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ABSTRACT
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The (1-naphthyl)propargyl group is introduced as a sterically unobtrusive alcohol protecting group that is cleaved in a single step by exposure
to dichlorodicyanoquinone in wet dichloromethane. In conjunction with the 4,6- O-benzylidene protecting group, and the use of the sulfoxide
glycosylation method, 3- O-naphthylpropargyl-protected mannosyl donors are extremely -selective.
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The apposite use of protecting groups continues to be anrecently described the successful application of propargyl
essential element in preparative carbohydrate and oligosac-ethers as sterically unobtrusive donor protecting groups for
charide synthesis, with considerable effort devoted to their f-mannosylatiort.While, although the propargyl ethers were
development in recent yearJhis is due to the central role  readily introduced and had the anticipated effect on stereo-
of protecting groups in modulating reactivity of both glycosyl selectivity, they required a two-step deprotection protocol:
donors and acceptors and, critically, in the control of an initial treatment with base followed by catalytic osmoy-
regioselectivity and stereoselectivity.In response to a lation of the resulting allenyl ether (Scheme 1).

problem arising from the influence of protecting group size

on the stereoselectivity of a glycosylation reacttowe _

Scheme 1. Deprotection of Propargyl Ethers
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acetylenic group into the aryimethylene bond of either the ||| N

PMB or naphthylmethyl system would afford a system Scheme 3. Preparation of Donor§ and 10
combir_ling the s_teric advantages of the propargyl ether with o O i) BuySnO, toluene

the facile oxidative cleavage of the PMB and naphthylmethyl o Q refiux, 3 h

ethers. This line of thought led us to the etheend?2, which s SPn ii) DMF, CsF, R'Br

we assumed could be assembled from the known bromides oR?

OH
3 and4.8° PA%0 o NaH,DME PTTR2 A
R1O RZBF R1O

SPh SPh
MeO O 7 R'= NpCCCHy, 93% 9 R'=NpCCCH,, R? = Bn, 97%
X 8 R'=Bn, 91% 10 R'=Bn, R2= NpCCCHj, 90%
AN X O = Np = 1-naphthy!
1:X = OR 2:X=OR
3: X =Br 4: X =Br

Attempted activation of donor@ and10 by our standard
treatment with 1-benzenesulfinyl piperidine (BSP) and tri-

Alkylation of 1,2;5,6-diacetone-glucofuranose with so- ,5romethanesulfonic anhydridlein the presence of the
dium hydride and bromidé gave the model ethér(Scheme hindered base trert-butylpyrimidine (TTBPJ2was unpro-

2). Treatment of this compound with DDQ in wet dichlo-  qyctive, resulting in either no reaction or complex mixtures.
romethane, typical conditions for the removal of PMB and e turned, therefore, to the more potent combination of
naphthylmethyl ethers, retuned the alcohol in 83% yield, diphenyl sulfoxide (DPSO) and triflic anhydritewhen
thereby establishing proof of principle. Directly analogous consumption of the donors was observed, but complex
transformations with thep-methoxyphenylpropargyl-pro-  reaction mixtures were obtained. Study of the byproducts
tected system were also successful. However, it subsequentlyndicated that electrophilic attack on the arylpropargyl system
became clear that the more electron-nemethoxyphenyl-  was the root of the problem.

propargyl groudl was incompatible with various glycosyl-

ation conditions leading to our subsequent preference for

system2. s\
" o OBUM o0

DPSO

Scheme 2. Deprotection of a Naphthylpropargyl Ether

o 7L NaH, 4 7L Precedent suggested, however, the activation of glycosyl
HO"'(S/O I (S/ sulfoxides with T$O to be compatible with electron-rich
~o aromatic systems, especially when used in conjunction with
o an electrophile scaveng&r.Accordingly, donor9 was
X CHC0 . P /ENget. gy, |

oxidized to the sulfoxidd.1 (Scheme 4), which was formed

as a single diastereomer whose configuration rests on
analogy®®

83% 5

To examine the effect of the new protecting graipn
the stereoselectivity of glycosylation reactions, when located
at both O2 and O3, we prepared dorn@end10 from known

Scheme 4. Preparation of Sulfoxidé1
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Table 1. Coupling Reactions of Donatl

entry acceptor coupled product yield® :p ratio®
Ph/TO’X\ OB" /@
1 HO /@ Np O 77% f-only
12a
OBn Ph/v()i\ Ogn OBn
HO Q % o 2
2 BnO Np—= BnO 46% B-only
BnO B0 e
OMe 12b
OMe oM
P00\ 8N ©
HO AR % 0@70
3 g Np——— 87% 1:13

Q o
12¢ )(
P R ATG" Bn
\H/\ &/Bngk/ \ﬁ’)/\ 43% B-only

-

BnO

{”

4 BnO

I
]
9

o 74% B-only
%O
12e
HO— .. o OO O— .
6 l Np—== l 85% B-only
CbzHN CO,Me CbzHN CO,Me

12f

alsolated yields after column chromatographyRatio was determined biH NMR of crude reaction mixtures.

of the f-mannosidel2awith impeccable selectivity (Table
1, entry 1). That 1-octene fulfilled its role of trapping Ph/TO /V
extraneous thiophilic species was established by isolation of \Ph Ph B

13 from the reaction mixture.

/\/\/\(\?Ph
OH O . !
13 Table 2. Coupling Reactions of Dondt4

acceptor coupled product
(vield®, o:p ratio®)

14 15

A number of couplings were then conducted with more
standard glycosyl acceptors, leading to the yields and O/
selectivities collected in Table 1. The influence of th©3- o /@ Ph}%&g\/o/@
naphthylpropargyl group on selectivity is best illustrated in

entry 4 (Table 1): previously, coupling of the identical 16a (67%. B-only)

acceptor to the ®-tert-butyldimethylsilyl analogue ofl1 = Np
resulted in the formation of a 1.8:1 mixture of glycosides OBn Ph—X0 0OBn
o]
favoring thea-anomer? 'éﬁo%oﬁ &'Bnoéﬁ
n

Oxidation of thioglycosidel 0 afforded the sulfoxide 4, OMe
as a single diastereomer, in 94% yield. Activatioriéfinder 16b (38%. f-only)
the conditions employed fdrl affordeds-mannosides with /"‘p
expellent selectivity (Table 2). Unfortgnately, the.rez-;l.ction B"O/% Ph/voi\ o BnO
mixtures were relatively complex and included a significant BnO j Bno’h
byproduct, ketonel5, resulting from cyclization of the J
protecting group onto the activated glycosyl donor. In the 16¢ (13%, B-only)
face of this problem, couplings to donb# were not pursued a|solated yields after column chromatographyRatio was determined
further by IH NMR of crude reaction mixtures.
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Table 3. Cleavage of Naphthylpropargyl Ethers

entry deprotected product 17

yield®

OBn

1 Phﬁ&/ \@

“@v
2 0 BnoY

Ph/VO/X\ oBn

OBn
PATV0 OB"
Q o
4 ‘(\’J/\

17d

f&@ N
5 oy 4_;
17e
P01\ Tg"
So O—
6 l
COzMe

CbzHN
17f

a|solated yields after column chromatography.

86%

80%

89%

90%

84%

86%

donor®® On the other hand, 4,6-benzylidene mannosyl
donors carrying a 2-propargyl group were previously found
to be highly efficient, in contrast to the @-naphthylpro-
pargyl systenl4, and highlys-selective® Thus, in addition

4882

to their different requirements for deprotection, the propargyl
and naphthylpropargyl systems are highly complementary.

In accordance with the model experiments (Scheme 2),
selective deprotection of the glycosidsawas accomplished
with DDQ in CH,CIy/H,O (20:1) over a period of-23 h at
room temperature in excellent yield as reported in Table 3.
The employment of other solvent systems recommended for
the cleavage of 2-naphthylmethyl ethers, such asGT#
CH3OH,}” CHCIly/ H,O, and CHCI, alone¥ was less
satisfactory.

To conclude, we report the development of the naphth-
ylpropargyl ether system. In conjunction with the sulfoxide
glycosylation method, when introduced on the 3-position of
4,6-O-benzylidene-protected mannosyl donors, this system
affords extremelyfS-selective coupling reactions and the
possibility of orthogonal cleavage in a single step with DDQ.
We anticipate that this group will find application in
oligosaccharide synthesis and, because of its minimal steric
character and ease of deprotection, beyond the confines of
carbohydrate chemistry.
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