

Available online at www.sciencedirect.com

Inorganica Chimica Acta 359 (2006) 4114-4120

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Synthesis, characterization of [{(*N*-methyl-*N*-benzyl)amino}methyl]ferrocenes and their cyclopalladated complexes: Crystal structure of σ -Pd[(η^5 -C₅H₅)Fe(η^5 -C₅H₃CH₂N(CH₃)CH₂C₆H₄NO₂-4)]Cl(PPh₃)

Hong-Xing Wang ^{a,*}, Hong-Fei Wu ^a, Hui-Chao Zhou ^a, Feng-Ying Geng ^a, Ren-Qing Gao ^a, Xiao-Li Yang ^a, Li Wan ^a, Wen-Qin Zhang ^a, Rong Jin ^b

^a Department of Chemistry, College of Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, PR China ^b Department of Ultrasound, The First Central Hospital of Tianjin, Tianjin 300192, PR China

> Received 13 April 2006; received in revised form 12 May 2006; accepted 12 May 2006 Available online 24 May 2006

Abstract

Condensation of aminomethylferrocene (1) and substituted benzaldehydes resulted in aldimines 2a-c which followed by reduction with sodium borohydride to give 3a-c. *N*-methylation of 3a-c with HCHO/NaCNBH₃/HOAc led to 4a-c. Treatment of 4a-c with sodium palladium tetrachloride in the presence of sodium acetate afforded cleanly cyclopalladated 5a-c in which configurations consisted of the R_NR_C , S_NS_C . The preferable activation of $C_{Ferrocenyl}$ -H bond over C_{Phenyl} -H bond was also observed. All compounds 2-5 were characterized by elemental analysis, IR and ¹H NMR. In addition, the molecular structure of 5c was confirmed by single crystal X-ray diffraction. The possible mechanism for the formation of 5 was also discussed. © 2006 Elsevier B.V. All rights reserved.

Keywords: Ferrocenylamines; N-methylation; Cyclopalladation; Stereoselectivity; Crystal

1. Introduction

Transition metals mediated activation of $C(sp^2)-H$ bonds in the aromatic compounds especially those containing nitrogen-chelating atom has attracted much attention [1] in the past decades due to their wide applications in organic synthesis such as Heck reaction [2], Suzuki coupling reaction [3], *etc.* The first example of cyclopalladation of ferrocenylamines, *i.e.*, *N*,*N*-dimethylaminomethylferrocene (FcN) was reported by Sokolov et al. [4]. Later, Lopez and co-workers [5] found that treatment of ferrocenylimines $[(\eta^5-C_5H_5)Fe(\eta^5-C_5H_4CH_2-N=CHC_6H_4R)]$ (R = H, 2-Cl) with sodium palladium tetrachloride in the presence of sodium acetate resulted in two kinds of cyclopalladated complexes either with a σ -Pd–C_{sp2}, Ferrocenyl bond or with a σ -Pd–C_{sp2}, phenyl bond due to the presence of the endo effect. In addition, the preferred activations of C_{Ferrocenvl}-H bond over C_{Phenvl}-H bond were documented very well in the literatures [6]. Although a large number of cyclopalladated compounds have been described [6], reports on cyclopalladated ferrocenylamines are still rare [5,7] mostly because the lack of suitable substrates. In the recent papers, we described the synthesis and characterization of [{(*N*-methyl-*N*-phenyl)amino}methyl]ferrocenes (PFcN) and their cyclopalladated complexes in which configurations consisted of $R_N R_C$, $S_N S_C$ [8]. In addition, such stereoselectivity was also observed in cycloplatinated [{(*N*-methyl-*N*-benzyl)amino}methyl]ferrocenes [9]. In order to extend our researches of stereoselective cyclometallation on ferrocenvlamines, in this paper, we wish to report the cyclopalladation of [(N-methyl-N-benzyl)amino methylferrocenes (Schemes 1 and 2) starting from aminomethylferrocene and para-benzaldehydes, particularly the relationship between the N-Pd coordination modes and the selectivities.

^{*} Corresponding author. Tel.: +86 22 27892355; fax: +86 22 27403475. *E-mail address:* hongxing_wang@hotmail.com (H.-X. Wang).

Scheme 1. (i) 4-RC₆H₄CHO(R = MeO (a), H (b), NO₂ (c)), MeOH, reflux 2 h; (ii) NaBH₄, methanol/water; (iii) NaCNBH₃, HCHO (37%), CH₃CO₂H.

Scheme 2. (i) Na₂PdCl₄, NaOAc, MeOH; (ii) PPh₃, MeOH.

2. Results and discussion

2.1. Synthesis of ferrocenylamines **4** and their cyclopalladated compounds **6**

Condensation of **1** and *para*-substituted benzaldehydes produced ferrocenylimines $2\mathbf{a}-\mathbf{c}$ (Scheme 1) which were followed by reduction with sodium borohydride to give quantitatively *secondary* $3\mathbf{a}-\mathbf{c}$. *N*-methylation [10] of $3\mathbf{a}-\mathbf{c}$ with aqueous formaldehyde, sodium cyanoborohydride and acetic acid finally led to $4\mathbf{a}-\mathbf{c}$ in the moderate yields.

Treatment of 4a-c with stoichiometric sodium palladium tetrachloride in the presence of sodium acetate in methanol resulted in cleanly cyclopalladated ferrocenylamines 6a-c (Scheme 2). Compounds 6a-c were isolated as red-brown solids in good yields after column chromatography (see Section 3). They are very stable in air and soluble in dichloromethane, chloroform, ethyl acetate, acetone and benzene, but poorly soluble in methanol, particularly insoluble in petroleum ether.

Unlike PFcN which are easily oxidated by sodium palladium tetrachloride [8], 4a-c show a strong anti-oxidation ability toward palladium (II). It is believed that a stronger coordination between 4a-c and Pd than the former and hence reducing the oxidation potential of palladium (II) accounts for such significant different behavior.

2.2. Spectra characterizations of 2-5

Compounds 2–5 were characterized by elemental analysis, IR and ¹H NMR. Elemental analyses are in good agreement with the proposed formula. In the IR spectra of 2a–c, a strong absorption band appeared v 1640 cm⁻¹ indicates that the C=N bond exists in these molecules. And these data are in sharp contrast to those of the C=N

bond for the other ferrocenylimines $[(\eta^5-C_5H_5)Fe(\eta^5-C_5H_4CH=N-CH_2C_6H_4R)]$ (~v 1620 cm⁻¹) [9] due to their different systems of electron delocalization. In the ¹H NMR spectra of **2a–c**, a singlet appeared at δ 8.20 ppm corresponds to H12. For **3a–c**, the presence of a weak absorption 3300 cm⁻¹ in IR and a broad peak δ 2.19 ppm (when D₂O is added this peak disappeared) in ¹H NMR both confirm the presence of a N–H group. In **4a–c**, a singlet around δ 2.14 ppm is assigned to H19 and this value is very close to those (δ 2.12 ppm) of the other ferrocenylamines $[(\eta^5-C_5H_5)Fe(\eta^5-C_5H_4CH_2N(CH_3)CH_2-C_6H_4R-4)](R=CH_3, CI)$ [9].

For **5a–c**, their IR spectra all display two medium absorption bands around v 1100 and 1000 cm⁻¹, implying that an unsubstituted cyclopentadienyl ring (Cp) is present [11]. In ¹H NMR spectra, the δ values of protons in N–CH₃ shifts from upfield $\delta \sim 2.14$ ppm in **4** to downfield $\delta \sim 2.8$ ppm in **5**, suggesting that a N–Pd coordination exists in **5**. Also in ¹H NMR spectra of **5**, a broad doublet and a multiplet around $\delta \sim 3.70$, 3.80 ppm are assigned to H5 and H4, respectively, a doublet $\delta \sim 3.90$ ppm is attributed to H3. The protons on substituted phenyl rings all give their corresponding splitting patterns.

2.3. Chemoselectivity and stereoselectivity

It was observed that cyclopalladations of 4a-c exhibited a preferable activation of C_{Ferrocenyl}–H bond over the C_{Phenyl}– H bond. Since 4a-c have two different chemoselective metallation sites (Scheme 3), metallation of these two sites by the coordinated N–Pd complexes 6 can provide stable five membered rings 5 and 7, respectively. In fact, only 5a-cwere isolated in our experiment. The preferable activation of C_{Ferrocenyl}–H bond in 4a-c is in good agreement with our early observations [9], *i.e.*, electrophilic substitution of palladium on the ring with higher electron density (Cp ring) is facile than that with lower electron density (phenyl ring).

However, the 0 optical rotations of **5** measured at given conditions ($\lambda = 5893$ Å, CH₂Cl₂, 293 K) implies that they probably consist of racemers and this hypothesis is outlined in Scheme 4. Theoretically, two isomers $4\alpha,\beta$ are in equilibrium and they will possess the similar conformation to [(*N*-methyl-*N*-4-methylbenzyl)amino]methylferrocene [13]. It can be imaged that after coordination the intermediates $6\alpha(\beta)$ (Scheme 4) will keep the stable conformation similar to that of coordinated Pt–FcN complex [12]. The

Scheme 3. The preferred activation of C–H bond on Cp ring over that on phenyl ring. $L = FcCH_2N(CH_3)CH_2C_6H_4-R$.

Scheme 4. The possible mechanism for the formation of 5. $L = FcCH_2N(Me)CH_2Ar$.

palladium in $6\alpha(\beta)$ either activate C2(5)–H bonds to give a pair of enantiomers $5\alpha(\beta)$ or rotate around C1–C11 bond and then activate C5(2)–H bonds to produce another pair of enantiomers $5\gamma(\delta)$. Since the orientations of palladium in $6\alpha(\beta)$ approach C2–H, C5–H bonds, respectively [12], thus activation of these bonds to yield $5\alpha(\beta)$ will be favored. And in turn, the formation of $5\gamma(\delta)$ will not be disfavored due to the steric hindrance between benzyl and H atom in Cp ring when N–Pt moiety rotates around the axis of C1–C11 bond [9].

As we know, diastereomers can be easily separated by chromatography, fractional crystallization, *etc.* We paid much effort to isolate $5\gamma(\delta)$ from $5\alpha(\beta)$ by column chromatography, only a trace product (assumed to be the pair of $5\gamma(\delta)$) was obtained and was not sufficient to identify. Based on the discussion as mentioned above together with the configuration (R_NR_C) of 5c (Fig. 1), we suggest that 5 consist of a pair $5\alpha(\beta)$. In addition, the possible coordination of palladium with either isomer 4α or 4β resulting in only a pair of diastereomers $5\alpha,\gamma$ or $5\beta,\delta$ is also excluded.

2.4. X-ray single crystal studies of 5c

The molecular structure of 5c was confirmed by single crystal X-ray diffraction (Fig. 1). Crystallographic data, selected bond lengths and angles are listed in Tables 1 and 2, respectively. X-ray diffraction studies demonstrate that 5c consists of discrete molecules $\{PdCl(PPh_3)|(\eta^3 C_5H_5$)Fe(η^5 -C₅H₃CH₂N(CH₃)-CH₂C₆H₄-NO₂-4)]} separated by van der Waals contact in which palladium is in a slight distorted square-planar environment, bonded to Cl1, P1, N1 and C29. The deviation of each atom from the mean plane is Pd1, -0.0304; P1, 0.1353; N1, 0.1509; Cl1, -0.1079; C29, -0.1479 Å, respectively. Compound 5c contains a bicycle, which is formed by the substituted pentagonal ring of the ferrocenyl fragment and a five membered palladacycle with an envelop-like conformation. The bond length N1–Pd1 2.195 Å is slightly longer than that in cyclopalladated FcN (2.170Å) [6h]. In addition, triphenylphosphino moiety adopts a trans configuration to N1, with a bond angle N1-Pd1-P1 169.00(9)°. The bond

Fig. 1. Crystal structure of **5c** with numbering scheme (H atoms were omitted for clarity).

Table 1

Crystallographic data for 5c

Compound	5c
Empirical formula	C ₃₇ H ₃₄ ClFeN ₂ O ₂ PPd
Formula weight	767.33
Crystal dimensions (mm)	$0.28 \times 0.16 \times 0.10$
Crystal system, space group	monoclinic, $P2(1)/c$
a (Å)	17.451(2)
b (Å)	16.653(3)
c (Å)	11.704(2)
α (°)	90.00
β (°)	105.00(2)
γ (°)	90.00
$V(\text{\AA}^3)$	3285.4(8)
Ζ	4
$\rho_{\rm calcd} ({\rm g} {\rm cm}^{-3})$	1.551
$\mu (\mathrm{mm}^{-1})$	1.155
θ Range for data collection (°)	$1.72 \leqslant \theta \leqslant 26.45$
Limiting indices	$-16 \leqslant h \leqslant 21$,
	$-16 \leq k \leq 20$,
	$-14 \leqslant l \leqslant 14$
Reflections collected/unique [$R_{int} = 0.068$]	18330/6731
Reflections $[I \ge 2\sigma(I)]$	4026
Data/restraints/parameters	6731/0/407
Final R_1 , $wR_2 [I > 2\sigma(I)]$	0.042, 0.072
Largest difference in peak and hole $(e \text{ Å}^{-3})$	0.513 and -0.538

length Pd1– $C_{Ferrocenyl}$ 1.988(4) Å is nearly the same as that in cyclopalladated FcN (1.983(1) Å) [6h]. The average C–C bond length in the pentagonal rings 1.415 Å is similar to the values reported for the other ferrocene derivatives [11]. The Fe–C (Cp ring) bond lengths range from 2.024 to 2.097 Å. The two pentagonal rings of the ferrocenyl moiety are planar and nearly parallel (the interplane angle 6.4°). In addition, the Cp rings are also nearly eclipsed.

Table 2					
Selected bond lengths (Å) and angles (°) for compound $5c$					
Bond lengths (\mathring{A})					
Pd1-C29	1.988(4)	N1-C26	1.484(5)		
Pd1–N1	2.195(3)	N1-C27	1.500(5)		
Pd1_P1	2.224(1)	N1-C19	1 501(5)		

Pd1-N1	2.195(3)	N1-C27	1.500(5)
Pd1-P1	2.224(1)	N1-C19	1.501(5)
Pd1-Cl1	2.395(1)	C27–C28	1.481(5)
Angles (°)			
C29-Pd1-N1	83.05(1)	N1-Pd1-Cl1	91.37(9)
C29–Pd1–P1	91.20(1)	P1-Pd1-Cl1	95.22(4)
N1–Pd1–P1	169.00(9)	C27-N1-Pd1	109.5(2)
C29–Pd1–Cl1	171.99(1)	C28-C29-Pd1	113.0(3)

3. Experimental

3.1. Materials and instruments

Aminomethylferrocene was prepared according to the literature procedure [14], substituted benzaldehydes, lithium aluminum hydride, aqueous formaldehyde, sodium cyanoborohydride, acetic acid, sodium acetate, triphenylphosphine were obtained commercially and used without further purification. Sodium palladium tetrachloride was prepared in our laboratory. All of the solvents were purified with standard methods prior to use. Melting points were obtained from Yanaco micro melting point apparatus and were uncorrected. Elemental analyses were measured from Carlo Erba 1106 Elemental analyzer. ¹H NMR spectra were obtained with Bruker AV-400 spectrometer by using CDCl₃ as a solvent and TMS as internal standard. IR spectra were taken on BIO-RAD 3000 spectrophotometer.

3.2. Synthesis of ferrocenylaldimines 2

General procedure: To a stirred solution of aminomethylferrocene (5 mmol) in 20 ml methanol was added dropwise a solution of substituted benzaldehyde (5.5 mmol) in 10 ml ethanol. The mixture was refluxed for 4 h and cooled to room temperature. If no crystal precipitated, the mixture was kept at 5 °C in refrigerator or removed the solvent *in* vacuo. The crude product was recrystallized from ethyl acetate and petroleum ether (60–90 °C) to give out **2a–c**.

3.2.1. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH_2N = CHC_6H_4OCH_3 - 4)$ } (2a)

Yield: (55%); a red-brown solid; m.p. 67–70 °C. *Anal.* Calc. for $C_{19}H_{19}FeNO$: C, 68.49; H, 5.75; N, 4.20. Found: C, 68.25; H, 5.73; N, 4.19%. FT-IR(KBr): 3092(w), 2935(w), 2888(w), 1641(m), 1604(s), 1512(s), 1315(s), 1258(s), 1167(s), 1104(m), 1028(s), 999(m), 816(s) cm⁻¹. ¹H NMR (CDCl₃): δ 3.85(s, 3H, OCH₃), 4.14(m, 2H, H2, H5), 4.16(s, 5H, η^{5} -C₅H₅), 4.21(m, 2H, H3, H4), 4.51(s, 2H, H11), 6.93(d, 2H, H15, H17), 7.71(d, 2H, H14, H18), 8.20(s, 1H, H12).

3.2.2. $\{(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH_2N = CHC_6H_5)\}$ (2b)

Yield: (65%); a red-brown solid; m.p. 74–76 °C [lit. [6g]: 72–76 °C]. FT-IR(KBr): 3083(w), 2880(w), 1639(s),

1577(m), 1447(m), 1302(s), 1215(m), 1101(s), 1002(s), 809(s), 692(s) cm⁻¹.

3.2.3. { $(\eta^5 - C_5 H_5)Fe(\eta^5 - C_5 H_4 C H_2 N = C H C_6 H_4 N O_2 - 4)$ } (2c)

Yield: (80%); a purple solid; m.p. 148–150 °C. Anal. Calc. for $C_{18}H_{16}FeN_2O_2$: C, 62.09; H, 4.63; N, 8.05. Found: C, 61.93; H, 4.56; N, 8.01. FT-IR (KBr): 3105(w), 2837(w), 2363(w), 1643(m), 1603(m), 1524(s), 1343(s), 1103(m), 1001(m), 832(m) cm⁻¹. ¹H NMR (CDCl₃): δ 4.13(d, 2H, H2, H5), 4.16(s, 5H, η^5 -C₅H₅), 4.21(m, 2H, H3, H4), 4.59(2H, s, H11), 7.91(d, 2H, H14, H18), 8.26(d, 2H, H15, H17), 8.33(s, 1H, H12).

3.3. Synthesis of secondary ferrocenylamines 3

General procedure: To a stirred solution of 2 (3.3 mmol) in 20 ml dry THF was added sodium borohydride (6.6 mmol) under the argon. The mixture was refluxed for 4 h and cooled to room temperature. Solvent was evaporated under reduced pressure. The mixture was extracted with dichloromethane (3 × 30 ml). The extract was dried over anhydrous sodium sulfate and evaporated *in vacuo*. The residue was recrystallized from ethyl acetate–petroleum ether (60–90 °C) or crystallized from the above mentioned mixture of solvents or purified by column chromatography (silica-gel, ethyl acetate–petroleum ether (60–90 °C) = 1:2, v/v) to give **3a–c**.

3.3.1. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH_2NHCH_2C_6H_4OCH_3 - 4)$ } (3a)

Yield: (83%); a yellow liquid. *Anal.* Calc. for $C_{19}H_{21}FeNO$: C, 68.08; H, 6.31; N, 4.18. Found: C, 67.83; H, 6.25; N, 4.12%. FT-IR (KBr): 3298(s), 3093(w), 2934(w), 2835(m), 2363(w), 1611(s), 1512(s), 1456(m), 1355(w), 1247(vs), 1175(s), 1105(m), 1035(s), 999(m), 816(s) cm⁻¹. ¹H NMR(CDCl₃): δ 1.83(s, 1H, NH), 3.42(s, 3H, OCH₃), 3.49(s, 2H, H11), 3.73(s, 2H, H12), 3.80(d, 2H, H2, H5), 4.09(s, 5H, η^{5} -C₅H₅), 4.14(t, 2H, H3, H4), 6.86(d, 2H, H15, H17), 7.24(d, 2H, H14, H18).

3.3.2. $\{(\eta^5 - C_5 H_5) Fe(\eta^5 - C_5 H_4 C H_2 N H C H_2 C_6 H_5)\}$ (3b)

Yield: (70%); a yellow solid; m.p. 37–39 °C. *Anal.* Calc. for $C_{18}H_{19}FeN$: C, 70.84; H, 6.27; N, 4.59. Found: C, 70.59; H, 6.25; N, 4.55%. FT-IR (KBr): 3319(s), 3084(w), 2934(w), 2858(m), 1494(s), 1451(s), 1330(s), 1103(s), 999(m), 803(s), 729(s), 697(s) cm⁻¹. ¹H NMR(CDCl₃) δ 1.85(s, 1H, NH), 3.53(s, 2H, H11), 3.82(s, 2H, H12), 4.10(s, 5H, η^5 -C₅H₅), 4.11(d, 2H, H2, H5), 4.20(t, 2H, H3, H4), 7.33(m, 5H, H14-H18).

3.3.3. $\{(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH_2NHCH_2C_6H_4NO_2-4)\}$ (3c)

Yield: (90%); a yellow solid; m.p. 97–98 °C. *Anal.* Calc. for C₁₈H₁₈FeN₂O₂: C, 61.74; H, 5.18; N, 8.00. Found: C, 61.68; H, 5.15; N, 7.98%. FT-IR (KBr): 3321(s), 3084(w), 2911(w), 1603(w), 1519(s), 1452(w), 1345(s), 1227(w),

1105(m), 1001(w), 859(m), 831(m) cm⁻¹. ¹H NMR (CDCl₃) δ 1.98(s, 1H, NH), 3.64(s, 2H, H11), 3.91(s, 2H, H12), 4.11(s, 5H, η^{5} -C₅H₅), 4.16(d, 2H, H2, H5), 4.24(m, 2H, H3, H4), 7.61(d, 2H, H14, H18), 8.20(d, 2H, H15, H17).

3.4. Synthesis of tertiary ferrocenylamines 4

General procedure: To a vigorous stirred solution of **3** (2 mmol) and 10 mmol of 37% aqueous formaldehyde in 20 ml of acetonitrile was added 0.20 g (3.2 mmol) of sodium cyanoborohydride. Thirty minutes later, glacial acid was added dropwise until the pH value of the mixture reached neutral. The mixture was stirred at room temperature for 6 h and TLC monitored the reaction until it completed. The solvent was removed and 20 ml of 2N sodium hydroxide was then added to the residue. The mixture was stirred for 30 min. and extracted with diethyl ether (3 × 20 ml), and finally separated. The organic layer was dried over anhydrous sodium sulfate and removed to give out crude product which was purified by column chromatography (silica gel, ethyl acetate/petroleum ether (60–90 C°) = 1:5, v/v) to afford **4a–c**.

3.4.1. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH_2N(CH_3)CH_2C_6H_4O-CH_3-4)$ } (4a)

Yield: (80%); a yellow liquid. *Anal.* Calc. for $C_{20}H_{23}FeNO$: C, 68.78; H, 6.64; N, 4.01. Found: C, 68.58; H, 6.60; N, 4.00%. FT-IR (KBr): 3094(w), 2935(w), 2835(m), 1612(s), 1512(s), 1463(m), 1365(w), 1301(m), 1246(s), 1175(s), 1105(s), 1035(s), 1003(s), 815(s) cm⁻¹. ¹H NMR((CDCl₃): δ 2.13(s, 3H, H19), 3.46(s, 3H, OCH₃), 3.50(s, 2H, H11), 3.74(s, 2H, H12), 3.82(d, 2H, H2, H5), 4.09(s, 5H, η^5 -C₅H₅), 4.15(m, 2H, H3, H4), 6.87(d, 2H, H15, H17)), 7.25(d, 2H, H14, H18).

3.4.2. { $(\eta^5 - C_5 H_5)Fe(\eta^5 - C_5 H_4 C H_2 N(C H_3) C H_2 C_6 H_5)$ } (4b)

Yield: (75%); a yellow solid; m.p. 39–40 °C. *Anal.* Calc. for C₁₉H₂₁FeN: C, 71.49; H, 6.63; N, 4.39. Found: C, 71.21; H, 6.58; N, 4.36%. FT-IR (KBr): 3093(w), 2938(w), 1598(w), 1491(m), 1448(s), 1326(m), 1105(s), 1023(s), 999(m), 810(s), 733(s), 696(m) cm⁻¹. ¹H NMR(CDCl₃): δ 2.14(s, 3H, H19), 3.46(m, 4H, H11, H12), 4.05(d, 2H, H2, H5), 4.10(s, 5H, η^5 -C₅H₅), 4.16(m, 2H, H3, H4), 7.27–7.32(m, 5H, H14-H18).

3.4.3. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH_2N(CH_3)CH_2C_6H_4NO_2-4)$ } (4c)

Yield: (85%); a yellow solid; m.p. 66–68 °C. *Anal.* Calc. for $C_{19}H_{20}FeN_2O_2$: C, 62.66; H, 5.53; N, 7.69. Found: C, 62.49; H, 5.48; N, 7.60%. FT-IR (KBr): 3081(w), 2935(w), 2836(w), 1600(w), 1517(s), 1465(w), 1345(s), 1225(w), 1105(m), 1028(m), 1101(w), 857(m), 820(m) cm⁻¹. ¹H NMR(CDCl₃): δ 2.15(s, 3H, H19), 3.46(s, 2H, H11), 3.51(s, 2H, H12), 4.10(s, 5H, η^5 -C₅H₅), 4.14(d, 2H, H2, H5), 4.16(m, 2H, H3, H4), 7.47–8.17(q, 4H, H14, H15, H17, H18).

3.5. Synthesis of cyclopalladated ferrocenylamines 5

General procedure: To a stirred solution of 4 (1 mmol), sodium acetate (82 mg, 1 mmol) in 30 ml methanol was added dropwise a solution of sodium palladium tetrachloride (0.29 g, 1 mmol) in 15 methanol. The mixture was stirred for 4 h at room temperature with protection of argon gas and TLC monitored the reaction progress. Then triphenylphosphine (0.41 g, 1.5 mmol) was added and the mixture was stirred for another 30 min. The solvent was removed *in vacuo*, the residue was purified by column chromatography (silica gel, ethyl acetate/petroleum ether (60– 90 C°) = 1:1, v/v) to give **5**.

3.5.1. $[PdCl(PPh_3) \{ (\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_3CH_2N(CH_3) - CH_2C_6H_4OCH_3 - 4) \}]$ (5a)

Yield: (80%); a red-brown solid; m.p. > 216 °C (dec.). *Anal.* Calc. for $C_{38}H_{37}CIFeNOPPd$: C, 60.66; H, 4.96; N, 1.86. Found: C, 60.38; H, 4.89; N, 1.82%. FT-IR (KBr): 3073(w), 2909(w), 1609(s), 1510(s), 1435(s), 1303(m), 1247(s), 1178(s), 1096(s), 1033(m), 997(m), 806(s), 691(s) cm⁻¹. ¹H NMR(CDCl₃): δ 2.81(s, 3H, H19), 3.50(m, 2H, H12), 3.65(m, 2H, H11), 3.43(s, 3H, OCH₃), 3.74(s, 5H, η^5 -C₃H₅), 3.76(d, 1H, H5), 3.77(m, 1H, H4), 3.84(bs, 1H, H3), 6.80(d, 2H, H15, H17), 6.95(d, 2H, H14, H18), 7.38–7.67(m, 15H, PPh₃).

3.5.2. $[PdCl(PPh_3) \{ (\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_3CH_2N(CH_3) - CH_2C_6H_5) \}]$ (5b)

Yield: (80%); a red-brown solid; m.p. > 221 °C (dec.). Anal. Calc. for $C_{37}H_{35}ClFeNPPd$: C, 61.52; H, 4.88; N, 1.94. Found: C, 61.32; H, 4.81; N, 1.96%. FT-IR (KBr): 3090(w), 2932(w), 1595(w), 1490(m), 1450(s), 1103(s), 1021(s), 999(m), 733(s), 696(m) cm⁻¹. ¹H NMR(CDCl₃): δ 2.80(s, 3H, H19), 3.55(m, 2H, H11), 3.60(m, 2H, H12), 3.70(d, 1H, H5), 3.72(s, 5H, η^{5} -C₅H₅), 3.78(m, 1H, H4), 3.84(d, 1H, H3), 7.24–7.65(m, 15H, PPh₃), 7.88–8.01(m, 5H, H14, H15, H16, H17, H18).

3.5.3. $[PdCl(PPh_3) \{ (\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_3CH_2N(CH_3) - CH_2C_6H_4NO_2-4) \}]$ (5c)

Yield: (78%); a red-brown solid; m.p. >228 °C (dec.). Anal. Calc. for $C_{37}H_{34}ClFeN_2O_2PPd$: C, 57.91; H, 4.47; N, 3.65. Found: C, 57.82; H, 4.45; N, 3.65%. FT-IR (KBr): 3099(w), 2918(w), 2856(w), 1600(w), 1521(s), 1479(m), 1435(s), 1344(vs), 1096(s), 999(m), 746(s), 692(s) cm⁻¹. ¹H NMR(CDCl₃): δ 2.84(s, 3H, H19), 3.51(m, 2H, H11), 3.55(m, 2H, H12), 3.71(d, 1H, H5, H4 missing), 3.79(s, 5H, η^5 -C₅H₅), 3.91(d, 1H, H3), 7.39– 7.65(m, 15H, PPh₃), 8.12(d, 2H, H14, H18), 8.35(d, 2H, H15, H17).

3.6. X-ray determination of 5c

The prismatic single crystal of 5c suitable for X-ray analysis was obtained by slow evaporation of the mixture of ethyl acetate and petroleum ether (60–90 °C) at room

temperature over a period of one week. The single crystal of this complex was mounted on a Bruker SMART CCD diffractometer equipped with a monochromator graphited Mo K α ($\lambda = 0.71073$ Å) radiation at ambient temperature (T = 294 K) using $\omega - 2\theta$ multi-scans technique for data collection. Semi-empirical absorption corrections were applied using SABABS program [15]. The structure was solved by direct methods and refined by full-matrix least-squares procedure on F^2 using the SHELX suite of program [16]. Crystallographic data, selected bond lengths and angles are listed in Tables 1 and 2, respectively.

4. Supplementary materials

Crystallographic data (excluding structure factors) for the structure of **5c** in this paper has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC-280750. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk.

Acknowledgement

We are grateful to the Natural Science Foundation of Tianjin Metropolis (Project No. 033609011) and the Opening Fund from the State Key Laboratory of Elemento-organic Chemistry, Nankai University, People's Republic of China for financial support for this project.

References

- [1] (a) J. Dupont, C.S. Consorti, J. Spencer, Chem. Rev. 105 (2005) 2527;
 - (b) J. Vicente, A. Arcas, Coordin. Chem. Rev. 249 (2005) 1135;
 - (c) A. Togni, L.M. Venanzi, Angew. Chem., Int. Ed. Engl. 33 (1994) 497;
 - (d) A.D. Ryabov, Chem. Rev. 90 (1990) 403;
 - (e) V.V. Dunina, O.A. Zalevskaya, V.M. Potatov, Russ. Chem. Rev. 57 (1988) 250;
 - (f) I. Omae, Coordin. Chem. Rev. 83 (1988) 137;
 - (g) G.R. Newkome, W.E. Puckett, V.K. Gupta, G.E. Kiefer, Chem. Rev. 86 (1986) 451;
 - (h) I. Omae, Chem. Rev. 79 (1979) 287;
 - (i) M.I. Brice, Angew. Chem., Int. Ed. Engl. 10 (1977) 73.
- [2] S. Iyer, C. Ramesh, Tetrahedron Lett. 41 (2000) 8981.
- [3] H. Weissmann, D. Milstein, Chem. Commun. (1999) 1901.
- [4] V.I. Sokolov, T.A. Bashilova, A.A. Musaev, O.A. Reutov, J. Organomet. Chem. 182 (1979) 537.
- [5] R. Bosque, C. Lopez, J. Sales, J. Organomet. Chem. 498 (1995) 147.
- [6] Examples of cyclopalladation on *tertiary* amines: (a) F. Tollari, S. Demartin, S. Cenini, G. Palmisano, P. Raimondi, J. Organomet. Chem. 527 (1997) 93;

(b) R.A. Widenhoefer, H.A. Zhong, S.L. Buchwald, Organometallics 15 (1996) 2745;

- (c) M. Pfeffer, N.S. Beydoun, A.D. Cian, J. Fischer, J. Organomet. Chem. 453 (1993) 139;
- (d) P.L. Alsters, P.F. Engel, M.P. Hogerheide, M. Copijn, A.L. Spek, G. van Koten, Organometallics 12 (1993) 1831;
- (e) M. Grellier, M. Pfeffer, J. Organomet. Chem. 548 (1997) 301;
- (f) P. Chakladar, S. Paul, A.K. Mukherjee, S.K. Dutta, K.K. Nanda,
- D. Podder, K. Nag, J. Chem. Soc., Dalton Trans. (1992) 3119;

(g) J. Vicente, I.S. Liamas, P.G. Jones, J. Chem. Soc., Dalton Trans. (1993) 3619;

(h) C. Lopez, R. Bosque, X. Solans, M. Font-Bardia, New J. Chem. (1998) 977;

(i) Examples of cyclopalladation on secondary amines: Y. Fuchita, H. Tsuchiya, Inorg. Chim. Acta. 209 (1993) 229;

(j) P.W. Clark, S.F. Dyke, J. Organomet. Chem. 281 (1985) 389;

Examples of cyclopalladation on primary amines: (k) J. Albert, M. Cadena, J. Granell, Tertrahedron, Asymm. 8 (1997) 991;

(l) J. Albert, J. Granell, J. Zafrilla, M. Font-Bardia, X. Solans, J. Organomet. Chem. 690 (2005) 422.

[7] (a) C. Lopez, J. Sales, X. Solans, R. Zquiak, J. Chem. Soc., Dalton Trans. 2321 (1992);

(b) R. Bosque, C. Lopez, J. Sales, X. Solans, M. Font-Bardia, J. Chem. Soc., Dalton Trans. 735 (1994).

[8] (a) H.X. Wang, L. Ding, Y.J. Wu, J. Organomet. Chem. 679 (2003) 130; (b) H.X. Wang, Y.J. Li, R. Jin, J.R. Niu, H.F. Wu, H.C. Zhou, J. Xu, R.Q. Gao, F.Y. Geng, J. Organomet. Chem. 691 (2006) 987;
(c) H.X. Wang, Y.J. Li, R.Q. Gao, H.F. Wu, F.Y. Geng, R. Jin, Inorg. Chem. Commun. 9 (2006) 658.

- [9] H.X. Wang, H.F. Wu, H.C. Zhou, R. Jin, R.Q. Gao, F.Y. Geng, J. Xu, Y.J. Li, W.Q. Zhang, Polyhedron 9 (2006) in press.
- [10] R.F. Borch, A.I. Hassid, J. Org. Chem. 37 (1972) 1673.
- [11] T.H. Allen, O. Kennard, Chem. Design Automation News 8 (1993) 146.
- [12] P.R.R. Ranatunge-Bandarage, B.H. Robinson, J. Simpson, Organometallics 13 (1994) 500.
- [13] H.X. Wang, H.F. Wu, F.Y. Geng, R.Q. Gao, H.C. Zhou, Acta Crystallogr. E62 (2006) m14.
- [14] H. Sun, Q. Wang, R. Huang, H. Li, Y. Li, J. Organomet. Chem. 655 (2002) 182.
- [15] G.M. Sheldrick, SADABS, University of Göttingen, 1996.
- [16] G.M. Sheldrick, SHELXS-97 and SHELXL-97, Programs for Crystal Structure Solution and Refinement, University of Göttingen, 1997.