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ABSTRACT 

We report the dynamic kinetic resolution (DKR) of various secondary alcohols by the combination of 

a ruthenium catalyst and an anionic surfactant-activated lipoprotein lipase. The DKR reactions 

performed under totally base-free conditions at room temperature provided the products of excellent 

enantiopurities (9199% ee or greater) in high yields (92−99%). More importantly, the DKR of -

arylallyl alcohols was achieved for the first time with high yields (87−91%).
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Dynamic kinetic resolution (DKR) provides a powerful methodology for the transformations of 

racemic substrates to enantiomerically-enriched products.1 Since the first report by the Williams group 

on the coupling of a metal-catalyzed racemization and an enzymatic kinetic resolution for DKR,2 

various metal complexes have been reported to be useful as racemization catalysts for the 

chemoenzymatic DKR of secondary alcohols.3 Among them, cyclopentadienylruthenium complexes 

13 were most widely utilized in DKR4 (Scheme 1). The Shvo’s dimeric ruthenium complex 1 needs 

thermal activation into two active monomeric forms, thus requiring a thermally stable enzyme such as 

Candida antarctica lipase B (CALB) as the partner for the efficient DKR.5 Ruthenium catalysts 2a-d 

reported by our group6 display good activities at ambient temperature, which are thus compatible with 

a wider range of enzymes in DKR. The ruthenium catalyst 3 also displays a good activity at ambient 

temperature. 7 Ru catalysts 2 and 3, however, require a base (KOtBu or K2CO3) for the activation, 

which makes the DKR process less practical. Thus, we have tried to develop a ruthenium catalyst 

undergoing base-free activation at ambient temperature. The first example was a dimeric Ru complex 

4 displaying good racemization activity under the base-free conditions if photoactivated.8 However, 

the DKR with 4 needed still a weak base to remove acid formed as byproduct. We now report that 

ruthenium catalyst 59 is a good alternative for the base-free racemization and DKR of secondary 

alcohols at ambient temperature.10 In particular, this ruthenium catalyst is useful for the DKR of -

substituted allyl alcohols that was previously difficult to achieve with other Ru catalysts.6b, 11

Scheme 1. Dynamic kinetic resolution of secondary alcohols and ruthenium catalysts
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At first, we examined the racemization of (S)-1-phenylethanol with 5 in the absence of base. The 

racemization in the presence of 4 mol% 5 proceeded to completion within 30 min at room temperature 

(Scheme 2). At the early stage of racemization, the color of solution was changed from yellow to red. 
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3

This color change implies the formation of new ruthenium complex 7 as the active catalyst form 

leading to racemization (Scheme 3). The active catalyst 7 then reacts with nonracemic alcohol to give 

ruthenium-alkoxide complex 8, which undergoes decarbonylation and reductive elimination to yield 

ruthenium-ketone complex 10 via 9. The subsequent reduction of ketone coordinated to ruthenium 

leads to racemic alkoxide complex 11. The alkoxide exchange then gives ruthenium-alkoxide complex 

9 with release of racemic alcohol.12 It is noted that the racemization activity of 5 is rather surprising 

because the Bäckvall group reported that the pentaphenylcyclopentadienylruthenium analogue of 5 

was thermally stable and displayed no racemization activity.12 As a rationale of the racemization 

activity of 5, we suggest that the conversion of 5 into its active catalyst form 7 via 16-electron complex 

6 could take place owing to the presence of electron-rich cyclopentadienyl ring.

Scheme 2. Racemization of (S)-1-phenylethanol with Ru catalyst
OH OH

toluene (0.5 M)
30 min, RT

Ru catalyst 5 (4 mol%)

0.1 mmol
>99% ee

less than 1 % ee

Scheme 3. Proposed pathway for the racemization of (S)-1-phenylethanol
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Scheme 4. DKR of 1-phenylethanol
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OH OAc

12a 13a
(96% yield, 99% ee)

Ru catalyst 5 (4 mol%)
LPL-D1 (20 mg/mmol)

isopropenyl acetate (1.5 eq)
MS 4Ao (300 mg/mmol)

toluene, 25 oC, 5 h

The successful racemization of (S)-1-phenylethanol with 5 encouraged us to explore the base-free 

DKR of racemic 1-phenylethanol 12a by the combination of 5 and an (R)-selective lipoprotein lipase 

(LPL) from Burkholderia species. LPL was treated with anionic surfactant before use to ensure its 

high activity in organic solvent. In our earlier study,13 it was found that the anionic surfactant-treated 

LPL (LPL-D1) was three orders of magnitude more active than its native counterpart in toluene. The 

DKR reaction of racemic 1-phenylethanol was then performed with a solution containing substrate 

(0.2 mmol), LPL-D1 (20 mg/mmol), 5 (4 mol%), isopropenyl acetate (0.3 mmol), and MS 4Å (60 mg) 

in toluene (0.5 M) at room temperature. The DKR was complete in 5 h and gave the product of 

excellent enantiopurity (99 % ee ) with high yield (96 %) (Scheme 4). The results thus proved that the 

base-free DKR was successful.

Other secondary benzylic alcohols, 12b-f with a para-substituent on the benzene ring, were also 

subject to DKR under base-free conditions. All of them were transformed into the products of excellent 

enantiopurities (99 % ee or greater) with high yields (95−97 %), although two of them, 12e and 12f, 

required a longer reaction time (entries 2−6, Table 1). The need for a longer reaction time implies that 

electron-poor substrates are less reactive in both Ru-catalyzed racemization and lipase-catalyzed 

acylation. The results from the DKR of 12g with an electron-withdrawing meta-substituent were 

similar to those from the DKR of 12e (compare entries 5 and 7, Table 1). It is expected that other 

secondary benzylic alcohols with a meta-substituent also should react similarly to their para-

substituted counterparts in DKR. Secondary benzylic alcohols with an ortho-substituent were not 

tested for DKR because they are poor substrates of LPL. The chloroethyl carbinol 12h reacted even 

more slowly owing to the presence of an electron-withdrawing, relatively larger alkyl substituent at 

the hydroxymethine center, thus requiring the use of a larger amount of enzyme and much longer 

reaction time (entry 8, Table 1). Although the yield of 13h was high, the enantioselectivity was slightly 

lower. On the other hand, non-benzylic alcohols, 12i and 12j, were as good as benzylic alcohols in 

DKR (entries 9 and 10, Table 1). Excellent yields and enantioselectivities were obtained. The DKR of 

naphthyl carbinol 12k was also successful with excellent yield and enantioselectivity (entry 11, Table 

1). 

In the previous study,6b we found that -phenylallyl alcohol 12l was poor substrate in the DKR 

employing 2a as the racemization catalyst. This DKR performed in the presence of one equivalent of 

Na2CO3 provided 62% yield with a relatively large amount of saturated ketone (38% yield) as the side 
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product. In the present work, we also found that a significant amount of saturated ketone (23% yield) 

was produced in the DKR of 12l employing 2d as the racemization catalyst in the presence of one 

equivalent of K2CO3. It is noted that 2d requires one equivalent of K2CO3 for pre-activation and DKR. 

It was previously reported that the rates in the Ru-catalyzed isomerization of allylic alcohols to 

saturated ketone were dramatically enhanced by K2CO3.14 We also observed such a dramatic rate 

enhancement by K2CO3 in the Ru-catalyzed isomerization of 12l. In the presence of ruthenium catalyst 

2d (4 mol%) and K2CO3 (1 equiv) in toluene at room temperature, 12l was isomerized almost 

quantitatively to saturated ketone within 6 h. Under the same conditions without base, however, no 

significant isomerization took place. These results thus suggest that the use of base-free racemization 

catalyst system should lead to the successful DKR of 12l. As expected, the base-free DKR of 12l with 

5 provided high yield (91%) with a small amount of ethyl phenyl ketone (7%) (entry 12, Table 1). To 

the best of our knowledge, this is the first successful DKR of 12l that has been reported up to date. 

This success encouraged us to further test the p-substituted derivatives of 12l in DKR. Allylic alcohols 

with an electron-donating substituent, 12m and 12n, displayed also satisfactory performance. Products, 

13m and 13n, were obtained in high yields (9091% yield) with good enantiopurities (9596% ee) 

(entries 13 and 14, Table 1). In contrast to these results, allylic alcohols with an electron-withdrawing 

substituent, 12o and 12p, were problematic and required a lower amount of enzyme for giving a good 

enantioselectivity. The DKR reactions of these alcohols thus proceeded rather slowly and provided 

relatively lower yields and enantiomeric excesses (entries 15 and 16, Table 1). Finally, the DKR of -

substituted allyl alcohol 12q proceeded successfully and provided enantiomerically pure 13q in 94% 

yield (entry 17, Table 1).

Table 1. DKR of secondary alcoholsa

Entry Substrate
LPL-D1

(mg/mmol)

t 

(h)
Productb

Yieldc 

(%)

eed 

(%)

1
 

OH

12a 20 5
OAc

13a 96 99

2
 

OH

12b 20 6
OAc

13b 96 >99

3
OMe

OH

12c 20 6
OMe

OAc

13c 95 99

4
 

OH

F

12d 20 6
 

OAc

F

13d 97 99
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6

5
 Cl

OH

12e 20 12
 Cl

OAc

13e 95 >99

6
 Br

OH

12f 20 12
 Br

OAc

13f 97 >99

7
OH

Cl 12g 20 12
OAc

Cl 13g 93 >99

8 Cl

OH

12h 40 24 Cl

OAc

13h 95 95

9
 

OH 12i 20 6
 

OAc 13i 92 >99

10
 

OH

12j 20 12
 

OAc

13j 94 97

11
 

OH

12k 20 9
 

OAc

13k 99 >99

12
 

OH

12l 20 6
 

OAc

13l 91 93

13
 

OH

12m 20 9
 

OAc

13m 90 96

14
OMe

OH

12n 20 9
OMe

OAc

13n 91 95

15
 Cl

OH

12o 10 48

 Cl

OAc

13o 89 91

16
 Br

OH

12p 10 48
 Br

OAc

13p 87 91

17
OH

12q 20 12
OAc

13q 94 >99

a Alcohol (0.2 mmol), LPL-D1 (10‒40 mg/mmol), Ru catalyst 5 (4 mol%), isopropenyl acetate (0.3 

mmol), and MS 4Å (60 mg) were stirred in toluene (0.5 M) at room temperature under an argon 

atmosphere. b The signs of optical rotations and the chromatogram patterns from chiral HPLC analyses 

indicate that all the products have (R)-stereochemistry. c Isolated yield. d Determined by chiral HPLC.
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In summary, we explored the DKR of various secondary alcohols employing ruthenium complex 5 

as the racemization catalyst and LPL-D1 as the resolution catalyst under totally base-free conditions. 

The DKR reactions of simple secondary alcohols proceeded smoothly and provided high yields and 

excellent enantiomeric excesses. Furthermore, we have demonstrated for the first time that the DKR 

of -arylallyl alcohols provided good to high yields. Our DKR process is simpler and easier to perform 

compared to those requiring base for the pre-activation of racemization catalyst. Thus, we have 

established a useful protocol for the base-free DKR of a wider range of secondary alcohols, leading to 

the synthesis of enantiomerically-enriched esters.15

EXPERIMENTAL SECTION

General procedure for dynamic kinetic resolution. In a flame-dried Schlenk flask, substrate (0.2 

mmol), LPL-D116 (10−20 mg/mmol), ruthenium catalyst 517 (4 mol%), and molecular sieves (4Å, 

powder, 60 mg) were added under an argon atmosphere, followed by addition of distilled toluene (400 

μL) and isopropenyl acetate (0.3 mmol, 34 μL). The reaction mixture was stirred at room temperature 

for 5–48 h. After the reaction was completed, the mixture was filtered through a celite pad and 

concentrated under reduced pressure, and purified by column chromatography (n-hexane/EtOAc = 

10:1).

  Analytical data of DKR products. (R)-1-Phenylethyl acetate (13a): 31.6 mg (96% yield, 99% ee); 

[α]25
D = + 96.3 (c = 1.0, CHCl3) [lit.18 [α]25

D = + 102 (c = 1, CHCl3, >99% ee)]; 1H NMR (CDCl3, 300 

MHz): δ 7.41-7.27 (m, 5H), 5.92-5.85 (q, J = 6.6 Hz, 1H), 2.07 (s, 3H), 1.55-1.53 (d, J = 6.6 Hz, 3H); 

13C{1H} NMR (CDCl3, 75 MHz): 170.3, 141.7, 128.5, 127.0, 125.3, 72.3, 22.2, 21.4; HPLC conditions: 

(R,R)-Whelk-O1, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, UV = 217 nm; retention times: 

4.91 min (S), 8.59 min (R). The NMR data are in good agreement with those reported in the literature.18

(R)-1-(p-Tolyl)ethyl acetate (13b): 34.4 mg (96% yield, >99% ee); [α]25
D = + 111.5 (c = 1.0, CHCl3) 

[lit.17 [α]25
D = + 113 (c = 0.87, CHCl3, 98% ee)]; 1H NMR (CDCl3, 300 MHz): δ 7.23-7.16 (m, 2H), 

7.09-7.02 (m, 2H), 5.81-5.75 (q, J = 6.6 Hz, 1H), 2.28 (s, 3H), 2.05 (s, 3H), 1.46-1.43 (d, J = 6.6 Hz, 

3H); 13C{1H} NMR (CDCl3, 75 MHz): 170.4, 138.7, 137.6, 129.5, 125.7, 72.4, 22.2, 21.4, 21.1; HPLC 

conditions: (R,R)-Whelk-O1, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, UV = 217 nm; 

retention times: 4.91 min (S), 10.04 min (R). The NMR data are in good agreement with those reported 

in the literature.18

(R)-1-(4-Methoxyphenyl)ethyl acetate (13c): 36.9 mg (95% yield, 99% ee); [α]25
D = + 107.1 (c = 1.0, 

CHCl3) [lit.18 [α]25
D = + 121.7 (c = 1, CHCl3, 99% ee)]; 1H NMR (CDCl3, 300 MHz): δ 7.30-7.20 (m, 

2H), 6.83-6.78 (m, 2H), 5.80-5.74 (q, J = 6.6 Hz, 1H), 3.79 (s, 3H), 2.04 (s, 3H), 1.46-1.44 (d, J = 6.6 

Hz, 3H); 13C{1H} NMR (CDCl3, 75 MHz): 170.4, 159.3, 133.8, 127.6, 113.8, 72.0, 55.3, 22.0, 21.4; 

Page 7 of 14

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

HPLC conditions: (R,R)-Whelk-O1, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, UV = 217 

nm; retention times: 6.81 min (S), 19.10 min (R). The NMR data are in good agreement with those 

reported in the literature.18

(R)-1-(4-Fluorophenyl)ethyl acetate (13d): 37.3 mg (97% yield, 99% ee); [[α]25
D = + 103.6 (c = 1.0, 

CHCl3) [lit.18 [α]25
D = + 113 (c = 0.9, CHCl3, 99% ee)]; 1H NMR (CDCl3, 300 MHz): δ 7.34-7.29 (m, 

2H), 7.06-6.99 (m, 2H), 5.89-5.82 (q, J = 6.6 Hz, 1H), 2.06 (s, 3H), 1.46-1.44 (d, J = 6.6 Hz, 3H); 

13C{1H} NMR (CDCl3, 75 MHz): 169.2, 162.9, 159.7, 136.5, 127.2, 114.5, 114.2, 70.6, 21.2, 20.4; 

HPLC conditions: (R,R)-Whelk-O1, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, UV = 217 

nm; retention times: 4.85 min (S), 8.30 min (R). The NMR data are in good agreement with those 

reported in the literature.18

(R)-1-(4-Chlorophenyl)ethyl acetate (13e): 37.7 mg (95% yield, >99% ee); [α]25
D = + 71.2 (c = 1.0, 

CHCl3) [lit.18 [α]25
D = + 80 (c = 1.25, CHCl3, 99% ee)]; 1H NMR (CDCl3, 300 MHz): δ 7.37-7.24 (m, 

4H), 5.87-5.80 (q, J = 6.6 Hz, 1H), 2.05 (s, 3H), 1.48-1.46 (d, J = 6.6 Hz, 3H); 13C{1H} NMR (CDCl3, 

75 MHz): 170.2, 140.2, 133.6, 128.7, 127.5, 71.6, 22.2, 21.3; HPLC conditions: (R,R)-Whelk-O1, n-

hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, UV = 217 nm; retention times: 4.95 min (S), 10.62 

min (R). The NMR data are in good agreement with those reported in the literature.18

(R)-1-(4-Bromophenyl)ethyl acetate (13f): 47.3 mg (97% yield, >99% ee); [α]25
D = + 94.3 (c = 1.0, 

CHCl3) [lit.18 [α]25
D = + 91 (c = 1, CHCl3, 99% ee)]; 1H NMR (CDCl3, 300 MHz): δ 7.48-7.45 (m, 

2H), 7.24-7.21 (m, 2H), 5.85-5.79 (q, J = 6.6 Hz, 1H), 2.06 (s, 3H), 1.52-1.49 (d, J = 6.6 Hz, 3H); 

13C{1H} NMR (CDCl3, 75 MHz): 170.2, 140.8, 131.6, 127.9, 121.7, 71.6, 22.1, 21.3; HPLC conditions: 

(R,R)-Whelk-O1, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, UV = 217 nm; retention times: 

5.00 min (S), 11.81 min (R). The NMR data are in good agreement with those reported in the 

literature.18

(R)-1-(3-Chlorophenyl)ethyl acetate (13g): 37.2 mg (93% yield, >99% ee); [α]25
D = + 95.3 (c = 1.0, 

CHCl3) [lit.19 [α]25
D = + 103.0 (c = 1.05, CHCl3, 95% ee)]; 1H NMR (CDCl3, 300 MHz): δ 7.36-7.22 

(m, 4H), 5.88-5.82 (q, J = 6.6 Hz, 1H), 2.06 (s, 3H), 1.55-1.52 (d, J = 6.6 Hz, 3H); 13C{1H} NMR 

(CDCl3, 75 MHz): 172.0, 145.6, 136.3, 131.7, 129.9, 128.1, 126.1, 73.4, 24.1, 23.1; HPLC conditions: 

(R,R)-Whelk-O1, n-hexane/2-propanol = 90/10, flow rate = 0.5 mL/min, UV = 217 nm; retention times: 

8.01 min (S), 12.13 min (R). The NMR data are in good agreement with those reported in the 

literature.19

(R)-3-Chloro-1-phenylpropyl acetate (13h): 40.6 mg (95% yield, 95% ee); [α]25
D = + 53.8 (c = 1.0, 

CHCl3) [lit.6g [α]25
D = - 58.2, (S)-form (c = 1.34, CHCl3)]; 1H NMR (CDCl3, 300 MHz): δ 7.31-7.18 

(m, 5H), 5.88-5.83 (m, 1H), 3.50-3.35 (m, 2H), 2.36-2.28 (m, 1H), 2.15-2.01 (m, 1H), 1.97 (s, 3H); 
13C{1H} NMR (CDCl3, 75 MHz): 170.0, 129.7, 127.5, 125.3, 72.8, 42.6, 40.6, 38.7, 21.2; HPLC 

conditions: (R,R)-Whelk-O1, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, UV = 217 nm; 
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9

retention times: 5.64 min (S), 9.43 min (R). The NMR data are in good agreement with those reported 

in the literature.6g 

(R)-1-Phenylpropan-2-yl acetate (13i): 32.9 mg (92% yield, >99% ee); [α]25
D =  14.1 (c = 1.0, CHCl3) 

[lit.18 [α]D
25 =  5.6 (c = 1, CHCl3, 99% ee)]; 1H NMR (CDCl3, 300 MHz): δ 7.35-7.18 (m, 5H), 5.16-

5.10 (m, 1H), 2.96-2.89 (m, 1H), 2.78-2.71(m, 1H), 2.06 (s, 3H), 1.22-1.20 (d, J = 6.3 Hz, 3H); 13C{1H} 

NMR (CDCl3, 75 MHz): 170.4, 137.6, 129.4, 128.3, 126.4, 71.4, 42.3, 21.2, 19.4; HPLC conditions: 

(R,R)-Whelk-O1, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, UV = 217 nm; retention times: 

5.14 min (S), 5.70 min (R). The data are in good agreement with those reported in the literature.18 

(R)-4-Phenylbutan-2-yl acetate (13j): 36.0 mg (94% yield, 97% ee); [α]25
D = + 12.2 (c = 1.0, CHCl3) 

[lit.18 [α]25
D = + 7.82 (c = 1, CHCl3, 99% ee)]; 1H NMR (CDCl3, 300 MHz): δ 7.28-7.08 (m, 5H), 4.91-

4.81 (m, 1H), 2.61-2.53 (m, 2H), 1.96 (s, 3H), 1.86-1.53 (m, 2H), 1.19-1.17 (d, J = 6.3 Hz, 3H); 

13C{1H} NMR (CDCl3, 75 MHz): 170.8, 141.6, 129.3, 128.5, 125.0, 71.2, 37.6, 31.9, 21.4, 20.1; HPLC 

conditions: (R,R)-Whelk-O1, n-hexane/2-propanol = 99/1, flow rate = 0.5 mL/min, UV = 217 nm; 

retention times: 12.11 min (S), 13.56 min (R). The NMR data are in good agreement with those 

reported in the literature.18 

(R)-1-(Naphthalen-2-yl)ethyl acetate (13k): 42.3 mg (99% yield, >99% ee); [α]25
D = + 121.6 (c = 1.0, 

CHCl3) [lit.18 [α]22
D = + 122 (c = 1, CHCl3, >99% ee)]; CHCl3)]; 1H NMR (CDCl3, 300 MHz): δ 7.90-

7.80 (m, 4H), 7.50-7.43 (m, 3H), 6.08-6.02 (q , J = 6.6 Hz, 1H), 2.04 (s, 3H), 1.41-1.39 (d, J = 6.6 Hz, 

3H); 13C{1H} NMR (CDCl3, 75 MHz): 170.4, 139.0, 133.0, 128.6, 126.9, 126.3, 125.4, 124.1, 123.3, 

71.4, 22.2, 21.4; HPLC conditions: Chiracel-OD, n-hexane/2-propanol = 99/1, flow rate = 0.5 mL/min, 

UV = 217 nm; retention times: 20.27 min (S), 16.64 min (R). The NMR data are in good agreement 

with those reported in the literature.18 

(R)-1-Phenylallyl acetate (13l): 31.9 mg (91% yield, 93% ee); [α]25
D = + 37.0 (c = 1.0, CHCl3) [lit.20 

[α]25
D = + 30.42(c = 0.48, CHCl3), 96% ee]; 1H NMR (CDCl3, 300 MHz): δ 7.27-7.25 (m, 5H), 6.19 

(d, J = 5.9 Hz, 1H), 6.00-5.88 (m, 1H), 5.25-5.16 (m, 2H), 2.03 (s, 3H); 13C{1H} NMR (CDCl3, 75 

MHz): 168.9, 138.0, 135.4, 127.5, 127.1, 126.1, 115.9, 75.2, 20.2; HPLC conditions: (R,R)-Whelk-

O1, n-hexane/2-propanol = 98/2, flow rate = 0.5 mL/min, UV = 217 nm; retention times: 9.79 min (S), 

13.45 min (R). The NMR data are in good agreement with those reported in the literature.20

(R)-1-(p-Tolyl)allyl acetate (13m): 34.2 mg (90% yield, 96% ee); [α]25
D = + 56.4 (c = 1.0, CHCl3) 

[lit.21 [α]25
D = - 224 (c = 0.17, CHCl3), 97% ee for (S)-enantiomer]; 1H NMR (CDCl3, 300 MHz): δ 

7.35-7.15 (m, 4H), 6.23 (d, J = 5.8 Hz, 1H), 6.06-5.95 (m, 1H), 5.31-5.21 (m, 2H), 2.34 (s, 3H), 2.08 

(s, 3H); 13C{1H} NMR (CDCl3, 75 MHz): 169.9, 138.0, 136.5, 136.0, 129.2, 127.1, 116.6, 76.1, 21.2, 

21.1; HPLC conditions: (R,R)-Whelk-O1, n-hexane/2-propanol = 98/2, flow rate = 0.5 mL/min, UV = 

217 nm; retention times: 9.85 min (S), 14.65 min (R); HRMS (EI, magnetic sector) m/z: M+ Calcd for 

[C12H14O2]+ 190.0994; Found 190.0994.
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(R)-1-(4-Methoxyphenyl)allyl acetate (13n): 37.5 mg (91% yield, 95% ee); [α]25
D = + 67.6 (c = 1.0, 

CHCl3) [lit.22 [α]25
D = + 55.42(c = 1.43, CHCl3), 99% ee]; 1H NMR (CDCl3, 300 MHz): δ 7.30-7.26 

(m, 2H), 6.91-6.86 (m, 2H), 6.22 (d, J = 5.6 Hz, 1H), 6.06-5.95 (m, 1H), 5.30-5.21 (m, 2H), 3.80 (s, 

3H), 2.09 (s, 3H); 13C{1H} NMR (CDCl3, 75 MHz): 169.9, 159.6, 136.5, 131.1, 128.7, 116.4, 114.0, 

75.8, 55.3, 21.2; HPLC conditions: (R,R)-Whelk-O1, n-hexane/2-propanol = 98/2, flow rate = 0.5 

mL/min, UV = 217 nm; retention times: 13.83 min (S), 25.95 min (R). The NMR data are in good 

agreement with those reported in the literature.22

(R)-1-(4-Chlorophenyl)allyl acetate (13o): 37.2 mg (89% yield, 91% ee); [α]25
D = + 33.5 (c = 1.0, 

CHCl3) [lit.22 [α]25
D = + 28.0 (c = 1.25, CHCl3), 99% ee]; 1H NMR (CDCl3, 300 MHz): δ 7.34-7.27 

(m, 4H), 6.22 (d, J = 5.8 Hz, 1H), 6.02-5.91 (m, 1H), 5.31-5.24 (m, 2H), 2,11 (s, 3H); 13C{1H} NMR 

(CDCl3, 75 MHz): 169.7, 137.5, 135.9, 134.0, 129.4, 128.8, 117.3, 75.4, 21.1; HPLC conditions: 

(R,R)-Whelk-O1, n-hexane/2-propanol = 98/2, flow rate = 0.5 mL/min, UV = 217 nm; retention times: 

10.36 min (S), 17.73 min (R). The NMR data are in good agreement with those reported in the 

literature.22

(R)-1-(4-Bromophenyl)allyl acetate (13p): 44.6 mg (87% yield, 91% ee); [α]25
D = + 36.2 (c = 1.0, 

CHCl3) [lit.21 [α]D
25 = + 5 (c = 1.43, CHCl3), 53% ee]; 1H NMR (CDCl3, 300 MHz): δ 7.84-7.81 (m, 

2H), 7.25-7.21 (m, 2H), 6.20 (d, J = 5.9 Hz, 1H), 5.98-5.93 (m, 1H), 5.31-5.24 (m, 2H), 2.11 (s, 3H); 

13C{1H} NMR (CDCl3, 75 MHz): 169.7, 138.0, 135.8, 131.7, 128.8, 122.1, 117.3, 75.4, 21.1; HPLC 

conditions: (R,R)-Whelk-O1, n-hexane/2-propanol = 98/2, flow rate = 0.5 mL/min, UV = 217 nm; 

retention times: 10.82 min (S), 17.94 min (R). The NMR data are in good agreement with those 

reported in the literature.20

(R,E)-4-Phenylbut-3-en-2-yl acetate (13q): 35.8 mg (94% yield, >99% ee); [α]25
D = +139.2 (c = 1.0, 

CHCl3) [lit.6b [α]25
D = + 144.5 (c = 1, CHCl3, 98% ee)]; 1H NMR (CDCl3, 300 MHz): δ 7.39-7.24 (m, 

5H), 6.63-6.57 (m, 1H), 6.22-6.15 (m, 1H), 5.55-5.50 (m, 1H), 2.06 (s, 3H), 1.42-1.40 (d, J = 6.5 Hz, 

3H); 13C{1H} NMR (CDCl3, 75 MHz): 170.3, 136.4, 131.7, 128.8, 128.6, 127.9, 126.7, 71.0, 21.4, 

20.4; HPLC conditions: (R,R)-Whelk-O1, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, UV = 

217 nm; retention times: 5.48 min (S), 13.66 min (R). The NMR data are in good agreement with those 

reported in the literature.6b
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