BIOSYNTHESIS OF THE 17-MEMBERED CARBOCYCLIC RING OF LANKACIDIN ANTIBIOTICS

Katsumi Kakinuma* Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology Midori-ku, Yokohama 227, Japan Jun Uzawa and Masakazu Uramoto* The Institute of Physical and Chemical Research Wako-shi, Saitama 351, Japan

Abstract: A mechanism involving contraction of an 18-membered polyketide ring was proposed for the biosynthesis of the 17-membered carbocyclic ring of lankacidin antibiotics based on the feeding experiments of deuterated glycine and ²H-NMR spectroscopy.

Lankacidins constitute a structurally unique class of antibiotics due to their 17-membered carbocyclic ring, which distinctly differs from the macrocyclic rings of regular macrolide antibiotics and ansamycins. Biosynthesis of lankacidins was previously studied by labeling experiment using ¹³C- and ¹⁵N-enriched precursors and the 17-membered ring I was elucidated to be formed from a linear polyketide II consisting of a glycine starter and eight molecules of acetate.¹⁾ The four methyl groups on the ring were also determined to be derived from methyl group of methionine. Mechanism of this macrocyclic ring formation was discussed in some extent and a route suggested was through attack by a terminal nucleophilic center on an electrophilic imine carbon at the glycine unit, 1 as shown in Fig. 1.

Lankacidin Antibiotics

Lankacidin C (Bundlin A, T-2636C) н COCH » Lankacidin A (Bundlin B, T-2636A) H Lankacidin C diacetate COCH • COCH • 0 H.OH Lankacidinol (T-2636F) н H н сосн, H,OH Lankacidinol A (T-2636D)

R

Fig. 1 ¹³C- and ¹⁵N Labeling Pattern

However, the δ -lactone system fused to the carbocyclic ring in lankacidins seemed to be quite characteristic and suggestive as to the ring formation, since δ -lactone structures of aspyrone and vulgamycin were proposed to be formed from their linear polyketide precursors via Favorskii-type rearrangements.^{2,3,4,5}) This implied an alternative mechanism for the formation of lankacidin skeleton I, that is, first formation of a regular 18-membered polyketide ring III including a glycine starter, followed by a similar Favorskii-type rearrangement with extrusion of a carboxyl group ends up with formations of the δ -lactone as well as the 17-membered carbocyclic ring I as shown in Fig. 2.

Clear difference in the biosynthesis of lankacidins from those of aspyrone and vulgamycin was that Favorskii-type rearrangements in the latter were suggested on the basis of C-C bond cleavage of one of the acetate units observed by the ¹³C-NMR analyses on the metabolites produced from ¹³C- doubly labeled acetate, ^{2,3,4,5}) wheras all acetate units were incorporated intact in the former.¹⁾

To clarify this intriguing problem of the lankacidin ring formation, feeding experiments of deuterated glycine were undertaken, since the fate of hydrogens seemed to be crucial to test the above-mentioned alternative pathway.

In a preliminary experiment, $[^{2}H_{5}]$ -glycine (98 Atom% enriched, MSD Canada) was administered to the fermentation of a lankacidin producing organism <u>Streptomyces</u> sp.,¹) and the produced lankacidins A and C were simultaneously extracted with CH₂Cl₂. Acetylation of the mixture of lankacidins A and C with acetic anhydride and pyridine gave lankacidin C diacetate as a sole product, which was further purified by preparative TLC. The diacetate was then analyzed by MS and ²H-NMR spectroscopy, which showed no incorporation of deuterium except for weak labeling of the methyl groups on the macrocyclic ring.

To confirm this observation, a mixed substrate composed of $[1-1^3C]$ -glycine (91 Atom% enriched, Prochem) and $[^{2}H_{5}]$ -glycine (98 Atom% enriched, MSD Canada) in a ratio of 2 : 1 was fed similarly to the lankacidin fermentation and the labeled lankacidin C diacetate was prepared as described above. The diacetate was again analyzed by the ¹³C- and ²H-NMR spectra,⁶⁾ which are shown in the following Fig. 3 and Fig. 4.

Incorporation of the exogenous glycine was clearly demonstrated by the enhanced signal of the C-4 carbon observed at 124.6 ppm in the ¹³C-NMR spectrum, ¹⁾ however, no deuterium incorporation was observed at all at the C-3 methine group, which would resonate arround 5.4 ppm based on the ¹H-NMR assignment, ⁷⁾ while slight labeling was apparent into the methyl groups as can be seen in the ²H-NMR spectrum. Labeling of the methyl groups is not surprising because C-2 of glycine can be converted into methyl group of methionine through 5,10-CH₂-tetrahydrofolic acid prodoced by the action of glycine decarboxylase.

As to the result of no incorporation of deuterium from glycine into H-3, it seems less likely that the deuterium is lost by chemical exchange at the stage of either a linear polyketide II or a 17-membered product such as I because of the reactivity of the corresponding position. The deuterium loss can be rationalized instead by assuming involvment of a Favorskii-type rearrangement in the biosynthesis, since the Favorskii mechanism requires removal of the corresponding hydrogen from a plausible 18-membered cyclic polyketide intermediate $(III \rightarrow IV \rightarrow I)$ vide <u>supra</u>. Deuterium of glycine might otherwise be lost at the stage of an 18-membered intermediate III, since the corresponding methine hydrogen could be rather activated by the flanking two carbonyl groups.

In any case, the present results strongly imply intermediacy of an 18-membered carbocyclic polyketide precursor, which is afterwards transformed into the unique 17-membered ring of lankacidin antibiotics probably through a Favorskii-type rearrangement. It seems also worth to note that this is the first example suggesting this type of biological ring contraction of polyketide by means of deuterium labeling.

Acknowledgement

This work was supported in part by a Grant-in Aid for Scientific Research to K.K. from the Ministry of Education, Science and Culture, Japan.

References and Notes

- 1) Uramoto, M., Otake, N., Cary, L., Tanabe, M., <u>J</u>. <u>Am. Chem. Soc</u>., <u>1978</u>, <u>100</u>, 3616.
- Simpson, T.J., Holker, J.S.E., <u>Tetrahedron Lett.</u>, 1975, 4693.
- 3) Tanabe, M., Uramoto, M., Hamasaki, T., Cary, L., <u>Heterocycles</u>, <u>1976</u>, <u>5</u>, 355.
- Holker, J.S.E., Simpson, T.J., <u>J. Chem. Soc. Perkin I</u>, <u>1981</u>, 1397.
- 5) Seto, H., Sato, T., Urano, S., Uzawa, J., Yonehara, H., <u>Tetrahedron Lett.</u>, 1976, 4367.
- 6) ¹³C-NMR spectra were recorded on a JEOL FX-100 spectrometer using CDCl₃ as solvent and TMS as internal standard. ²H-NMR spectrum was taken with a JEOL FX-400 spectrometer operated unlocked at 61.5 MHz with complete proton decoupling. The chemical shift was standardized by a natural abundance signal of CHCl₃ solvent.
- 7) The H-3 resonance was unambiguously assigned by spin decoupling experiments. Pertinent proton signals were a doublet at 8.09 ppm (J= 8.0 Hz, CONH), a double-doublet at 5.43 ppm (J= 8.0 & 9.1 Hz, H-3) and a doublet at 4.70 ppm (J= 9.1 Hz, H-4).

(Received in Japan 4 September 1982)