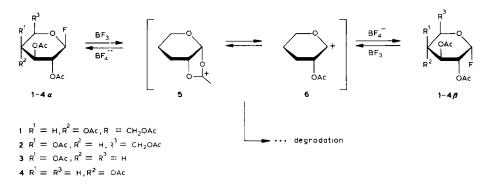
Note

Silver tetrafluoroborate as an effective catalyst for the anomerisation of glycosyl fluorides


YAKOV V. VOZNIJ, LEONID N. KOIKOV, AND ARMEN A. GALOYAN Institute of Biochemistry, Academy of Sciences of the Armenian S.S.R., Erevan 375044 (U.S.S.R.) (Received July 22nd, 1983; accepted for publication, March 20th, 1984)

Although anomerisation reactions have received considerable attention in carbohydrate chemistry, the anomerisation of glycosyl fluorides has not been reported hitherto. It is well known that treatment of acylated sugars with liquid hydrogen fluoride¹ gives the thermodynamically stable α -acylglycosyl fluorides. Under the strongly acidic conditions employed, epimerisation of the neighbouring substituents often takes place². We now report on the anomerisation of glycopyranosyl fluorides under mild conditions.

In contrast to the easy S_N^2 anomerisation of glycosyl chlorides and bromides in the presence of the corresponding tetrabutylammonium halides³, treatment of 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl fluoride (1α) with tetrabutylammonium fluoride did not give the α -anomer (1β), whereas the reaction of 1α with classic anomerising agents (TiCl₄, SnCl₄, BF₃ · Et₂O) resulted in the rapid formation of a mixture of D-glucose tetra-acetates. However, by using g.l.c. and t.l.c., it was possible to detect, in the former experiment, traces of 1β , evidently arising from cations 5 and 6 (S_N 1), but variations of solvent, temperature, and concentration of Lewis acid did not increase the yield of 1β .

An increase in the concentration of F^- in the reaction mixture would be expected to shift the equilibrium towards 1β . Recently⁴, it has been shown that, in reactions with acylglycosyl chlorides, AgBF₄ can be used as an organic solvent-soluble F^- donor. When solutions of 1α and AgBF₄ in aromatic solvents were boiled under reflux, 63% of 1β was obtained. The reaction proceeded smoothly, but there was a considerable induction period which could be attributed to the need for the formation (AgBF₄ \rightleftharpoons AgF + BF₃) of microquantities of BF₃ to initiate anomerisation.

The conversion of 1α into 1β took place easily at room temperature (50% yield) if traces of anhydrous HCl or BF₃ · Et₂O were added to a solution of 1α and AgBF₄ in benzene, which confirms the mechanism mentioned above. The reaction rate depends on the concentration of BF₃ and solvation decreases it considerably.

Thus, the reaction of 1α (0.57 mmol), AgBF₄ (0.26 mmol), and BF₃ · Et₂O (0.24 mmol) was complete in 10 min in nitromethane, in 24 h in acetonitrile, and in 3 weeks in ether. A highly active system, apparently containing free BF₃, was formed by refluxing a solution of AgBF₄ in dichloromethane for ~5 min. If, after cooling the mixture to 10°, glycosyl fluoride was added, anomerisation was complete in 5–30 min.

The foregoing method was applied to the glycosyl fluorides 1-4 α . Prolonged contact of the product with the catalyst resulted in a decrease in yield and, in each of these reactions, the formation of ~5% of fully acetylated sugar was detected; at equilibrium, the mixtures from 3 (*arabino*) and 4 (*xylo*) contained ~10% of the starting fluoride. Blank experiments with thermodynamically stable 2,3,4,6-tetra-O-acetyl- α -D-gluco- and -D-manno-pyranosyl fluoride and 2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl fluoride showed that they were degraded slowly (~24 h) and afforded a mixture of partially hydrolysed and peracetylated compounds (*cf.* ref. 4), which accords with the proposed mechanism.

Other possible catalysts were investigated. Although pyridinium tetrafluoroborate did not cause anomerisation, dissolution of 1α at room temperature in dichloromethane containing Py \cdot HBF₄ and BF₃ \cdot Et₂O (molar ratios 30:10:1) gave 57% of 1β . The strong polarisation of the B-F bond in the Py \cdot BF₃ complex could result in the complex being an F⁻ donor in the presence of excess of BF₃ \cdot Et₂O, thereby causing anomerisation (method C). Good yields of the more stable anomers could be obtained only at low concentrations of BF₃ (Py-BF₃ \cdot Et₂O ratio 1:1.5). For ratios of 1α -catalyst of 1:3 and 1:0.12, the yields of 1β were 30% and 73%, respectively. This explains why only traces of 1β were formed when 1α was treated with pure BF₃ \cdot Et₂O.

Thus, for the anomerisation of glycosyl fluorides, simultaneous action of microquantities of Lewis acid (BF_3) and excess of F^- donor is necessary, and the use of silver tetrafluoroborate as a catalyst offers such a combination.

EXPERIMENTAL

All melting points are uncorrected. Optical rotations were measured with an

A-1 EPO automatic polarimeter (U.S.S.R.) for solutions in CHCl₃. Preparative column chromatography was performed on Silpearl spherical silica gel (Č.S.S.R.) with benzene-ether mixtures, and t.l.c. was performed on Silufol (Č.S.S.R.) with detection by gradual heating. G.l.c. was carried out using a Tsvet-104 instrument (U.S.S.R.), equipped with a glass column (1.5 m \times 3 mm) containing 3% of EGSP-Z on Inerton Super (0.125–0.16 mm) (Č.S.S.R.), at 200°. All reactions were performed in Me₂SiCl₂/MeOH silylated glassware, using solvents freshly distilled from CaH₂.

Anomerisation. — Method A. A mixture of β -fluoride 1α or 2α (1 mmol) and AgBF₄ (0.25 mmol) in benzene (3 mL) was boiled under reflux until starting material had disappeared (t.l.c.). The mixture was then washed twice with cold, saturated, aqueous NaHCO₃ and then water, dried (Na₂SO₄), and concentrated *in vacuo*, and the residue was subjected to chromatography. After recrystallisation from ether-heptane, the following α -glycosyl fluorides were obtained: 1β (63%), m.p. 107.5–108°, $[\alpha]_D$ +90° (lit.¹ m.p. 108°, $[\alpha]_D$ +90.1°); 2β (73%), m.p. 67–68°, $[\alpha]_D$ +96.5° (lit.⁵ syrup, $[\alpha]_D$ +106.6°).

Method B. Compounds 1-4 α (1 mmol) were each added to a solution of AgBF₄ (25 μ mol) in CH₂Cl₂ (2 mL) preheated until distinctly turbid and then cooled to 10°. After anomerisation was complete, work-up as in method A gave 1 β (94%); 2 β (62%); 3 β (72%), m.p. 117°, [α]_D +136° (lit.¹ m.p. 117–118°, [α]_D +138.2°); and 4 β (45%), m.p. 87°, [α]_D +66.5° (lit.¹ m.p. 87°, [α]_D +67.2°).

Method C. Fluoride 1α or 4α (1 mmol) was added to a stirred solution of pyridine (0.12 mmol) and BF₃ · Et₂O (0.18 mmol) in CH₂Cl₂ (2 mL) at 10°. After 30 min, the mixture was washed twice with water and worked-up as in method A. The yields of 1β and 4β were 73% and 43%, respectively.

REFERENCES

- 1 F. MICHEEL AND A. KLEMER, Adv. Carbohydr. Chem., 16 (1961) 85-103.
- 2 C. PEDERSEN, Acta Chem. Scand., 18 (1964) 60-64.
- 3 R. U. LEMIEUX AND J.-I. HAYAMI, Can. J. Chem., 43 (1965) 2162-2173.
- 4 K. IGARASHI, T. HONMA, AND J. IRISAWA, Carbohydr. Res., 13 (1970) 49-55.
- 5 L. D. HALL, J. F. MANVILLE, AND N. S. BHACCA, Can. J. Chem., 47 (1969) 1-17.