Oxidative Cleavage of 1,3-Disubstituted Benzo[c]furans with Activated Manganese Dioxide: A Facile Preparation of 1,2-Di(het)aroylbenzenes

Ramakrishnan Sivasakthikumaran, Meganathan Nandakumar, Arasambattu K. Mohanakrishnan*

Department of Organic Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India Fax +91(44)22352494; E-mail: mohanakrishnan@unom.ac.in; E-mail: mohan_67@hotmail.com

Received: 05.04.2014; Accepted after revision: 28.05.2014

Abstract: Manganese dioxide mediated oxidative cleavage of 1,3disubstituted benzo[c]furans in dichloromethane at room temperature gave good yields of 1,2-di(het)aroylbenzenes.

Key words: heterocycles, polycycles, diketones, ring opening, oxidation, manganese dioxide

Since the first report on 1,3-dithienylbenzo[c]thiophenes,¹ the syntheses and characterization of benzo[c]thiophene analogues have been well explored.² In comparison, the chemistry of the corresponding benzo[c]furans is less well explored because of their unstable nature. Swager and co-workers reported the first synthesis of benzo[c]furanbased cyanovinylenes as near-infrared fluorophores.³ Over the years, 1,3-diarylbenzo[c]furans have been used as dienes in Diels–Alder reactions for the syntheses of a wide variety of π -conjugated molecules.⁴ 1,3-Disubstituted benzo[c]furans have also been used as intermediates for the synthesis of benzo[c]selenophenes.⁵ We recently reported the synthesis of annulated arenes and hetarenes from unsymmetrically substituted benzo[c]furans.⁶

In general, the oxidative transformation of 1,3-disubstituted benzo[c]furans into the corresponding diaroylbenzenes is achieved by using lead tetraacetate (LTA)^{1b} or singlet oxygen.⁷ We recently developed a simple oxidative ring opening of 1,3-disubstituted benzo[c]heterocycles by using 3-chloroperbenzoic acid (MCPBA).⁸ Even though this procedure was successfully applied to a wide variety of benzo[c]heterocycles, undesired oxidation of the thiophene moiety also occurred in some cases. The synthetic utility of 1,2-diaroylbenzenes^{6,9} prompted us to undertake a detailed study of the oxidative cleavage of benzo[c]heterocycles with other oxidizing agents. Over the years, activated manganese dioxide (MnO₂) has been used for the oxidation of a variety of heterocyclic compounds.¹⁰ Garofalo and co-workers achieved an efficient synthesis of pyrroloindolones by a MnO₂-promoted intramolecular cyclization.¹¹ Recently, oxidation of arylmethylene compounds¹² with MnO₂ and the oxidation of benzylic al-cohols with a substoichiometric quantity of MnO₂¹³ have been reported. These reports encouraged us to explore the oxidation of 1,3-disubstitued benzo[*c*]furans with activated MnO₂.

In a representative case, treatment of 1,3-dithienylbenzo[c]furan (1a) with four equivalents of MnO₂ in dichloromethane at room temperature for four hours gave the corresponding diketone 2a in 92% yield.¹⁴ However, under identical conditions, the corresponding benzo[c]thiophene 1a' failed to give diketone 2a and, even under reflux conditions, the starting material 1a' was recovered unchanged.

The ease with which benzo[c]furan **1a** underwent MnO_2 mediated oxidative ring opening prompted us to undertake a comprehensive study with various benzo[c]furan analogues. We were pleased to find that the MnO_2 -mediated oxidative cleavage could be successful applied to a wide variety of 1,3-diaryl- and 1,3-dihetarylbenzo[c]furans (Table 1). The symmetrical benzo[c]furans **1b**–**d**, on treatment with four equivalents of MnO_2 in dichloromethane at room temperature, readily underwent oxidative ring cleavage to give the corresponding diaroylbenzenes **2b**–**d** in excellent yields (Table 1, entry 1). The nonsymmetrical 1,3-diarylbenzo[c]furans **1e**–**k** similarly underwent cleavage with MnO_2 in very good yields (entry 2). The MnO_2 mediated oxidative ring opening of the veratrole-tethered benzo[c]furans **3a–d** similarly gave the corresponding

Scheme 1 Attempted oxidations of furan 1a and thiophene 1a' with MnO₂

SYNLETT 2014, 25, 1896–1900 Advanced online publication: 01.07.2014 DOI: 10.1055/s-0034-1378352; Art ID: st-2014-d0286-l © Georg Thieme Verlag Stuttgart · New York diketones **4a–d** in 86–91% yield (entry 3). Cleavage of the dibenzothiophene-linked benzo[c]furans **5a** and **5b** with MnO₂ in dichloromethane at room temperature gave the corresponding 1,2-diaroylbenzenes **6a** and **6b** in 82 and 85% yield, respectively (entry 4). Note that the similar oxidative cleavage of benzo[c]furans **5a** and **5b** with MCPBA⁸ gave the 1,2-diaroylbenzenes **6a** and **6b** in low yields as a result of oxidation of the dibenzothiophene unit. Obviously, the mild oxidizing nature of MnO₂ permits selective oxidation of the benzo[c]furan moiety without any effect on the dibenzothiophene unit. The MnO₂-mediated oxidative ring-opening reaction was also successfully applied to the bithiophene-containing benzo[c]furan **7**, to give the diketone **8** in 86% yield (entry 5), and to the biphenyl-containing benzo[c]furans **9a** and **9b** (entry 6). The benzo[*b*]thiophene-containing benzo[*c*]furans **11a** and **11b** also readily underwent the oxidative ring-opening reaction to give the corresponding products **12a** and **12b** in good yields (entry 7). As expected, the reactions of the triphenylamine-containing benzo[*c*]furans **13a** and **13b** and the *N*-hexylcarbazole-containing benzo[*c*]furans **15a** and **15b** with MnO₂ gave the corresponding diketones in 81–87% yield (entries 8 and 9). Under identical conditions, various other benzo[*c*]furans **17**, **19**, and **21** gave the corresponding diketones **18**, **20**, and **22** in 83–92% yields (entries 10–12). However, attempts at oxidative cleavage of the symmetrical 2,5-diarylfurans **23a** and **23b** with MnO₂ were unsuccessful and, even under reflux conditions, the starting materials were recovered unchanged (entry 13).

Table 1	Oxidations	of Benzo[c]furans	with MnO ₂ ^a
able 1	Oxidations	of Benzo[c]furans	with MIO_2

Table 1 Oxidations of Benzo[c]furans with MnO₂^a (continued)

^a Reaction conditions: substrate (1 equiv), MnO₂ (4 equiv), anhyd CH₂Cl₂, r.t., ~4 h.

To understand the efficacy of MnO_2 -mediated oxidative cleavage in more detail we needed to compare the MnO_2 -mediated ring-opening reactions of benzo[*c*]furans with those mediated by other oxidizing agents. Accordingly, we examined the reactions of representative benzo[*c*]furans with LTA, MCPBA, and MnO₂, and the yields obtained are shown in Table 2.

Table 2 Comparative Study on the Oxidation of Benzo[c] furanswith LTA, MCPBA, and MnO2

Entry	Substrate	Product	Yield ^a (%) Pb(OAc) ₄ ^b	MCPBA ^c	MnO ₂ ^d
1	1a	2a	83	89	92
2	1c	2c	84	92	94
3	5a	6a	80	41	82
4	5b	6b	83	44	85
5	13a	14a	24	83	84
6	15a	16a	25	82	81

^a Isolated yield

^b Reactions were carried out by using LTA (2 equiv) in THF.

^c Reactions were carried out by using MCPBA (1.5 equiv) in CH₂Cl₂

^d Reactions were carried out by using MnO_2 (4 equiv) in CH_2Cl_2

In the case of the symmetrical 1,3-diarylbenzo[c]furans **1a** and **1c**, similar yields of diketones **2a** and **2c** were obtained with all three oxidizing agents (Table 2, entries 1 and 2). In the case of the dibenzothiophene-linked benzo[c]furans **5a** and **5b**, better yields of the diketones were obtained by using LTA or MnO₂ than with MCPBA (entries 3 and 4). Oxidative ring-opening reactions of the triphenylamine- and *N*-hexylcarbazole-capped benzo[c]furans **13a** and **15a** with MnO₂ and with MnO₂ gave comparable yields, whereas the corresponding reactions with LTA gave low yields of the corresponding diketones **14a** and **16a** (entries 5 and 6).

A plausible mechanism for the formation of 1,2-diaroylbenzenes **2** from benzo[c] furans **1** by MnO_2 -mediated oxidation is shown in Scheme 2.

Scheme 2 Proposed mechanism for the oxidative cleavage of 1,3-disubstituted benzo[c] furans by MnO_2

Nucleophilic attack by MnO_2 on benzo[c]furan 1, followed by intramolecular cyclization, gives intermediate 26, which undergoes elimination of MnO to give the diaroylbenzene 2.

In summary, we have developed a mild MnO_2 -mediated oxidative ring opening of symmetrical or unsymmetrical 1,3-diarylbenzo[*c*]furans at room temperature. The reaction generally proceeds in excellent yields. In most cases, yields of the 1,2-di(het)aroylbenzenes obtained by the MnO_2 -mediated oxidative cleavage are comparable to or better than those produced by existing methods.

Acknowledgment

We thank the Department of Science and Technology (DST), New Delhi, for financial support. R.S. and M.N. thank the University Grants Commission (UGC) and the Council of Scientific and Industrial Research (CSIR), New Delhi, for fellowships. The authors thank the Department of Science and Technology Funds for the Improvement of Science and Technology (DST-FIST) for NMR facilities.

Supporting Information for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.

References and Notes

- (a) Lorcy, D.; Cava, M. P. Adv. Mater. (Weinheim, Ger.)
 1992, 4, 562. (b) Bäuerle, P.; Götz, G.; Emerle, P.; Port, H. Adv. Mater. (Weinheim, Ger.) 1992, 4, 564. (c) Musinanni, S.; Ferraris, J. P. J. Chem. Soc., Chem. Commun. 1993, 172.
- (2) (a) Kiebooms, R. H. L.; Adriaensens, P. J. A.; Vanderzande, D. J. N.; Gelan, J. M. J. V. J. Org. Chem. 1997, 62, 1473.
 (b) Mohanakrishnan, A. K.; Lakshmikantham, M. V.; McDougal, C. D.; Cava, M. P.; Baldwin, J. W.; Metzger, R. M. J. Org. Chem. 1998, 63, 3105. (c) Amaladass, P.; Arul Clement, J.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2008, 3798.
- (3) Meek, S. T.; Nesterov, E. E.; Swager, T. M. Org. Lett. 2008, 10, 2991.
- (4) (a) Sygula, A.; Sugula, R.; Rabideau, P. W. Org. Lett. 2005, 7, 4999. (b) Rainboldt, J. E.; Miller, G. P. J. Org. Chem. 2007, 72, 3020. (c) Chun, D.; Cheng, Y.; Wudl, F. Angew. Chem. Int. Ed. 2008, 47, 8380. (d) Paraskar, A. S.; Reddy, A. R.; Patra, A.; Wijsboom, Y. H.; Gidron, O.; Shimon, L. J. W.; Leitus, G.; Bendikov, M. Chem. Eur. J. 2008, 14, 10639. (e) Mohanty, A. K.; Sen, S. K.; Banerjee, S. J. Appl. Polym. Sci. 2011, 122, 3038. (f) Kuninobu, Y.; Seiki, T.; Kanamaru, S.; Nishina, Y.; Takai, K. Org. Lett. 2010, 12, 5287. (g) Parkhurst, R. R.; Swager, T. M. J. Am. Chem. Soc. 2012, 134, 15351.
- (5) (a) Mohanakrishnan, A. K.; Amaladass, P. *Tetrahedron Lett.* 2005, *46*, 7201. (b) Mohanakrishnan, A. K.; Amaladass, P.; Senthil Kumar, N. *Tetrahedron Lett.* 2008, *49*, 4792.
 (c) Amaladass, P.; Senthil Kumar, N.; Mohanakrishnan, A. K. *Tetrahedron* 2008, *64*, 7992. (d) Senthil Kumar, N.; Mohanakrishnan, A. K. *Tetrahedron* 2010, *66*, 5660.
- (6) Sivasakthikumaran, R.; Nandakumar, M.; Mohanakrishnan, A. K. J. Org. Chem. 2012, 77, 9053.
- (7) (a) Pierlot, C.; Nardello, V.; Schrive, J.; Matrille, C.; Barbillat, J.; Sambret, B.; Aubry, J. M. J. Org. Chem. 2002, 67, 2418. (b) Catir, M.; Kilic, H. Synlett 2003, 1180.
 (c) Matsumoto, M.; Yamada, M.; Watanabe, N. Chem. Commun. 2005, 483. (d) Sels, B. F.; De Vos, D. E.; Jacobs, P. A. J. Am. Chem. Soc. 2007, 129, 6916. (e) Hsu, D.-T.; Lin,

C.-H. J. Org. Chem. **2009**, 74, 9180. (f) Hang, J.; Ghorai, P.; Finkenstaedt-Quinn, S. A.; Findik, I.; Sliz, E.; Kuwata, K. T.; Dussault, P. H. J. Org. Chem. **2012**, 77, 1233.

- (8) Nandakumar, M.; Sivasakthikumaran, R.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2012, 3647.
- (9) (a) Letizia, J. A.; Cronin, S.; Ponce Ortiz, R.; Facchetti, A.; Ratner, M. A.; Marks, T. J. *Chem. Eur. J.* 2010, *16*, 1911.
 (b) Steinberger, S.; Mishra, A.; Reinold, E.; Müller, C. M.; Uhrich, C.; Pfeiffer, M.; Bäuerle, P. *Org. Lett.* 2011, *13*, 90.
 (c) Mei, Q.; Wang, L.; Tian, B.; Tong, B.; Weng, J.; Zhang, B.; Jiang, Y.; Huang, W. *Dyes Pigm.* 2013, *97*, 43. (d) Liu, Y.; Zhang, F.; He, C.; Wu, D.; Zhuang, X.; Xue, M.; Liu, Y.; Feng, X. *Chem. Commun.* 2012, *48*, 4166. (e) Harikrishna, K.; Mukkamala, R.; Hinkelmann, B.; Sasse, F.; Aidhen, I. S. *Eur. J. Org. Chem.* 2014, 1066.
- (10) Soldatenkov, A. T.; Polyanskii, K. B.; Kolyadina, N. M.; Soldatova, S. A. Chem. Heterocycl. Compd. (N. Y., NYU. S.) 2009, 45, 633.
- (11) Aiello, F.; Garofolo, A.; Grande, F. *Tetrahedron* **2010**, *66*, 274.
- (12) Kamimura, A.; Komatsu, H.; Moriyama, T.; Nozaki, Y. *Tetrahedron* **2013**, *69*, 5968.
- (13) Nammalvar, B.; Fortenberry, C.; Bunce, R. A.; Lageshetty, S. K.; Ausman, K. D. *Tetrahedron Lett.* **2013**, *54*, 2010.
- (14) 1,2-Phenylenebis(2-thienylmethanone) (2a); Typical Procedure MnO₂ (0.57 g, 7.09 mmol) was added to a stirred solution of

benzo[c]furan 1a (0.5 g, 1.77 mmol) in CH₂Cl₂ (20 mL), and the mixture was stirred at r.t until the benzo[c]furan was consumed (~4 h). The mixture was then filtered through Celite and the residue was washed with CH_2Cl_2 (2 × 10 mL). The combined filtrate was concentrated under reduced pressure and the residue was purified by column chromatography (silica gel; 5% EtOAc-hexane) to give a brown solid; yield: 0.48 g (92%); mp 150-152 °C (Lit. see ref. 1b 149-150 °C); IR (KBr): 1623, 1582, 1568, 1514, 1416 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.66-7.64$ (m, 2 H, ArH), 7.58–7.56 (m, 4 H, ArH), 7.39–7.38 (m, 2 H, ArH), 6.99–6.96 (m, 2 H, ArH); ¹³C NMR (75 MHz, CDCl₃): $\delta = 188.3, 144.0, 139.4, 135.1, 135.0, 130.6, 129.2, 128.1;$ DEPT-135 (75 MHz, CDCl₃): δ = 135.2, 135.0, 130.6, 129.2, 128.1; HRMS (EI): m/z [M⁺] calcd for C₁₆H₁₀O₂S₂: 298.0122; found: 298.0121.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.