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Abstract
The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry

techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of

solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the rela-

tionship between the mechanisms of the two reactions is discussed.
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Introduction
The advantages of applying flow chemistry processing to

organic synthesis have been extensively demonstrated in the

literature, increasing the safety, efficiency and reproducibility

of many organic chemistry reactions, causing this technology to

be accepted as an important new tool to aid the modern research

chemist [1-7]. Combining this enabling technology with solid-

supported reagents and scavengers offers synergistic benefits

over using the two technologies independently. Utilising

polymer-supported reagents and scavengers to purify the flow

stream permits telescoping of reaction sequences or facilitates

direct isolation of pure compounds from flow reactors,

removing the need for labour-intensive manual operations

[8-13]. Reagents are typically supported on low-crosslinked gel-

type or macroporous beads; however, these are characterised by

poor mass transfer properties as well as presenting practical

problems when used in packed beds in flow reactions due to

changes in structure and morphology when subjected to

solvents of varying polarity [14,15]. To avoid some of the prob-

lems associated with using resin beads, monolithic supports

have been developed for use in continuous-flow chemistry

systems. Monoliths are a single continuous piece of uniformly

porous material, prepared by precipitation polymerisation of a

functionalised monomer [16-20]. The monolith internal struc-

ture varies compared to bead-like supports, consisting of a
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Scheme 1: Formation of gem-dibromoolefin 3 from the reaction of carbon tetrabromide and triphenylphosphine as reported by Ramirez et al. [41].

combination of large macropores for flow through passage, in

combination with a network of smaller mesopores to allow

diffusion towards the active sites. This combined geometry has

been shown to result in superior chemical efficiency over tradi-

tional supports by providing a shorter diffusion pathway to

active sites via convective flow-through the macropores, as well

as providing lower void volumes [16]. Practically, their rigid

structure is secure over a wide range of solvents and under rea-

sonable pressures compared to beads due to a high degree of

cross linking, making them advantageous when applied to flow

processes [21,22].

Originally monoliths were developed to facilitate the isocratic

separation of peptides [17,23]; however, our group and others

have shown interest in using monolithic supports to facilitate

key chemical transformations [24-35]. The above advantages of

using monolithic supports over traditional beads in flow chem-

istry protocols can greatly facilitate the synthesis of fine chem-

icals using these enabling technologies [36]. We have recently

reported on the development of a monolithic triphenylphos-

phine reagent and its application to the Staudinger aza-Wittig

and Appel reactions in flow [37-40]. The immobilisation of tri-

phenylphosphine in this manner allowed the facile production

of a collection of pure compounds using flow chemistry tech-

nologies with no need for further offline purification. Following

the successful application of this monolith to the Appel reac-

tion (the transformation of alkyl alcohols to the corresponding

bromides), we wished to investigate the application of this

monolith to the closely related Ramirez gem-dibromo-

olefination reaction; the formation of gem-dibromoolefins from

aldehydes or ketones.

In 1962 Ramirez, Desai and McKelvie reported the formation of

dibromophosphorane 1 and (dibromomethylene)triphenylphos-

phorane (2) from the room temperature reaction of carbon

tetrabromide with two equivalents of triphenylphosphine

(Scheme 1) [41]. Addition of benzaldehyde then gave the

desired gem-dibromoolefin, (2,2-dibromovinyl)benzene (3) in

84% yield. Triphenylphosphine oxide (4) was also isolated from

the reaction as a byproduct. These gem-dibromoolefin products

are particularly important intermediates in the one carbon

homologation of an aldehyde into the corresponding terminal

alkyne, known as the Corey–Fuchs reaction [42], and more

recently stereospecific hydrogenolysis, Stille and Suzuki reac-

tions have been used to further elaborate these useful products

[43-45].

The triphenylphosphine oxide byproduct can often be difficult

to remove from the reaction mixture, requiring extensive, time-

consuming purification procedures to isolate the desired prod-

uct in high purity. For Ramirez gem-dibromoolefination reac-

tions, successful strategies have been developed to facilitate this

separation through derivatising the triphenylphosphine (or its

oxide) to achieve purification via filtration [46,47], as well as

by immobilising the triphenylphosphine on a solid-support [48].

A polymer-supported equivalent of triphenylphosphine has also

been successfully utilised by our group and by others in batch

Wittig reactions [49,50], Mitsunobu and Staudinger aza-Wittig

reactions [51,52], as well as many examples concerning the

Appel reaction [51-57].

Following our success using a monolithic form of triphenyl-

phosphine to facilitate the Appel reaction, we wanted to explore

the use of this monolith for performing the Ramirez gem-di-

bromoolefination reaction in flow. The monolithic form of tri-

phenylphosphine should have improved flow characteristics

compared to bead-based equivalents circumventing the prob-

lems associated with using these solid-supported reagents in

combination with flow techniques. Key intermediates for the

Ramirez dibromoolefination reaction, 1 and 2 depicted in

Scheme 1, are also known to be potential intermediates in the

Appel reaction [58,59] and consequently we also wished to

investigate the interplay between the two reaction mechanisms.

Results and Discussion
Formation of the triphenylphosphine monolith
The triphenylphosphine monoliths for the Ramirez reactions

were formed using precipitation polymerisation of the phos-

phine monomer 5 (Scheme 2). A polymerisation mixture of the

triphenylphosphine monomer 5, cross-linking components

divinylbenzene (6) and styrene (7) along with the porogen,

1-dodecanol (8), was heated to 50 °C until a homogeneous mix-

ture was achieved. The initiator, dibenzoyl peroxide (9) was

then added and the temperature maintained at 50 °C until this

had completely dissolved. The mixture was then transferred to a

glass column, the ends sealed with custom-made PTFE end
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Scheme 2: Formation of the triphenylphosphine monoliths.

Figure 1: a. An unfunctionalised triphenylphosphine monolith; b. Monolith after functionalisation with carbon tetrabromide at 0 °C; c. Monolith after
complete consumption of the active Ramirez gem-dibromoolefination species; d. Monolith after complete consumption of the active Ramirez gem-di-
bromoolefination species and the Appel brominating species.

pieces and heated to 92 °C for 48 hours using a Vapourtec R4

heating unit. This protocol can be clearly viewed in a video

previously released by our group [40], however the Ramirez

monoliths employ a higher ratio of styrene to divinylbenzene.

This results in a lower proportion of crosslinking within the

monolith, allowing greater flexibility in the backbone of the

polymer whilst still maintaining desirable monolithic character-

istics during flow reactions. This greater flexibility has previ-

ously been shown to assist with the formation of active species

1 and 2 in solid-supported triphenylphosphine beads, by

allowing neighbouring group interactions between the tri-

phenylphosphine residues.

The resultant white polymer (see Figure 1, a) was cooled to

room temperature and the end plugs exchanged with standard

flow-through end pieces. The porogen and any unreacted

starting materials were then eluted from the monolith using a

stream of dichloromethane at elevated temperature (60 °C).

This polymerisation protocol consistently gave a low pressure

drop across the monoliths for use in flow reactions. The mono-

liths were calculated to have a phosphorus loading of

1.85 mmol of phosphorus per gram, resulting in approximately

4.63 mmol of phosphorus per monolith.

Loading the monolith to give the active
Ramirez brominating species
Loading the monolith with carbon tetrabromide to give the

active species for the Ramirez gem-dibroomolefination

reactions was found to proceed in a facile manner using a

single pass protocol with the monolith being cooled to 0 °C

(Scheme 3). Cooling the monolith by submerging it in an ice-

water bath was found to be necessary to prevent the formation
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of an inseparable side product, observed if reactions were

performed at room temperature.

Scheme 3: Functionalising the triphenylphosphine monolith to give the
active Ramirez monolith using carbon tetrabromide.

Interestingly, an external source of triphenylphosphine was not

required to form the solid-supported equivalents of active

species 1 and 2, indicating that the polymer chains within the

monolith have sufficient conformational freedom to allow

neighbouring group interactions between triphenylphosphine

sites. Any attempts to use a solution of triphenylphosphine to

increase the active loading of the monolith was found to result

in the formation of insoluble triphenylphosphine salts which

crystallised and blocked the flow tubing downstream of the

monolith.

The formation of the active species was accompanied by a

colour change, resulting in a bright yellow polymer (Figure 1,

b). Each monolith was shown to have an active loading towards

the Ramirez transformation of approximately 0.8 mmol.

Although this is a relatively low active loading, this is not unex-

pected as two equivalents of triphenylphosphine are required for

the formation of one equivalent of the active Ramirez bromin-

ating species.

Ramirez
gem-dibromoolefination reactions in flow
With the functionalised monolith in hand, it was then used to

perform the Ramirez gem-dibromoolefination reaction in flow

to transform aldehydes into their corresponding gem-dibromo-

olefins. A 0.1 M solution of the aldehyde in dichloromethane

was prepared and introduced into the flow system via the use of

a sample loop. This solution was passed through the loaded

monolith at a rate of 0.5 mL/min while the monolith was main-

tained at 0 °C using a cooling bath (Scheme 4). The output was

collected for 1 h 15 min and the solvent removed in vacuo to

give complete conversion to the pure gem-dibromoolefin prod-

uct without any further manipulation.

This procedure was applied to a wide variety of aldehydes,

giving the gem-dibromoolefin products in high yields and purity

following only removal of the solvent by evaporation (Table 1).

Scheme 4: Flow synthesis of gem-dibromoolefins using the functional-
ised triphenylphosphine monolith.

Benzylic aldehydes containing electron withdrawing and

donating groups on the phenyl ring (Table 1, entries 1–4) were

transformed in high yield, as well as alkyl aldehydes (Table 1,

entries 5 and 6). Unsurprisingly, aldehydes containing a phenol

moiety were found to give little or no mass return as the pheno-

lic hydroxy group reacted with the triphenylphosphine sites

within the monolith, leaving the product bound to the polymer.

Interestingly the batch bromination of 3-phenylpropiolaldehyde

(Table 1, entry 7) requires the addition of 2.5 equivalents of 2,6-

lutidine [60], however pleasingly, this was not required when

the substrate was brominated using the flow procedure. It was

also possible to use the monolith on a series of heterocyclic sub-

strates with high yields (Table 1, entries 8–10). However, nico-

tinaldehyde (Table 1, entry 11) was found to give a reduced

yield and unusually contamination of subsequent products

formed using the same monolith was observed. X-ray crystal-

lography and mass spectrometry confirmed that the product

isolated was the hydrobromide salt of the desired gem-dibromo-

olefin, presumably formed from an additional reaction with the

monolith. The salt formed will coordinate to other ionic sites

within the monolith, reducing the isolated yield and resulting in

contamination of further products as it is slowly released from

the column.

A colour change was associated with the reaction, with the

monolith changing from a bright yellow to dull dark yellow

colour (Figure 1, b and c). A single monolith could be used for

multiple transformations with no cross contamination between

substrates run in sequential reactions through a single monolith

(with the exception of the nicotinaldehyde substrate explained

above).

An important test of this methodology was the application to

α-chiral aldehydes, to ensure that racemisation of the sensitive

chiral centre is avoided in chiral structures (Table 2). A butane-

2,3-diacetal derived aldehyde (Table 2, entry 1) and a diastereo-
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Table 1: Gem-dibromides prepared from the corresponding aldehydes using the triphenylphosphine monolith in flow.

Entry Starting material Product Isolated yield (%)a

1 80

2 95

3 93

4 98

5 79

6 78b

7 83

8 97

9 91

10 87

11 41c

aReactions performed on a 0.2 mmol scale; bproduct volatile, coutput collected for 2 hours rather than 1 h 15 min.
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Table 2: α-Chiral aldehydes and ketones containing electron-withdrawing groups converted to the corresponding gem-dibromides using the triphenyl-
phosphine monolith in flow.

Entry Starting material Product Isolated yield (%)a

1 95

2 84

3 91

4 98

5 84b

aReactions performed on a 0.2 mmol scale; breaction run at 0.10 mL/min with a previously unused monolith.

meric aldehyde containing an acetonide (Table 2, entry 2) were

successfully brominated using the flow protocol, being isolated

in high yield with retention of stereochemistry as determined by
1H NMR. The method was then applied to an enantiopure alde-

hyde (Table 2, entry 3) which could be transformed to the

desired product in high yield [61].

There is also precedent for performing Ramirez gem-dibromo-

olefin reactions on carbonyl groups other than aldehydes, such

as certain ketones activated using electron withdrawing groups

[47]. A selection of these ketones were therefore subjected to

the flow Ramirez reaction conditions (Table 2). Unsurprisingly,

unactivated ketones such as cyclohexanone and benzophenone

gave no conversion to the desired dibromide using the standard

conditions. However, with some optimisation, an acyl cyanide

(Table 2, entry 4) and a silyl protected ynone (Table 2, entry 5)

could be converted to the desired gem-dibromoolefins respect-

ively in high yields. Interestingly, it was found that full conver-

sion could only be achieved for the silyl protected ynone using

a low flow rate and a previously unused monolith, indicating

some reduction in reactivity with each use of the monolith.

Utilising the loaded monolith for the Appel
reaction in flow
The two active species formed during the Ramirez gem-di-

bromoolefination reaction (1 and 2 in Scheme 1) are also known

to be potential intermediates in the Appel reaction and we have

previously shown that these monoliths can facilitate this forma-

tion using similar conditions [39]. We wished to investigate the

relationship between the two reactions and hoped to establish

conditions to perform both reactions using a single protocol.

Using a similar configuration to the Ramirez reactions in flow,

a selection of alcohols were directed through the monolith

loaded with carbon tetrabromide at 0 °C (Scheme 5). Gratify-

ingly it was found that the monoliths prepared for the Ramirez

gem-dibromoolefination reactions could be used directly for the

Appel transformation, giving the bromide products in high yield

and high purity following removal of the dichloromethane

solvent (Table 3). Citronellol (Table 3, entry 1) and an indole

derived alcohol (Table 3, entry 2), could be transformed in a

facile manner using a single pass of the alcohol through the

monolith at 0 °C, however the allyl alcohol (Table 3, entry 3)

required recycling through the monolith to effect complete
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Table 3: Alkyl bromides prepared from the corresponding alcohols using the triphenylphosphine monolith for the Appel reaction in flow.

Entry Starting material Product Conversion after
one pass (%)a

Time required for
full conversionb

Isolated yield
(%)c

1 100 – 82

2 100 – 95

3 13 14 h 30 min 90

aOne pass through the monolith at 0.5 mL/min, percentage conversion determined by 1H NMR analysis; bsubstrate recirculated through the monolith
at 0.5 mL/min until full consumption of starting material indicated by TLC; creactions performed on a 0.2 mmol scale.

Scheme 5: Flow synthesis of bromides from the corresponding alco-
hols using the functionalised triphenylphosphine monolith in the Appel
reaction at 0 °C.

conversion. In batch, this reaction required low temperature

conditions (−78 °C) and the presence of base to give an isol-

ated yield of 78% [62], however this could be improved to 90%

by performing this reaction in flow at 0 °C. Loading the mono-

lith using the protocol described above was found to give an ap-

proximate active loading of 0.6 mmol for the Appel reaction.

Utilising one monolith for both reactions potentially broadens

the synthetic utility of the supported reagent and so performing

both reactions sequentially using a single monolith was investi-

gated. It was anticipated that these studies into the interplay

between the reactions might also assist to elucidate the mech-

anism through which the Appel reaction proceeds on solid-

support. It is known that the Appel reaction can proceed either

through intermediates 1 and 2 which are common to both the

Ramirez and Appel reactions, or via the alternative pathway

(Scheme 6) which only requires one equivalent of triphenyl-

phosphine per molecule of carbon tetrabromide to give inter-

mediate 13 (Scheme 6) [59]. It has been previously noted that

intermediate 2, while not an active brominating agent in the

Appel reaction, is known to assist in the formation of 10 by

deprotonating the alcohol to form 11 [57]. However, it is

thought that both possible pathways for the Appel reaction are

utilised when using solid-supported triphenylphosphine due to

the evidence for neighbouring-group interactions (the forma-

tion of 1 and 2), along with site isolation effects ensuring the

formation of 13.

The reactions reported below were therefore performed sequen-

tially using a single monolith. Pleasingly, it was found that after

exhausting the monolith of the gem-dibromoolefination active

species through multiple Ramirez reactions, the monolith could

then be used to successfully perform the Appel reaction in flow.

Approximately 0.55 mmol of alcohol could be transformed into

the corresponding alkyl bromide following approximately

0.80 mmol of successful gem-dibromoolefination reactions.

When the Appel reaction was performed after the Ramirez reac-

tion, the monolith once again changed colour from dull dark

yellow to off-white (depicted in Figure 1, c and d). However,

when the loaded monolith was first used for the Appel reaction,

there was no conversion observed for a subsequent Ramirez

gem-dibromoolefination, with only the starting aldehyde being

recovered from the output.
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Scheme 6: Mechanisms for the Ramirez and Appel reactions [41,59].

These results indicate that the Appel reaction consumes all of

the active Ramirez species 2 (Scheme 6), preventing the

progress of the Ramirez dibromoolefination. However, if this

species is consumed through multiple Ramirez gem-dibromo-

olefination reactions then an alternative brominating agent is

utilised to perform the Appel reaction, or alternatively inter-

mediate 2 is not required for the Appel mechanism using inter-

mediate 1. This is supported by previous observations in the

literature that indicate that the predominant pathway for the

Appel reaction on solid-support is through intermediates 1 and

2 although overall both pathways are utilised [59]. The possi-

bility of performing the Appel reaction following the use of

the same monolith for the Ramirez gem-dibromoolefination

reaction gives wider synthetic applications for this flow

methodology.

Conclusion
In summary, the monolithic form of triphenylphosphine

recently described by our group [37-40] has been successfully

applied to the Ramirez gem-dibromoolefination reaction in

flow. The monolith was loaded with carbon tetrabromide at

0 °C using a single pass protocol to give the active brominating

agent. This monolith was then utilised in the Ramirez reaction

in flow, transforming a variety of different aldehydes to the

corresponding gem-dibromoolefins in high yields and excellent

purity following only removal of solvent. α-Chiral aldehydes

were also successfully transformed, without racemisation of the

stereocentre and two ketones bearing electron-withdrawing

groups were converted into the desired dibromoolefins in high

yield. It was further demonstrated that the same monoliths could

be applied to the Appel reaction, giving a small selection of

alkyl bromides in high yield and purity without further off-line

purification protocols. It was also shown that a single monolith

could be used sequentially for Ramirez reactions and then the

Appel reaction, but not in reverse order. This indicates that the

Appel reaction consumes the Ramirez active brominating agent

during the reaction. An alternative mechanistic pathway can

ensue if the Appel reaction is performed subsequent to the

Ramirez reaction.
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