁷ in CH₂Cl₂ at 0 °C. The concentration of **3** was 0.07–0.13 mol dm⁻³ in all the reactions. The diastereomer ratios of the products were determined by ¹H NMR analysis. The stereochemistry of **4** and **5** was determined as follows. Treatment of the mixture of hydroxy esters **4** and **5** (R¹ = Ph, R² = H, R³ = *i*-Pr; **4** : **5** = 2 : 1) with *p*-toluenesulfonic acid in benzene gave γ -lactones **7** and **8** (**7** : **8** = 2 : 1). The assignment of the γ -lactones was performed by

Scheme 1

the comparison of their ¹H NMR spectra with those of authentic γ -lactones prepared from α -methylene- γ -lactone **6** following the reported procedures.⁸ Methylation of **4** and **5** (R¹ = Ph, R² = H) with methyl iodide and silver(I) oxide gave the corresponding methyl ethers **4** and **5** (R¹ = Ph, R² = Me), respectively. The stereochemistry of **4** and **5** (R¹ = *t*-Bu and *i*-Bu, R² = H, MOM, and MEM) was assigned by comparing their ¹H NMR spectral data with those of **4** and **5** (R¹ = Ph, R² = H and Me).⁹

A summary of the addition reactions is given in Table 1. In the absence of Lewis acid, the reactions of **3** showed poor stereoselectivity ($\mathbf{4} : \mathbf{5} = 1 : 1.4 - 1.6$, entry 1) except

for that of **3** ($\mathbb{R}^1 = i$ -Bu, $\mathbb{R}^2 = MEM$; entry 16). The diastereoselectivity was remarkably affected when the reaction was conducted in the presence of Lewis acid. Use of 3 equiv of MgBr₂·OEt₂ reversed the diastereoselectivity of the reaction of alcohol **3** ($\mathbb{R}^1 = \mathbb{P}h$, $\mathbb{R}^2 = \mathbb{H}$; entry 2) with isopropyl iodide,^{2k} but low selectivity (entry 2). The reaction of the methyl ether **3** ($R^1 = Ph$, $R^2 = Me$) with isopropyl iodide or cyclohexyl iodide performed in the presence of MgBr₂·OEt₂, MgBr₂, ZnCl₂, or Eu(fod)₃ [= tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato)-europium] gave higher selectivities (entries 3–7). As expected from our previous results in the allylation of $1,^{3}$ La(fod)₃ was highly efficient (entry 8). MgI₂ was less effective, and tris(2,4-pentadionato)lanthanum and tris(1,3-diphenyl-1,3-propanedionato)-lanthanum] had no effect on the stereocontrol. The reaction of the methyl ether 3 with *t*-butyl iodide performed in the presence of Lewis acid gave the anti-product 5 predominately (entries 9 and 10).

The MOM and MEM ethers **3** ($\mathbb{R}^1 = \mathbb{P}h$, $\mathbb{R}^2 = \mathbb{MOM}$ and MEM; entries 11, 12, and 15) gave a poorer result than the methyl ether **3**. In the reactions of **3** ($\mathbb{R}^1 = t$ -Bu and *i*-Bu, $\mathbb{R}^2 = \mathbb{MOM}$ and MEM), use of Lewis acid reversed the diastereoselectivity, but the selectivities were low (entries 13 and 16–18) except for **3** ($\mathbb{R}^1 = t$ -Bu, $\mathbb{R}^2 = \mathbb{MOM}$; entry 14).

Table 1. Radical Reactions of γ -Hydroxy- and γ -Alkoxy- α methylenecarboxylic Esters **3** with Alkyl Iodides

entry	Rl	R ²	R ³	Lewis acid (equiv)	Yield (%)	Diastereomer ratio (4 : 5)
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\end{array} $	Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph t-Bu t-Bu t-Bu	H H Me Me Me Me MoM MOM MOM MOM MOM MEM	<i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>c</i> -Hex <i>i</i> -Pr <i>t</i> -Bu <i>t</i> -Bu <i>t</i> -Bu <i>t</i> -Pu <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr	(equiv) MgBr2·OEt2 (3) MgBr2 (3) ZnCl2 (3) Eu(fod)3 (1) MgBr2·OEt2 (3) La(fod)3 (1) MgBr2·OEt2 (3) La(fod)3 (1) MgBr2·OEt2 (3) La(fod)3 (1) MgBr2·OEt2 (3) MgBr2·OEt2 (3) MgBr2·OEt2 (3) MgBr2·OEt2 (3)	(%) 86 80 96 92 81 89 70 90 91 99 63 80 93 78 96 87	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17 18	<i>i</i> -Bu <i>t</i> -Bu	MEM MEM	<i>i</i> -Pr <i>i</i> -Pr	MgBr ₂ ·OEt ₂ (3) MgBr ₂ ·OEt ₂ (3)	80 95	2.0 : 1 3.7 : 1

In the absence of Lewis acid, n-Bu₃SnH would approach equally from the both faces of the radical center in an open-chain transition state model to yield **4** and **5**. In the presence of the Lewis acids, the reaction of **3** with isopropyl iodide or cyclohexyl iodide proceeds probably through the transition state model **B** involving a sevenmembered chelate ring. n-Bu₃SnH should attack from the less hindered face of the model **B** to yield *syn*-adduct **4**. The transition model **C** yielding *anti*-adduct **5** is less preferable due to the steric repulsion between R¹ and CH₂R³ groups. The high *syn* selectivity of **3** ($\mathbb{R}^1 = t$ -Bu, $\mathbb{R}^2 = MOM$; entry 14) reflects the very large interaction between the bulky *t*-butyl and *i*-butyl groups in model **C**. The *anti* selectivity in the reaction of **3** ($\mathbb{R}^1 = Ph$, $\mathbb{R}^2 = Me$) with *t*-BuI (entries 9 and 10) may be ascribable to the shielding of the upper face of model **B** by the bulky neopentyl group. We have shown that the shielding of the upper face of model **A** by the bulky *t*-BuPh₂SiO group lowered the *syn* selectivity in the allylation of **1** ($\mathbb{R} = SiPh_2t$ -Bu).³

References and Notes

- For reviews of stereoselective acyclic radical reactions, see: Porter, N. A.; Giese, B.; Curran, D. P. Acc. Chem. Res. 1991, 24, 296. Smadja, W. Synlett, 1994, 1. Curran, D. P.; Porter, N. A.; Giese, B. "Stereochemistry of Radical Reactions; Concepts, Guidelines, and Synthetic Applications," VCH, Weinheim (1996).
- (2) (a) Wu, J. H.; Zhang, G.; Porter, N. A. Tetrahedron Lett. 1997, 38, 2067. (b) Miyabe, H.; Ushiro, C.; Naito, T. J. Chem. Soc., Chem. Commun. 1997, 1789. (c) Sibi, M. P.; Ji, J. Angew. Chem., Int. Ed. Engl. 1997, 36, 274. (d) Sibi, M. P.; Ji, J. J. Org. Chem. 1996, 61, 6090. (e) Gerster, M.; Schenk, K.; Renaud, P. Angew. Chem., Int. Ed. Engl. 1996, 35, 2396. (f) Gerster, M.; Audergon, L.; Moufid, N.; Renaud, P. Tetrahedron Lett. 1996, 37, 6335. (g) Guindon, Y.; Guérin, B.; Chabot, C.; Ogilvie, W. J. Am. Chem. Soc. 1996, 118, 12528. (h) Nishida, M.; Nishida, A.; Kawahara, N. J. Org. Chem. 1996, 61, 3574. (i) Nishida, A.; Hayashi, H.; Yonemitsu, O.; Kawahara, N. Synlett 1995, 1045. (j) Urabe, H.; Yamashita, K.; Suzuki, K.; Kobayashi, K.; Sato, F. J. Org. Chem. 1995, 60, 3576. (k) Nagano, H.; Azuma, Y. Chem. Lett. 1996, 845, and references cited therein.
- (3) Nagano, H.; Kuno, Y.; Omori, Y.; Iguchi, M. J. Chem. Soc., Perkin Trans. 1 1996, 389. Nagano, H.; Kuno, Y. J. Chem. Soc., Chem. Commun. 1994, 987.
- Mase, N.; Watanabe, Y.; Ueno, Y.; Toru, T. J. Chem. Soc., Perkin Trans. 1 1998, 1613. Radinov, R.; Mero, C. L.; Mc-Phail, A. T.; Porter, N. A. Tetrahedron Lett. 1995, 36, 8183. Zhu, Y.-H.; Vogel, P. Tetrahedron Lett. 1998, 39, 31.
- (5) Hanessian, S.; Park, H.; Yang, R.-Y. Synlett 1997, 351.
- (6) One enantiomeric form is shown arbitrarily.
- (7) Nozaki, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 403.
- (8) Urabe and Sato have reported that the addition of alkyl radical to the γ-substituted α-methylene-γ-lactones gave syn-lactones with high diastereoselectivity and the complexation of the radical intermediates with methylaluminium bis(2,6-di-t-butyl-4-methylphenoxide) (MAD) reversed the diastereoselectivity. Urabe, H.; Kobayashi, K.; Sato, F. J. Chem. Soc., Chem. Commun. **1995**, 1043.
- (9) The signal of β -protons in the ¹H NMR spectra of **4** were observed consistently in lower field than those of **5**.