Synthese, Schwingungsspektren und Kristallstrukturen der Chloroberyllate (Ph₄P)₂[BeCl₄] und (Ph₄P)₂[Be₂Cl₆]

Bernhard Neumüller, Frank Weller und Kurt Dehnicke*

Marburg, Fachbereich Chemie der Philipps-Universität

Bei der Redaktion eingegangen am 2. Juli 2003.

Professor Bernt Krebs zum 65. Geburtstag gewidmet

Inhaltsübersicht. Berylliumdichlorid reagiert mit Tetraphenylphosphoniumchlorid in Dichlormethan je nach dem angewandten molaren Verhältnis unter Bildung der leicht löslichen Chloroberyllate $(Ph_4P)_2[BeCl_4]\cdot 2,5CH_2Cl_2$ (1·2,5CH_2Cl_2) und $(Ph_4P)_2[Be_2Cl_6]$ · $2CH_2Cl_2$ (2·2CH_2Cl_2). Beide Verbindungen werden durch Kristallstrukturanalysen charakterisiert.

1·2,5CH₂Cl₂: Raumgruppe PĪ, Z = 2, Gitterkonstanten bei 193 K: a = 1185,7(1); b = 1244,5(1); c = 1939,3(2) pm; α = 77,62(1)°; β = 74,13(1)°; γ = 68,17(1)°, R₁ = 0,0416. Das [BeCl₄]²⁻-Ion bildet Tetraeder ohne spezielle Lagesymmetrie. **2**·2CH₂Cl₂: Raumgruppe PĪ, Z = 1, Gitterkonstanten bei 193 K: a = 985,3(1); b = 1107,6(1); c = 1344,7(1) pm; α = 65,45(1)°; β = 79,12(1)°; γ = 78,49(1)°, R₁ = 0,0361. Das [Be₂Cl₆]²⁻-Ion bildet chloroverbrückte Doppeltetraeder der Lagesymmetrie Ī (C_i). Im Vakuum verlieren die Verbindungen das eingelagerte Dichlormethan. Von **1** und **2** werden die Schwingungsspektren (IR, Raman) mitgeteilt.

Syntheses, Vibrational Spectra and Crystal Structures of the Chloroberyllates (Ph₄P)₂[BeCl₄] and (Ph₄P)₂[Be₂Cl₆]

Abstract. Beryllium dichloride reacts with tetraphenylphosphonium chloride in dichloromethane depending on the molar ratio to give the readily soluble chloroberyllates $(Ph_4P)_2[BeCl_4] \cdot 2.5CH_2Cl_2$ (1·2.5CH₂Cl₂) and $(Ph_4P)_2[Be_2Cl_6] \cdot 2CH_2Cl_2$ (2·2CH₂Cl₂), respectively. Both compounds are characterized by crystal structure determinations.

1·2.5CH₂Cl₂: Space group P1, Z = 2, lattice dimensions at 193 K: a = 1185.7(1), b = 1244.5(1), c = 1939.3(2) pm, α = 77.62(1)°, β = 74.13(1)°, γ = 68.17(1)°, R₁ = 0.0416. The [BeCl₄]²⁻ ion forms tetrahedra without special site symmetry. **2**·2CH₂Cl₂: Space group PĪ, Z = 1, lattice dimensions at 193 K: a = 985.3(1), b = 1107.6(1), c = 1344.7(1) pm, α = 65.45(1)°, β = 79.12(1)°, γ = 78.49(1)°, R₁ = 0.0361. The [Be₂Cl₆]²⁻ ion forms chloro-bridged double tetrahedra with site symmetry Ī (C_i). Both compounds lose the included dichloromethane *in vacuo*. The vibrational spectra (IR, Raman) of **1** and **2** are reported.

Keywords: Beryllium; Chloro complexes; Vibrational spectra; Crystal structures

1 Einleitung

Über homoleptische Chloroberyllate $[BeCl_4]^{2-}$ wurde bereits mehrfach berichtet [1-5]. Die Thermolyse von Na₂-[BeCl₄] führt bei 310 °C zu NaCl und BeCl₂ [1]. Im System KCl/BeCl₂ existieren K₃BeCl₅, K₂BeCl₄ und KBe₂Cl₅, die sämtlich $[BeCl_4]^{2-}$ -Ionen enthalten [2]. Eine Strukturuntersuchung an Na₂[BeCl₄] ergab Isomorphie mit einer der Modifikationen von Na₂[BeF₄] [3], während die Struktur von K₂[BeCl₄] [3] isotyp mit K₂[BeF₄] und K₂[SO₄] ist. Die mit größerer Genauigkeit ausgeführte Strukturbestimmung von Cs₂[BeCl₄] [4] ergab Isotypie mit β -K₂[SO₄]. Es kristallisiert in der Raumgruppe Pnma mit Z = 4. Die $[BeCl_4]^{2-}$ -Tetraeder sind mit Be–Cl-Abständen zwischen 199,2 und 204,9 pm sowie Bindungswinkeln zwischen 107,5 und 115,0° deutlich verzerrt [4]. Schließlich wurden in einem

* Prof. Dr. K. Dehnicke Fachbereich Chemie der Philipps-Universität D-35032 Marburg

Fax: ++49/(0)6421/2825653

Kurzbericht noch $M[BeCl_4]$ mit M = Sr, Ba, Eu und Sm beschrieben [5].

Dagegen wurde das $[Be_2Cl_6]^{2-}$ -Ion erst unlängst in der Struktur von Te₇ $[Be_2Cl_6]$ [6] beobachtet. Die Verbindung ließ sich nur in geringen Mengen nach dem Abkühlen einer Reaktionsschmelze von Te, TeCl₄, BeCl₂ und überschüssigem Na₂ $[BeCl_4]$ von 250 °C auf Raumtemperatur als schwarze Kristalle isolieren [6].

Alle hier genannten Chloroberyllate sind wegen ihrer großen Gitterenergien offenbar in keinem der üblichen Lösungsmittel löslich, so daß sie für Folgereaktionen in homogener Phase ungeeignet sind. Unser Interesse galt daher dem möglichst einfachen Zugang zu Chloroberyllaten mit großvolumigen Kationen wie Tetraphenylphosphoniumchlorid, dessen Salze erfahrungsgemäß in organischen, nicht protonenaktiven Lösungsmitteln leicht löslich sind.

2 Ergebnisse

Suspensionen von Berylliumdichlorid in Dichlormethan reagieren mit dem in CH₂Cl₂ leicht löslichen Tetraphenyl-

phosphoniumchlorid je nach dem angewandten molaren Verhältnis gemäß der Gleichungen (1) und (2) sowie nach Gleichung (3) unter Bildung der Chloroberyllate $[BeCl_4]^{2-}$ und $[Be_2Cl_6]^{2-}$.

 $BeCl_2 + 2 (Ph_4P)Cl \rightarrow (Ph_4P)_2[BeCl_4]$ (1)

 $2 \operatorname{BeCl}_2 + 2 (\operatorname{Ph}_4 \operatorname{P})\operatorname{Cl} \to (\operatorname{Ph}_4 \operatorname{P})_2[\operatorname{Be}_2 \operatorname{Cl}_6]$ (2)

$$(Ph_4P)_2[Be_2Cl_6] + 2 (Ph_4P)Cl \rightarrow 2 (Ph_4P)_2[BeCl_4]$$
(3)

Alle Reaktionen sind schwach exotherm, sie sind bei 20 °C unter Rühren der Ansätze innerhalb weniger Stunden vollständig. Versuche, durch Variation der Eduktverhältnisse zu höher aggregierten Chloroberyllaten wie $[Be_3Cl_8]^{2-}$ oder $[Be_4Cl_{10}]^{2-}$ zu gelangen, waren unter den von uns angewandten Bedingungen erfolglos. Wir erhielten hierbei stets nur das $[Be_2Cl_6]^{2-}$ -Ion.

Die nach den Gleichungen (1-3) zugänglichen Chloroberyllate lösen sich leicht mit blaßgelber Farbe in Dichlormethan, was wir auf Spuren von $[FeCl_4]^-$ zurückführen. Dieses resultiert aus Spuren von FeCl₃, das bei der Chlorierung von eisenhaltigem Beryllium mitentsteht.

Durch Einengen der Lösungen der Tetraphenylphosphonium-Chloroberyllate unter vermindertem Druck kristallisieren die Verbindungen $(Ph_4P)_2[BeCl_4]\cdot 2,5CH_2Cl_2$ $(1\cdot 2,5CH_2Cl_2)$ und $(Ph_4P)_2[Be_2Cl_6]\cdot 2CH_2Cl_2$ $(2\cdot 2CH_2Cl_2)$ als farblose Einkristalle. Das eingelagerte Dichlormethan wird im Vakuum vollständig abgegeben. Die Hauptmenge der Präparate erhält man durch Evakuieren der Lösungen bis zur Trockne oder durch Zugabe von Tetrachlorkohlenstoff oder n-Hexan. In beiden Lösungsmitteln sind die Salze schwer löslich. Man erhält so 1 und 2 als blaßgelbe, mikrokristalline und feuchtigkeitsempfindliche Kristallpulver.

Von den solvatfreien Präparaten 1 und 2 haben wir die Schwingungsspektren (IR und Raman) aufgenommen. Die Spektren werden sehr stark von den Banden der $(Ph_4P)^+$ -Ionen determiniert, so daß vor allem von 2 nicht alle erwarteten Banden zu beobachten waren.

Tabelle 1 enthält die Ergebnisse des $[BeCl_4]^{2-}$ -Ions in der Verbindung 1 im Vergleich mit den isoelektronischen Spezies $[BCl_4]^-$ und CCl_4 . Das Spektrum ist im Einklang mit den Erwartungen von Tetraedersymmetrie T_d , für die nach den Auswahlregeln [9] vier Banden der Rassen A₁, E und F₂(2) im Raman-Effekt und zwei Banden der Rasse F₂ im IR-Spektrum auftreten. Die Valenzschwingung in F₂ ließ sich im Raman-Spektrum nicht auffinden. Diese Bande ist aber erfahrungsgemäß [9] oft sehr schwach. Wie man Tabelle 1 entnehmen kann, sind alle Banden des $[BeCl_4]^{2-}$ -Ions in plausibler Relation zu denen von $[BCl_4]^-$ und von CCl_4 , entsprechend der Zunahme der Kraftkonstanten in der genannten Reihenfolge [8].

Für das $[Be_2Cl_6]^{2-}$ -Ion in Verbindung 2 sind unter Annahme von D_{2h} -Symmetrie nach den Auswahlregeln [9] insgesamt 18 Grundschwingungen zu erwarten, von denen neun in den Rassen A_g , B_{1g} , B_{2g} und B_{3g} Raman-aktiv und acht in den Rassen B_{1u} , B_{2u} und B_{3u} IR-aktiv sind. Die Twisting-Schwingung der Rasse A_u ist in beiden Effekten

Tabelle 1 Schwingungsspektrum von 1 im Vergleich mit den iso-
elektronischen Spezies $[BCl_4]^-$ (als $(Me_4N)^+$ -Salz [7] und CCl_4 [8]).
Zahlenangaben in cm^{-1}

[BeCl ₄] ²⁻		$[BCl_4]^-$	CCl_4	Zuordnung		
IR	RE	RE	RE		-	
_	293(st)	405	459	A ₁	vs	
-	146(m)		217	E	δ	
500(m)	n.b.	670	791/762*	F ₂	v_{as}	
251(st)	250(w)	274	315	$\tilde{F_2}$	δ	

* Fermi-Resonanz

Intensitäten: st = stark, m = mittel, w = schwach, n.b. = nicht beobachtet

inaktiv. Als Folge von Koinzidenzen mit Banden der Kationen und wegen Fluoreszenz im Raman-Spektrum ließen sich für 2 insgesamt nur 10 Grundschwingungen beobachten, weshalb wir auf eine eingehendere Zuordnung verzichten müssen.

Im IR-Spektrum finden wir die beiden Valenzschwingungen der terminalen BeCl₂-Gruppen bei 640(st) cm⁻¹ der Rasse B_{3u} und bei 495(m) cm⁻¹ der Rasse B_{1u}. Ihre Frequenzlagen sind deutlich kürzerwellig als im [BeCl₄]²⁻-Ion, was eine Folge der relativ geringeren Außenladung des [Be₂Cl₆]²⁻-Ions ist und auch mit dessen kürzeren Be-Cl-Abständen der terminalen Chloratome korreliert. Zwei weitere Banden im IR-Spektrum, bei denen es sich vermutlich um Be₂Cl₂-Ringschwingungen handelt, liegen bei 336(st) und 286(m) cm⁻¹. Im Raman-Spektrum von **2** finden wir ausschließlich Deformationsschwingungen bei 296(st), 267(m), 233(w), 200(st), 164(w) und 153(m) cm⁻¹.

3 Kristallstrukturanalysen

Die kristallographischen Daten und Angaben zu den Strukturlösungen enthält Tabelle 2, in den Tabellen 3 und 4 sind die Bindungslängen und -winkel verzeichnet.¹⁾

3.1 $(Ph_4P)_2[BeCl_4] \cdot 2,5CH_2Cl_2 (1 \cdot 2,5CH_2Cl_2)$

1 besteht aus isolierten $(Ph_4P)^+$ -Ionen und Tetrachloroberyllationen (Abb. 1) sowie in das Gitter eingelagerten Dichlormethanmolekülen. Von diesen erreichen die CH₂Cl₂-Moleküle mit C(49) und C(50) Besetzungsfaktoren von 1; ihre C- und Cl-Atome ließen sich ohne Fehlordnung verfeinern. Dagegen erreicht das CH₂Cl₂-Molekül mit C(51) nur den Besetzungsfaktor 0,5; es ist zudem in zwei Positionen fehlgeordnet, die sich durch die Orientierung um ein Symmetriezentrum gut beschreiben lassen:

¹⁾ Die kristallographischen Daten (ohne Strukturfaktoren) wurden als "supplementary publication no. CCDC-214881 (1) und CCDC-214882 (2)" beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei CCDC, 12 Union Road, Cambridge CB2 1EZ (Fax: (+44)1223-336-033; E-mail: deposit@ccdc.cam.ac.uk), Großbritannien, angefordert werden.

Tabelle	2	Kristallda	ten und	Angabei	ı zu	den	Kristal	lstru	ktur	best	immu	ngen
---------	---	------------	---------	---------	------	-----	---------	-------	------	------	------	------

	$(Ph_4P)_2[BeCl_4]\cdot 2,5CH_2Cl_2$ (1·2,5CH_2Cl_2)	$\begin{array}{l} (Ph_4P)_2[Be_2Cl_6]\cdot 2CH_2Cl_2\\ (\textbf{2}\cdot 2CH_2Cl_2) \end{array}$			
Gitterkonstanten/pm/°	a = 1185,7(1) α = 77,62(1) b = 1244,5(1) β = 74,13(1) c = 1939,3(2) γ = 68,17(1)	a = 985,3(1) α = 65,45(1) b = 1107,6(1) β = 79,12(1) c = 1344,7(1) γ = 78,40(1)			
Zellvolumen/Å ³	2534,7(4)	1298,4(2)			
Zahl der Formeleinheiten pro Zelle	Z = 2	$\mathbf{Z} = 1$			
Dichte (berechnet)/g·cm ⁻³	1,365	1,380			
Kristallsystem, Raumgruppe	triklin, PĪ	triklin, PĪ			
Meßgerät	IPDS II	(Stoe)			
Strahlung	MoKα (Graphit-M	Aonochromator)			
Meßtemperatur/K	193	193			
Zahl der Reflexe zur Gitterkonstantenberechnung	5000	5000			
Meßbereich	$2\Theta_{\text{max}} = 52,56^{\circ}$	$2\Theta_{\text{max}} = 52,56^{\circ}$			
Zahl der gemessenen Reflexe	23511	18997			
Zahl der unabhängigen Reflexe	$10100 [R_{int} = 0.0352]$	$5224 [R_{int} = 0.0355]$			
Zahl der beobachteten Reflexe mit $F_o > 4\sigma(F_o)$	7053	4411			
Korrekturen	Lorentz- und Polarisationsfaktor, numerische Absorptionskorrektur,				
	$\mu(MoK_{\alpha}) = 5.9 \text{ cm}^{-1}$ $\mu(MoK_{\alpha}) = 6.3 \text{ cm}^{-1}$				
Bemerkungen	H-Atomlagen in berechneten Positionen. Verfeinerung mit gemeinsamem Aus-				
	lenkungsparameter.				
	Besetzungsfaktoren				
Q. 1	C(51), Cl(9), Cl(10): 0,5				
Strukturaufklarung	Direkte M	ethoden 52			
Verteinerung	Vollmatrix-Verfeinerung gegen F ²				
Anzahl der Parameter	578 290				
verwendete Rechenprogramme	SHELXS-9/ [14], SHELXL-9/ [15]				
Atomiormiaktoren, $\Delta \Gamma$, $\Delta \Gamma$	Internationale Tabellen, Vol. C				
$\mathbf{K} = 2 \mathbf{\Gamma}_{o} - \mathbf{\Gamma}_{c} / 2 \mathbf{\Gamma}_{o} $	0,0410	0,0301 0,1032b)			
WK ₂ (alle Daten) Marine la Datella bare di alta $/10^{-6}$ /mm ³	0,1159"	0,1032			
Maximale Restelectronendicite/10 °e/pm ³	0,5	0,42			

 $^{a)} w = 1/[\sigma^2(F_o{}^2) + (0.0683 \cdot P)^2]; P = [max(F_o{}^2, 0) + 2 \cdot F_c{}^2]/3$ $^{b)} w = 1/[\sigma^2(F_o{}^2) + (0.0619 \cdot P)^2 + 0.2 \cdot P]; P = [max(F_o{}^2, 0) + 2 \cdot F_c{}^2]/3$

Tabelle	3	Ausgewählte	Bindungslängen/pm	und	-winkel/°	in
$(Ph_4P)_2[$	Be	$Cl_4] \cdot 2, 5CH_2Cl_2$	$(1 \cdot 2, 5 C H_2 C l_2)$			

P-C	179,1-180,1(2)	im Mittel	179,5
Be(1)-Cl(1) Be(1)-Cl(2) C-Cl	203,4(3) 202,4(3) 172,6-175,2(4)	$\begin{array}{l} Be(1)-Cl(3)\\ Be(1)-Cl(4)\\ im Mittel \end{array}$	204,6(3) 204,9(3) 173,9
$\begin{array}{l} Cl(1) - Be(1) - Cl(2) \\ Cl(1) - Be(1) - Cl(3) \\ Cl(1) - Be(1) - Cl(4) \\ Cl(5) - C(49) - Cl(6) \end{array}$	110,6(2) 107,8(2) 110,3(2) 113,9(2)	$\begin{array}{c} Cl(2) - Be(1) - Cl(3) \\ Cl(2) - Be(1) - Cl(4) \\ Cl(3) - Be(1) - Cl(4) \\ Cl(7) - C(50) - Cl(8) \end{array}$	109,4(2) 108,9(2) 109,8(2) 112,9(2)

Tabelle 4 Ausgewählte Bindungslängen/pm und -winkel/° in $(Ph_4P)_2[Be_2Cl_6]\cdot 2CH_2Cl_2$ (2·2CH₂Cl₂)

P(1) - C(1)	179,2(2)	P(1) - C(13)	179,5(2)
P(1) - C(7)	178,6(2)	P(1) - C(19)	179,5(2)
Be(1)-Cl(1)	210,8(3)	Be(1)-Cl(2)	196,9(3)
Be(1)-Cl(1A)	210,2(3)	Be(1)-Cl(3)	195,2(3)
C(25)-Cl(4)	175,7(2)	C(25) - Cl(5)	175,6(3)
C(1) - P(1) - C(7)	109,55(9)	C(7) - P(1) - C(13)	107,47(9)
C(1) - P(1) - C(13)	110,30(8)	C(7) - P(1) - C(19)	110,75(8)
C(1) - P(1) - C(19)	107,70(9)	C(13) - P(1) - C(19)	111,07(9)
Be(1)-Cl(1)-Be(1A)	84,4(1)	Cl(2) - Be(1) - Cl(1A)	110,9(2)
Cl(1)-Be(1)-Cl(1A)	95,6(1)	Cl(2)-Be(1)-Cl(3)	115,2(1)
Cl(1)-Be(1)-Cl(2)	110,4(2)	Cl(3)-Be(1)-Cl(1A)	111,7(1)
Cl(1)-Be(1)-Cl(3)	111,5(2)	Cl(4) - C(25) - Cl(5)	111,4(1)

Eine Durchsicht der interatomaren C-H…Cl-Abstände läßt nur sehr schwache Wechselwirkungen erkennen, was mit dem Verlust der CH2Cl2-Moleküle im Vakuum korreliert. Ebenso schwach sind im Gitter von 1.2,5CH₂Cl₂ die Kation-Anion-Wechselwirkungen.

Das [BeCl₄]²⁻-Ion ist ohne kristallographische Lagesymmetrie, jedoch wird ideale Tetraedersymmetrie T_d annähernd erreicht. So variieren die Be-Cl-Abstände nur in den Grenzen von 202,4 bis 204,9(3) pm (im Mittel 203,8 pm) und die Cl-Be-Cl-Bindungswinkel von 107,8 bis 110,3(2)°. Dagegen streuen die Be-Cl-Abstände in Cs₂-[BeCl₄] [4] von 199,2 bis 204,9 pm (im Mittel 202,8 pm) bei Bindungswinkeln von 107,5 bis 115,0°. Die im Mittel um 1 pm kürzeren Be-Cl-Abstände in Cs₂[BeCl₄] lassen sich als Folge der direkten Cs+····Cl--Kontakte mit einem stärkeren Ladungsabfluß vom [BeCl4]2--Ion und einer damit verbundenen Verringerung der bindungslockernden Überschußladung des komplexen Anions deuten. Wir haben diesen Sachverhalt unlängst auch an verschiedenen Chlorowolframaten beobachtet [10].

Abb. 1 Darstellung der asymmetrischen Einheit von $(Ph_4P)_2[BeCl_4]$ in der Struktur von $1.2,5CH_2Cl_2$ (ohne Solvensmoleküle und ohne H-Atome an den Phenylringen). Ellipsoide der thermischen Schwingung mit 40 % Aufenthaltswahrscheinlichkeit bei 193 K.

3.2 $(Ph_4P)_2[Be_2Cl_6] \cdot 2CH_2Cl_2 (2 \cdot 2CH_2Cl_2)$

Die Struktur von $2 \cdot 2 \text{CH}_2 \text{Cl}_2$ ist in Abbildung 2 wiedergegeben. Wie in 1 liegen auch hier isolierte Ionen vor. Die in das Gitter eingelagerten CH₂Cl₂-Moleküle sind ohne Fehlordnung; ihre intermolekularen Wechselwirkungen sind ebenso wie die zwischen Kationen und Anion wiederum sehr schwach. Die kürzesten Abstände bestehen zwischen C(15) und Cl(3) mit 357,5(2) pm und C(25) und Cl(3) mit 360,2(3) pm.

Das zentrosymmetrische $[Be_2Cl_6]^{2-}$ -Ion hat angenähert die Symmetrie 2/m (C_{2h}), die in Te₇[Be₂Cl₆] [6] exakt erfüllt ist. Die Be-Cl-Abstände des Be₂Cl₂-Vierringes sind mit 210,8 und 210,2(3) pm in **2**·2CH₂Cl₂ etwa 5 pm länger als in Te₇[Be₂Cl₆] (205,7(2) pm [6]), während die der terminalen Be-Cl-Abstände mit 196,9 und 195,2(3) pm nur wenig kürzer sind als in Te₇[Be₂Cl₆] (197,9(2) pm [6]). Im Mittel sind damit die Be-Cl-Bindungen in **2**·2CH₂Cl₂ mit 203,3 pm länger als in Te₇[Be₂Cl₆] mit 201,8 pm. Damit bestätigt sich der oben genannte elektrostatische Abflußeffekt auch an diesem Beispielpaar. Die langen Be₂Cl₂-Brückenbindungen im [Be₂Cl₆]²⁻-Ion von **2**·2CH₂Cl₂ lassen eine leicht erfolgende Ringöffnung und bewegliche, für den Ligandenaustausch geeignete Chloroliganden erwarten. Wir werden hierüber demnächst berichten. Im Vergleich mit der Kettenstruktur der α' -Modifikation von [BeCl₂]_{∞} [11], das orthorhomisch in der Raumgruppe Ibam oder Iba2 mit Z = 4 BeCl₂-Einheiten kristallisiert [12], sind im [Be₂Cl₆]^{2–}-Ion von **2**·2CH₂Cl₂ die Bindungswinkel im Be₂Cl₂-Vierring auf 95,6(1)° an den Be-Atomen gegenüber 98,2° im [BeCl₂]_{∞} [12] verkleinert, während zugleich die Bindungswinkel der terminalen BeCl₂-Einheiten auf 115,2(1)° aufgeweitet werden. Dies ist eine Folge der langen Be–Cl-Abstände im Be₂Cl₂-Vierring des [Be₂Cl₆]^{2–}-Ions von im Mittel 210,5 pm gegenüber den Be₂Cl₂-Ringabständen im [BeCl₂]_{∞} von 202 pm [12], was zugleich die kurzen Be–Cl-Abstände der terminalen Chloratome von im Mittel 196,1 pm ermöglicht.

Experimentelles

Vorsicht! Beryllium und seine Verbindungen sind stark toxisch (MAK-Liste A2 krebserregender Arbeitsstoffe). Es wirkt zudem auch mutagen [13]. Der Umgang mit Berylliumverbindungen erfordert daher möglichst sterile Vorsichtsmaßnahmen.

Für die Aufnahme der IR-Spektren stand das Bruker-Gerät IFS-88 zur Verfügung; KBr- und Polyethylenscheiben, Nujol-Verreibungen. Das Raman-Spektrum wurde mit Hilfe des Gerätes Labram HR800 von Jobin Yvon registriert; He/Ne-Laseranregung.

Berylliumdichlorid. 1,34 g dünne Berylliumflitter (reinst, Dr. Fraenkel + Dr. Landau, Berlin) wurden im Quarzschiffchen im Quarz-Strömungsrohr mit über P_4O_{10} (Sicapent) getrocknetem Chlorgas bei etwa 500 °C umgesetzt. Das entstehende BeCl₂ fiel teils als weißes Pulver, teils als blaßgelbe erstarrte Schmelze an. Nach dem Ende der Reaktion wurde das Chlorgas durch trockenen Stickstoff vertrieben und das mit nahezu vollständiger Ausbeute erhaltene BeCl₂ mehrere Stunden evakuiert, um Spuren von Chlor zu entfernen.

 $(Ph_4P)_2[Be_2Cl_6]$ (2). 0,80 g BeCl₂ (10 mmol) werden mit einer Lösung von 3,25 g (Ph₄P)Cl (entsprechend einem etwa 15% igen molaren Unterschuß) in 50 ml trockenem Dichlormethan versetzt und 12 h bei 20 °C gerührt. Man filtriert von unumgesetztem BeCl₂ ab und engt die Lösung i. Vak. bis zur beginnenden Kristallisation ein. Ruhigstellen des Ansatzes führt zu farblosen Einkristallen von 2·2CH₂Cl₂. Zur Herstellung von solvatfreiem 2 wird der gesamte Ansatz i. Vak. unter Rühren bis zur Trockne eingeengt und schließlich 2 h bei 60 °C getrocknet. Ausbeute vollständig, bezogen auf (Ph₄P)Cl.

 $(Ph_4P)_2[BeCl_4]$ (1). 0,455 g $(Ph_4P)_2[Be_2Cl_6]$ (2) (0,5 mmol) werden in 20 ml Dichlormethan gelöst und mit 0,375 g $(Ph_4P)Cl$ (1 mmol) versetzt. Es entsteht eine klare Lösung, die man, wie unter der Vor-

Abb. 2 Darstellung der Struktur von (Ph₄P)₂[Be₂Cl₆]·2CH₂Cl₂ (ohne H-Atome). Ellipsoide der thermischen Schwingung mit 40 % Aufenthaltswahrscheinlichkeit bei 193 K.

schrift für 2 beschrieben, behandelt. Die beim Einengen i. Vak. entstehenden farblosen Einkristalle haben die Zusammensetzung $1.2,5CH_2Cl_2$. Ausbeute an 1 (blaßgelbes Kristallpulver) vollständig.

Wir danken Herrn Prof. Dr. B. Harbrecht, Marburg, für die Überlassung von Beryllium.

Literatur

- J. M. Schmidt, Bull. Soc. Chim. France 1926, 39, 1691; Ann. Chim. 1929, 11, 367.
- [2] H. J. Seifert, E. Spundflasche, J. Therm. Anal. 1993, 39, 1039.
- [3] K. N. Semenenko, A. I. Grigor'ev, Zh. Neorg. Khim. 1965, 10, 2591; Russ. J. Inorg. Chem. [Engl. Transl.] 1965, 10, 1410.
- [4] H.-C. Gaebell, G. Meyer, Z. Anorg. Allg. Chem. 1984, 515, 133.
- [5] A. Assoud, G. Meyer, Z. Anorg. Allg. Chem. 2002, 628, 2199.
- [6] J. Beck, A. Fischer, A. Stankowski, Z. Anorg. Allg. Chem. 2002, 628, 2542.

- [7] K. V. Titova, I. P. Vavilova, V. Y. Rosolowskii, *Russ. J. Inorg. Chem.* **1973**, *18*, 597.
- [8] H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer-Verlag, Berlin – Heidelberg – New York, 1966.
- [9] J. Weidlein, U. Müller, K. Dehnicke, Schwingungsspektroskopie, 2. Aufl., G. Thieme-Verlag, Stuttgart – New York, 1988.
- [10] C. Lau, A. Dietrich, M. Plate, P. Dierkes, B. Neumüller, S. Wocadlo, W. Massa, K. Harms, K. Dehnicke, Z. Anorg. Allg. Chem. 2003, 629, 473.
- [11] R. A. McDonald, F. L. Oetting, J. Phys. Chem. 1965, 69, 3839.
- [12] R. E. Rundle, P. H. Lewis, J. Chem. Phys. 1952, 20, 132.
- [13] W. Kaim, B. Schwederski, *Bioanorganische Chemie*, 2. Aufl., B. G. Teubner-Verlag, Stuttgart, 1995.
- [14] G. M. Sheldrick, SHELXS-97, Programm zur Lösung von Kristallstrukturen, Göttingen 1997.
- [15] G. M. Sheldrick, SHELXL-97, Programm zur Verfeinerung von Kristallstrukturen, Göttingen 1997.