
LETTER 53

Synlett 1999, No. 1, 53–54 ISSN 0936-5214 © Thieme Stuttgart · New Yorkrk

Chelation-Controlled 1,3-Asymmetric Induction in Radical Addition to
g-Hydroxy- and g-Alkoxy-a-methylenecarboxylic Esters
Hajime Nagano,* Satoko Toi, and Tomoko Yajima
Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
Fax: +81-3-5978-5348; e-mail: nagano@hososipc.chem.ocha.ac.jp
Received 29 September 1998

Abstract: The radical-mediated reactions of g-hydroxy- and g-
alkoxy-a-methylenecarboxylic esters 3 (R1 = Ph, i-Bu, and t-Bu, R2

= H, Me, MOM, and MEM) with isopropyl iodide or cyclohexyl io-
dide performed in the presence of Lewis acids gave the syn-adducts
4 predominantly, whereas the anti-adduct 5 was the major product
in the reaction of 3 (R1 = Ph, R2 = Me) with t-butyl iodide.
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The chelate ring formation of radical intermediates with
Lewis acid plays an important role in the stereochemical
control of acyclic radical reactions.1,2 We have recently
shown that the allylation of a-bromo-b-siloxy esters 1
conducted in the presence of Lewis acid proceeded
through the transition state model A involving a seven-
membered chelate ring and yielded the syn-product 2 pre-
dominantly (Scheme 1).3 We now report the chelation
controlled 1,3-asymmetric induction in radical addition to
g-hydroxy- and g-alkoxy-a-methylenecarboxylic esters 3.
Little is known about 1,3-asymmetric induction in radical
reactions.4 

The Reformatsky reaction of aldehydes R1-CH=O (R1 =
Ph, t-Bu, and i-Bu) with ethyl a-bromomethylacrylate
gave racemic g-hydroxy-a-methylenecarboxylic esters 3
in high yields (≥86%).5,6 Methylation of the alcohol 3 (R1

= Ph, R2 = H) with methyl iodide and silver(I) oxide gave
methyl ether 3 (R1 = Ph, R2 = Me) in 56% yield together
with g-lactone 6. However, methyl ethers of the alcohols
3 (R1 = t-Bu, and i-Bu, R2 = H) were not obtained due to
the formation of the corresponding g-lactones. Meth-
oxymethyl (MOM) and methoxyethoxymethyl (MEM)
ethers 3 (R1 = Ph, t-Bu, and i-Bu, R2 = MOM and MEM)
were prepared from the corresponding alcohols 3 (R1 =
Ph, t-Bu, and i-Bu, R2 = H) following the standard proce-
dures.

After a 10 min complexation time, the alkylation of acry-
lates 3 was conducted with alkyl iodide R3I (3 equiv.), n-
Bu3SnH (2 equiv.), and Et3B (0.3 equiv.) as a radical
initiator7 in CH2Cl2 at 0 ∞C. The concentration of 3 was
0.07–0.13 mol dm-3 in all the reactions. The diastereomer
ratios of the products were determined by 1H NMR anal-
ysis. The stereochemistry of 4 and 5 was determined as
follows. Treatment of the mixture of hydroxy esters 4 and
5 (R1 = Ph, R2 = H, R3 = i-Pr; 4 : 5 = 2 : 1) with p-toluene-
sulfonic acid in benzene gave g-lactones 7 and 8 (7 : 8 = 2
: 1). The assignment of the g-lactones was performed by

the comparison of their 1H NMR spectra with those of au-
thentic g-lactones prepared from a-methylene-g-lactone 6
following the reported procedures.8 Methylation of 4 and
5 (R1 = Ph, R2 = H) with methyl iodide and silver(I) oxide
gave the corresponding methyl ethers 4 and 5 (R1 = Ph, R2

= Me), respectively. The stereochemistry of 4 and 5 (R1 =
t-Bu and i-Bu, R2 = H, MOM, and MEM) was assigned by
comparing their 1H NMR spectral data with those of 4 and
5 (R1 = Ph, R2 = H and Me).9

A summary of the addition reactions is given in Table 1.
In the absence of Lewis acid, the reactions of 3 showed
poor stereoselectivity (4 : 5 = 1 : 1.4–1.6, entry 1) except

Scheme 1
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for that of 3 (R1 = i-Bu, R2 = MEM; entry 16). The diaste-
reoselectivity was remarkably affected when the reaction
was conducted in the presence of Lewis acid. Use of 3
equiv of MgBr2·OEt2 reversed the diastereoselectivity of
the reaction of alcohol 3 (R1 = Ph, R2 = H; entry 2) with
isopropyl iodide,2k but low selectivity (entry 2). The reac-
tion of the methyl ether 3 (R1 = Ph, R2 = Me) with isopro-
pyl iodide or cyclohexyl iodide performed in the presence
of MgBr2·OEt2, MgBr2, ZnCl2, or Eu(fod)3 [=
tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedi-
onato)-europium] gave higher selectivities (entries 3–7).
As expected from our previous results in the allylation of
1,3 La(fod)3 was highly efficient (entry 8). MgI2 was less
effective, and tris(2,4-pentadionato)lanthanum and
tris(1,3-diphenyl-1,3-propanedionato)-lanthanum] had no
effect on the stereocontrol. The reaction of the methyl
ether 3 with t-butyl iodide performed in the presence of
Lewis acid gave the anti-product 5 predominately (entries
9 and 10).

The MOM and MEM ethers 3 (R1 = Ph, R2 = MOM and
MEM; entries 11, 12, and 15) gave a poorer result than the
methyl ether 3. In the reactions of 3 (R1 = t-Bu and i-Bu,
R2 = MOM and MEM),  use  of  Lewis  acid  reversed  the
diastereoselectivity, but the selectivities were low (entries
13 and 16–18) except for 3 (R1 = t-Bu, R2 = MOM; entry
14 ).

In the absence of Lewis acid, n-Bu3SnH would approach
equally from the both faces of the radical center in an
open-chain transition state model to yield 4 and 5. In the
presence of the Lewis acids, the reaction of 3 with isopro-
pyl iodide or cyclohexyl iodide proceeds probably
through the transition state model B involving a seven-
membered chelate ring. n-Bu3SnH should attack from the
less hindered face of the model B to yield syn-adduct 4.
The transition model C yielding anti-adduct 5 is less pref-
erable due to the steric repulsion between R1 and CH2R

3

groups. The high syn selectivity of 3 (R1 = t-Bu, R2 =
MOM; entry 14) reflects the very large interaction be-
tween the bulky t-butyl and i-butyl groups in model C.
The anti selectivity in the reaction of 3 (R1 = Ph, R2 = Me)
with t-BuI (entries 9 and 10) may be ascribable to the
shielding of the upper face of model B by the bulky neo-
pentyl group. We have shown that the shielding of the up-
per face of model A by the bulky t-BuPh2SiO group
lowered the syn selectivity in the allylation of 1 (R =
SiPh2t-Bu).3
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