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ABSTRACT: A novel method for the asymmetric cy-
clization of alkyl aryl ethers has been developed. The 
reactions were assumed to proceed via short-lived chiral 
enolate intermediates with a chiral C-O axis to give cy-
clic ethers with tetrasubstituted carbon in up to 99% ee. 
The half-life of racemization of the chiral enolate inter-
mediate was roughly estimated to be ~1 sec at –78 °C.  

We have been interested in asymmetric reactions that 
proceed via enolate intermediates with intrinsic axial 
chirality.1,2 In 1991, we developed an asymmetric induc-
tion via enolate intermediate A with a chiral C-C axis 
(Figure 1a).3 The half-life of racemization of the axially 
chiral enolate A at the reaction temperature (–20 °C) 
was estimated to be ~24 days based on the racemization 
behavior of the corresponding enol methyl ether 1.2b,3 In 
2000, we developed an asymmetric induction via enolate 
intermediate B with a chiral C-N axis (Figure 1b).1a The 
half-life of racemization of the axially chiral enolate B at 
the reaction temperature (–78 °C) was determined to be 
22 h based on a measurement of the time-dependent  

Figure 1. Enolates with a) a chiral C-C axis, A, b) a chi-
ral C-N axis, B, and c) a chiral C-O axis, C (this work), 
respectively, as intermediates for asymmetric reactions. 

racemization of enolate B. Enolates A and B have suffi-
cient configurational stability for the asymmetric reac-
tions to take place at the reaction temperatures before 
they undergo significant racemization. On the other 
hand, asymmetric induction via chiral enolate intermedi-
ates with a chiral C-O axis such as C (Figure 1c) was 
expected to be difficult because of their extremely short 
half-lives of racemization. Here, we report the first ex-
ample of asymmetric induction via short-lived chiral 
enolate intermediates with a chiral C-O axis.4 

 

Scheme 1. Strategy for Asymmetric Alkylation via 

Chiral Enolates with a Chiral C-O Axis 

   To realize asymmetric induction via rapidly racemiz-
ing chiral enolates with a chiral C-O axis, we chose the 
five-membered cyclization of chiral alkyl aryl ethers 
(Scheme 1), in which the chiral enolate intermediate is 
expected to undergo intramolecular alkylation immedi-
ately after it is generated. We anticipated that the choice 
of the R group at C(6) might be critical for the asymmet-
ric induction, since this could increase the rotational 
barrier around the chiral C-O axis.5 We initiated the 
study with alkyl aryl ethers 2 (Table 1). Substrates 2 
were readily prepared in optically pure form from readi-
ly available and inexpensive L-ethyl lactate and the cor-
responding phenols by Mitsunobu etherification. Treat-
ment of 2a (R=H) with potassium hexamethyldisilazide 
(KHMDS) in THF at –78 ˚C gave 3a (R=H) in 61% 
yield as a racemate (Table 1, entry 1). Other conditions 
that used various bases (KHMDS, NaHMDS, and 
LiHMDS) and solvents (DMF and toluene) also gave 3a 
as a racemate (data not shown). We then investigated 
substrates 2 with a substituent (R≠H) at C(6). Treatment 
of 2b (R=Me) with KHMDS in THF at –78 ˚C gave 3b 
in 62% yield and 56% ee (entry 2). The reaction in tolu-
ene or DMF/THF (2:1) resulted in a decrease in ee (28% 
ee) or both ee and yield (38% ee, 38% yield), respective-
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ly (entries 3 and 4). While the asymmetric cyclization of 
2b with LiHMDS in THF resulted in the recovery of 2b 
(entry 5), that with NaHMDS gave 3b in 66% yield and 
84% ee (entry 6). The corresponding reaction at –90 ˚C 
slightly improved the ee (87% ee), but diminished the 
yield (37%, entry 7).6 Treatment of 2c (R=i-Pr) with 
NaHMDS in THF at –78 ˚C gave 3c in 82% yield and 
99% ee (Table 1, entry 8). These results indicated that 
the bulkiness of the substituent R at C(6) critically af-
fects the efficiency of the asymmetric cyclization. 
Asymmetric cyclization of 2d (R=SiMe3) and 2e (R=Ph) 
proceeded in a highly enantioselective manner to give 
3d in 97% ee (70% yield) and 3e in 94% ee (60% yield), 
respectively (entries 9 and 10). Substrate 2f (R=Br) un-
derwent asymmetric cyclization with high enantioselec-
tivity (96% ee), but in a low yield (20%) (entry 11). Alt-
hough dihydrobenzofuran 3a (R=H) was obtained as a 
racemate by the present method, it could be alternatively 
obtained in 97% ee by protodesilylation of 3d (Scheme 
2). Similarly, 3f was obtained in an acceptable yield by 

 

Table 1. Asymmetric Five-Membered Cyclization of 

Alkyl Aryl Ethers 2
a 

entry substrate: R base,b solvent product, 
yield (%) 

ee (%)c,  

abs. configd 
1 2a:  H KHMDS, THF 3a,  61 0 
2 2b:  Me KHMDS, THF 3b,  62 56, S 
3 2b:  Me KHMDS, toluene 3b,  60 28, S 
4 2b:  Me KHMDS, 

DMF/THF (2:1) 
3b,  38 38, S 

5 2b:  Me LiHMDS, THF 3b,  trace –e, –e 
6 2b:  Me NaHMDS, THF 3b,  66 84, S 
7f 2b:  Me NaHMDS, THF 3b,  37 87, S 
8 2c:  i-Pr NaHMDS, THF 3c,  82 99, S 
9 2d:  Me3Si NaHMDS, THF 3d,  70 97, S 
10 2e:  Ph NaHMDS, THF 3e,  60 94, –e 
11 2f:  Br NaHMDS, THF 3f,   20 96, S 

a Reactions were run at a substrate concentration of 0.1 M. b 
1.1~2.0 Equivalents of the base was used. For the experimental 
details, see Supporting Information. c Ee’s were determined by 
HPLC analysis with a chiral stationary phase; see Supporting 
Information. d The absolute configuration of 3d was determined 
by chemical correlation with known compound (S)-4. The abso-
lute configurations of 3b, 3c and 3f were deduced based on their 
CD spectra. See Supporting Information. e Not determined. f Run 
at –90 ˚C. 

Scheme 2. Transformation of 3d into 3a, 3f, and (S)-4 

the bromodesilylation of 3d. The absolute configuration 
of 3d was determined to be S by its chemical correlation 
with (S)-4 (Scheme 2).7 Dihydrobenzofuran 4 prepared 
from 3d showed, [α]D

20 = –78 (c 0.15, CHCl3) {lit7 (S)-
4: [α]D

20 = –83 (c 0.23, CHCl3)}. The absolute configu-
rations of 3b, 3c, and 3f were deduced to be S by the 
comparison of their CD spectra with that of 3d. These 
results indicate that the present five-membered cycliza-
tion proceeded with retention of configuration. 

     To gain insights into the mechanism of asymmetric 
induction, the racemization behavior of the supposed 
chiral enolate C’  (Scheme 1) was investigated. We pre-
viously determined the barrier for the racemization of 
axially chiral enolate B (Figure 1b) by periodic quench-
ing of the chiral enolate with methyl iodide.1a,d However, 
this protocol cannot be applied to enolate C’ because it 
would undergo cyclization immediately after it is gener-
ated. Silyl ketene acetal 6 was used as an enolate equiva-
lent to estimate the rotational barrier of the C-O bond as 
a measure of the racemization barrier of chiral enolate 
C’. Compound 5, which has a methoxy group instead of 
a bromo group in 2c, was chosen as the precursor be-
cause its enolate does not undergo cyclization, and in-
stead, could be trapped as a silyl ketene acetal. Com-
pound 5 was treated under conditions identical to those 
for the asymmetric cyclization of 2c (entry 8 of Table 1) 
except for the presence of TBSOTf, to give Z-6 in 79% 
yield. The formation of only Z-isomer (as determined 
from NOESY spectra) indicates that the enolate also has 
a Z-geometry. The two methyl groups of the isopropyl-
groups of Z-6 appeared as two doublets in its 1H NMR 
spectrum measured at –90 °C in d8-toluene, which sug-
gested restricted rotation around the C-O bond. The rota-
tional barrier was determined to be 11.5 kcal/mol by 
VNMR measurement {∆ν (28.6 Hz) and the coalescence 
temperature (–42 ˚C)}. It is not clear whether the rota-
tional barrier in 6 corresponds to the rotation around the 
C(1’)-O bond (red curved arrow) or the C(1)-O bond 
(blue curved arrow). However, the restricted rotation 
around the C-O axis in C’ must be the origin of the pre-
sent asymmetric induction because it is the only chiral 
element in enolate C’. The half-life of racemization of 
chiral enolate C’ is roughly estimated to be ~1 sec at –
78 ˚C, based on the assumption that the racemization 
barrier of chiral enolate C’ is comparable to the rota-
tional barrier of the C-O bond of 6, and that ∆S≠ of the 
unimolecular process for bond rotation is nearly zero.8 

Figure 2. Rotational barriers of the C-O bond of silyl 
ketene acetals 6 and its precursor 5. 
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    A hypothetical model for asymmetric cyclization of 
2c is shown in Scheme 3. Deprotonation of conformer 
2c-I would give enantiomerically enriched enolate C(2c) 
with a chiral C-O axis,9 which would give 3c with reten-
tion of configuration. On the other hand, deprotonation 
of conformer 2c-II would give the product with inver-
sion of configuration via enolate ent-C(2c). Although 
deprotonation of conformer 2c-II seems more accessible 
due to the steric reasons, preferential deprotonation of 
conformer 2c-I might be ascribed to the conformational 
preference of 2c-I over 2c-II10 and/or a chelating effect 
(CH2Br–NaOC(OEt)=C) in the deprotonation step from 

2c-I.11 The chiral enolate C(2c) is assumed to undergo 
intramolecular alkylation immediately after it is generat-
ed to minimize its own racemization. This merely pro-
vides hypothical understanding without experimental 
proof. 

Scheme 3. A Hypothetical Model for the Asymmetric 

Cyclization of 2c 

   Asymmetric six-membered cyclization was examined. 
According to the results of asymmetric five-membered 
cyclization (Table 1, entries 6 and 8), 7b (R1=Me) was 
treated under the optimum conditions for five-membered 
cyclization (NaHMDS in THF at –78 ˚C, Table 1, entry 
8) to give 9b as the only detectable product in 86% yield  

via the β-elimination of hydrogen iodide (Table 2, entry 
2). The use of KHMDS gave dihydrobenzopyran 8b via 
six-membered cyclization in 40% yield as a racemate 
together with 9b in 24% yield (entry 3). Racemic 8c 
(R1=i-Pr) was also obtained by treatment of 7c with 
KHMDS in 17% yield, along with the concomitant for-
mation of 9c in 54% yield (entry 4). The formation of 
racemic products in the six-membered cyclization under 
the conditions for the highly enantioselective five-
membered cyclization indicates that the six-membered 
cyclization proceeds slower than the corresponding five-
membered cyclization (Table 2, entries 3 and 4 vs. Table 
1, entries 2, 6, and 8) (A similar tendency was observed 
for the relative rates of the five- vs. six-membered cy-
clization of axially chiral enolates with a chiral C-N ax-
is. See reference 1d). We then examined substrate 7d, 
and anticipated that the introduction of an additional 
substituent at C(3) would increase the rate of six-
membered cyclization by a buttressing effect.12 The re-
action of 7d possessing two methyl substituents at C(6) 
and C(3) with NaHMDS gave 8d in 15% yield and 52% 
ee and 9d in 16% yield (entry 5). Although the use of 
KHMDS as a base gave racemic 8d in 35% yield, the 
use of LDA gave 8d via six-membered cyclization in 
77% yield and 43% ee (entry 7). The substituents at C(6) 
and C(3) were further examined. Treatment of 7e bear-
ing an isopropyl group at C(6) and a methyl group at 
C(3) with LDA gave 8e in 74% ee and 88% yield with-
out formation of the product from β-elimination (entry 
8). With the use of a bulky base, TMS(t-Bu)NLi,13 8e 
was obtained from 7e in 85% ee and 66% yield (entry9). 
Treatment of 7f possessing a methyl group at C(6) and 
an isopropyl group at C(3) with TMS(t-Bu)NLi gave 8f 
in 66% ee (entry 10). The best result was obtained in the 

 

Table 2. Asymmetric Six-Membered Cyclization of Aryl Alkyl Ether
a
 

entry substrate:  R1, R2 base product 8 (% yield) % ee of 8 b, c product 9 (% yield) 
1 7a :  H,      H NaHMDS 8a (27) 0 9a (39) 
2 7b :  Me,   H NaHMDS 8b (~0) – 9b (86) 
3 7b :  Me,   H KHMDS 8b (40) 0 9b (24) 
4 7c :  i-Pr,   H KHMDS 8c (17) 0 9c (54) 
5 7d :  Me,   Me NaHMDS 8d (15) 52 9d (16) 
6 7d :  Me,   Me KHMDS 8d (35) 0 9d (27) 
7 7d :  Me,   Me LDA 8d (77) 43 9d  (~0) 
8 7e :  i-Pr,   Me LDA 8e (88) 74 9e (~0) 
9 7e :  i-Pr,   Me TMS(t-Bu)NLi 8e (66) 85 9e (~0) 
10 7f :   Me,   i-Pr TMS(t-Bu)NLi 8f (44) 66 9f (~0) 
11 7g :  t-Bu,   Me TMS(t-Bu)NLi 8g (89) 91 9g (~0) 
a Reactions were run at a substrate concentration of 0.1 M. b Ee’s were determined by HPLC analysis with a chiral stationary phase; see 

Supporting Information. c The absolute configuration of 8e was determined to be R by the PGME method. See Supporting Information. The 
absolute configurations of 8d, 8f, and 8g were not determined. 
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asymmetric cyclization of substrate 7g possessing a tert-
butyl group at C(6) and a methyl group at C(3) (entry 
11). Treatment of 7g with TMS(t-Bu)NLi in THF at –78 
˚C gave 8g in 91% ee and 89% yield without formation 
of the product from β-elimination. These results indicate 
that both a bulky substituent at C(6) and an additional 
substituent at C(3) are indispensible for highly enanti-
oselective six-membered cyclization. The absolute con-
figuration of 8e was determined to be R by the PGME 
method14 (see Supporting Information). This indicates 
that the six-membered cyclization of 7e proceeds with 
inversion of configuration. 

   In conclusion, we have developed a novel method for 
asymmetric synthesis via short-lived axially chiral eno-
lates based on the restricted rotation of the C-O bond. 
This method provides a unique entry to chiral cyclic 
ethers with a tetrasubstituted chiral center. These com-
pounds were prepared via asymmetric C-C bond for-
mation by the present method, while they have usually 
been constructed via asymmetric C-O bond formation.15 
Readily available and abundant L-ethyl lactate is used 
not only as a functionalized carbon resource but also as a 
chiral source for the construction of chiral benzofuran 
and chroman derivatives with tetrasubstituted carbon, 
which frequently appear in biologically active prod-
ucts.16,17   

ASSOCIATED CONTENT  

Supporting Information. Experimental procedures and 
spectroscopic data for all new compounds. Variable-
temperature NMR of 6. This material is available free of 
charge via Internet at http://pubs.acs.org. 

AUTHOR INFORMATION 

Corresponding Author 

kawabata@scl.kyoto-u.ac.jp 

ACKNOWLEDGMENT  

We thank Professor Kiyosei Takasu, Faculty of Pharmaceu-
tical Sciences, Kyoto University, for the valuable discus-
sion. This work was partially supported by a grant-in-aid 
for Young Scientists (B) from the Ministry of Education, 
Culture, Sports, Science and Technology, Japan. 

REFERENCES  

(1) For selected references, see: (a) Kawabata, T.; Suzuki, H.; Na-
gae, Y.; Fuji, K. Angew. Chem. Int. Ed. 2000, 39, 2155-2157. (b) 
Kawabata, T.; Kawakami, S.; Majumdar, S. J. Am. Chem. Soc. 2003, 
125, 13012-13013. (c) Kawabata, T.; Matsuda, S.; Kawakami, S.; 
Monguchi, D.; Moriyama, K. J. Am. Chem. Soc. 2006, 128, 15394-
15395. (d) Kawabata, T.; Moriyama, K.; Kawakami, S.; Tsubaki, K. 
J. Am. Chem. Soc. 2008, 130, 4153-4157. (e) Watanabe, H.; Yoshi-
mura, T.; Kawakami, S.; Sasamori, T.; Tokitoh, N.; Kawabata, T. 
Chem. Commun. 2012, 48, 5346-5348. 

(2) For reviews on asymmetric synthesis via axially chiral enolates 
with a dynamic nature, see: (a) Zhao, H.; Hsu, D. C.; Carlier, P. R. 
Synthesis 2005, 1-16. (b) Kawabata, T. ACS Symposium Series 1009. 
“Asymmetric Synthesis and Application of α-Amino Acids”. 2009, 
pp. 31-56. (c) Carlier, P. R.; Hsu, D. C.; Bryson, S. A.; Topics in 
Stereochemistry; Denmark, S. E., Ed.; John Wiley & Sons: New 
York, 2010; Vol. 26, pp53-92. For recent reports on the asymmetric 
reactions via axially chiral enolates, see: (d) Mai, T. T.; 

Viswambharan, B.; Gori, D.; Kouklovsky, C.; Alezra, V. J. Org. 
Chem. 2012, 77, 8797-8801. (e) Mai, T. T.; Branca, M.; Gori, D.; 
Guillot, R.; Kouklovsky, C.; Alezra, V. Angew. Chem. Int. Ed. 2012, 
51, 4981-4984. (f) Fletcher, S. P.; Solá, J.; Holt, D.; Brown, R. A.; 
Clayden, J. Beilstein J. Org. Chem. 2011, 7, 1304-1309. (g) Branca, 
M.; Pena, S.; Guillot, R.; Gori, D.; Alezra, V.; Kouklovsky, C. J. Am. 
Chem. Soc. 2009, 131, 10711-10718. (h) Kolaczkowski, L.; Barnes, 
D. M. Org. Lett. 2007, 9, 3029-3032. (i) MacQuarrie-Hunter, S.; Car-
lier, P. R. Org. Lett. 2005, 7, 5305-5308. (j) Gerona-Navarro, G.; 
Bonache, M. A.; Hernz, R.; García-López, M. T.; González-Muñiz, R. 
J. Org. Chem. 2001, 66, 3538-3547. 

(3) Kawabata, T.; Yahiro, K.; Fuji, K. J. Am. Chem. Soc. 1991, 
114, 9694-9696.  

(4) Asymmetric alkylation of configurationally stable αoxy-
carbanions has been extensively developed. See: (a) Still, W. C.; 
Streekumar, C. J. Am. Chem. Soc. 1980, 102, 1201-1202. (b) Hoppe, 
D.; Hense, T. Angew. Chem. Int. Ed. 1997, 36, 2282-2316. (c) Baek, 
P.; Basu, A.; Gallagher, D. J.; Pack, Y. S.; Thayumanavan, S. Acc. 
Chem. Res. 1996, 29, 552-560. 

(5) Configurationally stable biaryl ethers have been developed. 
See: (a) Fuji, K.; Oka, T.; Kawabata, T.; Kinoshita, T.; Tetrahedron 
Lett. 1998, 39, 1373-1374. (b) Betson, M. S.; Clayden, J.; Worrall, C. 
P. Peace, S. Angew. Chem. Int. Ed. 2006, 45, 5803-5807. 

(6) Dramatic temperature effects in alkylation reactions of benzo-
diazepine enolates via memory of chirality has been reported. See: 
reference 2i and Carlier, P. R.; Zhao, H.; MacQarrie-Hunter S. L.; 
DeGuzman, J. C.; Hsu, D. C. J. Am. Chem. Soc. 2006, 128, 15215-
15220. 

(7) Uozumi, Y.; Kato, K.; Hayashi, T. J. Am. Chem. Soc. 1997, 
119, 5063-5064. 

(8) The racemization barrier of the chiral sodium enolate derived 
from 2c could be quite different from the rotational barrier of 6 be-
cause of the aggregation of the sodium enolate. However, we previ-
ously observed that the racemization barrier of a chiral potassium 
enolate with a C-N axis generated from an amino acid derivative, 
which was determined experimentally by periodic quenching of the 
enolate, was found to be comparable with the rotational barrier of the 
C-N axis of the the corresponding silyl ketene acetal, which was de-
termined by VNMR measurement. See reference 1a.  

(9) Chiral enolate structure C(2c) based on the restricted rotation of 
the C(1’)-O bond was shown tentatively. While that based on the 
restricted rotation of the C(1)-O bond cannot to be excluded, we pre-
fer the former because asymmetric cyclization of 2 either with a 
smaller (Me) or a larger (Me3Si) substituent at C(6) than CH2Br at 
C(2) gave the product with the same absolute configuration (Table 1). 

(10) A conformational search for 2c was performed by a molecular 
modeling search (MCMM 50,000 steps) with an OPLS 2005 force 
field using MacroModel (V. 9.0). Conformer 2c-II was suggested to 
be 5.8 kcal/mol less stable than the most stable conformer 2c-I. For 
details, see Supporting Information. 

(11) The importance of the chelation may be suggested by the de-
crease in the enantioselectivity of the asymmetric cyclization of 2b in 
the presence of 15-crown-5. Treatment of 2b under the conditions 
identical to those in entry 6 of Table 1, except for the addition of 15-
crown-5 (3.0 equivalents), gave 3b in 30% ee and 72% yield. The 
similar chelating effect affecting stereochemistry of enolate alkylation 
was reported. See: Willimas, R. M.; Glinka, T.; Kwast, E. J. Am. 
Chem. Soc. 1988, 110, 5927-5929. 

(12) The electrophilic center (C(2)-CH2-CH2-I) of the chiral eno-
lates generated from 7d-g may be in close proximity to the nucleo-
philic enolate moiety due to the buttressing effect of the substituent at 
C(3), which facilitates intramolecular alkylation before complete 
racemization of the chiral enolate takes place. For the detailed discus-
sion, see Supporting Information (Scheme SI-1). The rate acceleration 
by the buttressing effect of the ortho substituent in carbene C-H insertion 
has been reported. See: Tomioka, H.; Kimoto, K.; Murata, H.; Izawa, Y. J. 
C. S. Perkin I, 1991, 471-477. 

(13) Xie, L.; Isenberger, K. M.; Held, G.; Dahl, L. M. J. Org. 
Chem. 1997, 62, 7516-7519. 

(14) Yabuuchi, T.; Kusumi, T. J. Org. Chem. 2000, 65, 397-404.  
(15) For examples of methods for the synthesis of benzofuran and 

chroman derivatives via C-O bond formation, see (a) reference 7. (b) 
Uozumi, Y.; Kyota, H. Kato, K.; Ogasawara, M.; Hayashi, T. J. Org. 
Chem. 1999, 64, 1620-1625. (c) Torraca, K. E.; Kuwabe, S.; Buch-
wald, S. L. J. Am. Chem. Soc. 2000, 122, 12907-12908. (d) Trost, B. 
M.; Shen, H. C.; Dong, L.; Surivet, J.-P. J. Am. Chem. Soc. 2003, 125, 
9276-9277. 

(16) For examples of biologically active benzofuran derivatives 
with tetrasubstituted carbon, see: (a) Mayer, G.; Taberner, P. V. Eur. 
J. Pharmacol. 2002, 454, 95-102. (b) Cohen, J. L.; Limon, A.; Miledi, 
R.; Chamberlin, A. R. Bioorg. Med. Chem. Lett. 2006, 16, 2189-2194.  

(17) For examples of biologically active chroman derivatives with 
tetrasubstituted carbon at C(2), see: (a) Grisar, J. M.; Petty, M. A.; 
Bolkenius, F. N.; Dow, J.; Wagner, J.; Wagner, E. R.; Haegele, K. D.; 
De Jong, W. J. Med. Chem. 1991, 34, 257-260. (b) Grisar, J. M.; 
Marciniak, G.; Bolkenius, F. N.; Verne-Mismer, J.; Wagner, J.; Wag-
ner, E. R. J. Med. Chem. 1995, 38, 2880-2886. 
 

Page 4 of 5

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Insert Table of Contents artwork here 

 

Page 5 of 5

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


