Silicon Effects. II.¹⁾ Structure and Stability of 1-Phenyl-2-(trimethylsilyl)ethyl Cation in Solution

Nobujiro Shimizu,* Shin-ichiro Watanabe, and Yuho Tsuno Department of Chemisty, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812 (Received March 2, 1991)

Solvolysis rates have been measured in various solvents at 25 °C for 1-(substituted phenyl)-2-(trimethyl-silyl)ethyl trifluoroacetates (1a-1g; R=H, 4-Me, 4-Cl, 4-Br, 3-Cl, 3,4-Cl₂, and 3,5-Cl₂, respectively) and structurally related compounds, 1-phenylethyl-, 3,3-dimethyl-1-phenylbutyl-, and 1-(4-methylphenyl)ethyl trifluoroacetates (3a, 4, and 5). In dioxane/water mixtures 1g solvolyzes with the same sensitivity to the change in solvent ionizing power as that for a k_c substrate 5. The solvolyses of 1e and 1e exhibit almost identical 1e-deuterium kinetic isotope effects (1e-deuterium: 1e-deuterium kinetic isotope effects (1e-deuterium: 1e-deuterium: 1e-deuterium:

Previously²⁾ we have shown in a preliminary report that α -(pentamethyldisilanyl)benzyl bromide solvolyzes 2×10^5 times more rapidly than does α -trimethysilybenzyl bromide indicative of a marked β -silicon effect of the disilanyl group. It is of interest to compare the effect of the Si-Si bonds on stability of adjacent carbocations with the effect of the corresponding carbon-silicon bonds. Lambert and co-workers have shown that an anti β -SiMe₃ group exerts a rate-acceleration effect of 2.4×10¹² relative to hydrogen in the solvolysis of cyclohexyl derivatives suggesting a β-SiMe₃ group to stabilize cyclohexyl cation by about 17 kcal mol⁻¹ (1 cal=4.184 J) relative to hydrogen.³⁾ Seemingly, the β -silicon effect appears much less effective in a R¹R²C⁺-Si-SiMe₃ system than in a R¹R²C⁺-C-SiMe₃ system, although the Si-Si single bonds possess low ionization potentials as compared to the C-Si bonds.4) However, a direct comparison of the β -silicon effects in the benzylic and cyclohexyl solvolyses is not justified. There is a marked difference in the electronic demands at the carbenium carbon in the two systems. Theoretical study⁵⁾ indicates marked dependence of the β -silicon effect on the electronic demands of the carbocations as well as on the stereoelectronic restraint for the β -silicon group. order to discuss the effect of the disilanyl group, it is therefore desirable to estimate the β -silicon effect of the corresponding silylmethyl group in the same benzylic system. This paper describes kinetic details on the solvolysis of 1-aryl-2-(trimethylsilyl)ethyl trifluoroacetates (1a-1g) and related α -alkylbenzyl trifluoroacetates 3-5, and discusses mechanistic implications on the β silicon effect in the benzylic solvolysis.

Results

The trifluoroacetates 1a—1g were prepared by treatment of the corresponding alcohols 2 with trifluoroacetic anhydride in the presence of pyridine.³⁾ The trifluoroacetates 1 were labile at room temperature and a crude

product was directly used for kinetic measurements. We used three α -alkylbenzyl trifluoroacetates as alkyl reference standards. They were 1-phenylethyl trifluoroacetate (3a), 3,3-dimethyl-1-phenylbutyl trifluoroacetate (4), and 1-(4-methylphenyl)ethyl trifluoroacetate (5). Oxidation of 2e followed by reduction with LiAlD₄ gave corresponding α -deuterated alcohol, which was converted into its trifluoroacetate 1e- α -d₁.

Solvolysis reactions were followed spectrometrically at 25.0 ± 0.05 °C by measuring either increase in produced trifluoroacetic acid as its acridinium salt¹⁾ or increase in styrene derivatives which were formed practically as a single product under solvolytic conditions. All the solvolyses followed good first-order kinetics over 3 to 4 half-lives (correlation coefficient R>0.9999) and both methods gave identical rate constants within experimental error ($\pm3\%$). We also compared spectrometric rates with conductimetric rates in several cases; for example, a spectrometric rate for the solvolysis of 1e in

Table 1. Solvolysis Rates for 1, 3a, 4, and 5 at 25.0 ± 0.05 °C

Substrate	Solvent ^{a)}	$10^{-5} \ k/\mathrm{s}^{-1}$	ΔH_{298}^{\pm}	ΔS_{298}^{ullet}
Substrate			kcal mol-1	cal K-1 mol-1
1a	90D	752 ±11°)	17.8 ^{d)}	-8.5 ^d)
	95D	128 ± 0.5		
1b	90D	7450 ^{e)}	17.1 ^{f)}	-6.3^{f}
	95D	1200 ± 0.3		
1c	90D	371 ± 3^{g}		
1d	90D	306 ± 0.1		
1e	90D	52.6 ± 0.8^{h}		
	80D	$374 \pm 5.1^{\circ}$		
	90A	277 ± 0.1		
	EtOH	225 ± 0.2		
1f	90D	41.6 ± 0.02		
1g	90D	5.45 ± 0.02^{g}	$20.4^{i)}$	-9.6^{i}
	80D	35.2 ± 0.02		
	70D	154 ± 0.1		
	60D	618 ± 0.2		
	50D	2570 ± 23^{j}	16.1 ^{k)}	-11.6^{k}
	90A	31.3 ± 0.1		
	80A	135 ± 0.2		
	70A	413 ± 0.3		
	60A	1210 ± 1.0		
	EtOH	24.9 ± 0.06		
	80E	355 ± 0.8		
	MeOH	171 ± 0.05		
3a	30D	35.2 ± 0.3^{g}		
4	30D	12.3 ± 0.2^{g}		
5	60D	4.40 ± 0.002		
	50D	19.1 ± 0.02	18.9 ¹⁾	$-12.3^{1)}$
	40D	$59.8 \pm 0.8^{\text{g}}$	18.4 ^{m)}	-11.3 ^m)
	30D	200 ± 0.5		
	20D	$567 \pm 1.0^{\text{g}}$		
	97T	91.5 ± 0.02		
	60A	5.80 ± 0.02		
	40A	75.8 ± 0.1		
	30A	236 ± 0.5		
	20A	657 ± 1.0		
	50E	$37.3 \pm 0.3^{\text{g}}$		
	40E	130 ± 0.1		
	30E	495 ± 0.4		

a) A: acetone/water (v/v), D: dioxane/water (v/v), E: ethanol/water (v/v), and 97T: 97/3 (w/w) trifluoroethanol/water mixtures. b) Single run except otherwise noted. c) Average of four runs. d) Calculated from the following rates: $10^5 \ k/s^{-1}$ (temp/°C) 113 (7.6), 189 (11.7), 296 (16.0), 494 (20.5), and 752 (25.0). e) Extrapolated value from other temperatures. f) Calculated from the following rates: $10^5 \ k/s^{-1}$ (temp/°C) 4680 (20.5), 2890 (16.0), 1920 (11.7), 1130 (7.6), and 687 (2.9). g) Average of two runs. h) Average of six runs. i) Calculated from the following rates: $10^5 \ k/s^{-1}$ (temp/°C) 5.45 (25.0), 60.3 (46.2), and 451 (67.4). j) Average of three runs. k) Calculated from the following rates: $10^5 \ k/s^{-1}$ (temp/°C) 696 (11.7), 1071 (16.0), 1733 (20.5), and 2570 (25.1). l) Calculated from the following rates: $10^5 \ k/s^{-1}$ (temp/°C) 19.1 (25.0), 47.5 (33.8), and 127 (43.2). m) Calculated from the following rates: $10^5 \ k/s^{-1}$ (temp/°C) 14.4 (11.7), 23.8 (16.0), 59.8 (25.0), 161 (34.3), and 418 (43.2).

90% aq acetone at 25.0 °C measured by the acridine method, $k=(2.765\pm0.003)\times10^{-3} \,\mathrm{s}^{-1}$, was identical to a conductimetric rate, $k=(2.772\pm0.001)\times10^{-3} \,\mathrm{s}^{-1}$. The conductimetric method could not be successfully applied to the solvolyses in 90% aq dioxane because of a poor conductimetrical response of trifluoroacetic acid. Table 1 summarizes solvolysis rates for 1a-1g, 3a, 4, and 5 in various solvents including 20/80 to 95/5 (v/v) dioxane/water (D series), 20/80 to 90/10 (v/v) acetone/water (A series), 30/70 to 100/0 (v/v) ethanol/water (E

series), 97/3 (w/w) 2,2,2-trifluoroethanol (TFE)/water (T series) binary mixtures and methanol. Table 2 shows the β -silicon effect in the α -alkylbenzyl solvolysis.

 α -Deuterium kinetic isotope effects (KIE) were measured for the solvolysis of 1e in 80D and in 90D. We also measured KIE for the solvolysis of the reference compound 5 in 40D for comparison. The results are given in Table 3.

Solvent effects were examined for **1g**. Unfortunately, a solvent ionizing power scale for the trifluoroacetoxy

Table 2. β -Silicon Effect in Benzylic Solvolysis^{a)}

ArCHC OCO	_	Solvent	k/s^{-1}	$k_{ m rel}$	
Ar	R				
4-CH ₃ C ₆ H ₄	SiMe ₃	50D	35.2 ^{b)}	1.84×10 ⁵	
	H	50D	1.91×10^{-4}	1.0	
C_6H_5	SiMe ₃	30D	36.8 ^{c)}	2.99×10 ⁵	
	H	30D	3.52×10^{-4}	2.86	
	t-Bu	30D	1.23×10 ⁻⁴	1.0	

a) At 25.0°C. b) Extrapolated value from $k(\mathbf{1g})$ in 50D and a rate ratio $k(\mathbf{1b})/k(\mathbf{1g})=1.37\times10^3$ in 90D. c) Extrapolated value from $k(\mathbf{1g})$ in 50D and rate ratios $k(\mathbf{1a})/k(\mathbf{1g})=138$ in 90D and $k_{30D}/k_{50D}=10.4$ for 4.

Table 3. α-Deuterium Kinetic Isotope Effects^{a)}

Substrate	Solvent	$10^5 k/\mathrm{s}^{-1}$	$k_{ m H}/k_{ m D}$
1e	80D	347.5 ±2.6 ^{b)}	
$1e-\alpha-d_1$		$293.2 \pm 2.3^{\circ}$	1.185 ± 0.018
1e	90D	52.63 ± 0.76^{d}	
$1e-\alpha-d_1$		44.57±1.00 ^{e)}	1.181±0.044
5	40D	59.81±0.78e)	
$5-\alpha-d_1$		$50.76 \pm 0.07^{e)}$	1.178 ± 0.017

a) At 25.0±0.05°C. b) Average of seven runs. c) Average of six runs. d) Average of four runs. e) Average of two runs.

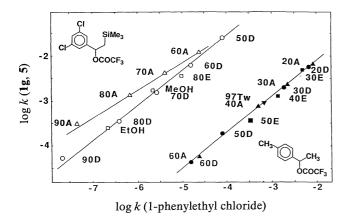


Fig. 1. Plots of $\log k$ for $\mathbf{1g}$ (open circles, triangles, and squares) and 5 (closed circles, triangles, and squares) vs. $\log k$ (1-phenylethyl chloride $\mathbf{3b}$) in various solvents.

leaving group is not available; so we chose 1-phenylethyl chloride (3b) as a standard benzylic substrate undergoing k_c solvolysis.^{6,7)} Figure 1 represents a plot of the rates (log k) for 1g against log k for 3b⁶⁾ in various solvents. Aq dioxane and alcoholic solvents show a single linear response with a slope (m') of 0.78, while acetone/water mixtures exhibit a separate line (m'=0.61). Figure 1 includes a log k-log k plot for 5 for comparison. Judging from a comparable nucleofugality of the trifluoroacetoxy leaving group to that of $Cl_*^{(8)}$ we can

Table 4. Comparison of Solvent Effect

Cubatanta	$m'^{a)}$			
Substrate	For aq dioxane	For all solvents		
1g 5	0.80 (<i>n</i> =4, <i>R</i> =0.999) ^{b)} 0.79 (<i>n</i> =4, <i>R</i> =0.999)	0.78 (<i>n</i> =7, <i>R</i> =0.999) ^{c)} 0.80 (<i>n</i> =12, <i>R</i> =0.999)		

a) Slope for a plot of $\log k$ vs. $\log k$ (1-phenylethyl chloride) (Ref. 6). b) Except for 90D. c) Except for aq acetone and 90D.

assume k_c mechanism for the solvolysis of 5. This is consistent with the fact that the solvolysis rates for 5 exhibit a linear response to those for 3b for a range of solvents of varying solvent nucleophilicity and ionizing power including aq dioxane, aq acetone, aq ethanol, and aq trifluoroethanol. A significantly reduced slope for 5, m'=0.80 relative to the chloride 3b, should be ascribed to the leaving group effect. Since trifluoroacetate ion is a highly delocalized species, it must be less strongly solvated hence less sensitive to the change in solvent ionizing power than chloride ion. Table 4 shows a comparison of the solvent effect between the solvolyses of 1g and 5.

Solvolytic reactions of 1 in aq dioxane and ethanol gave the corresponding styrenes (6) exclusively. In the case of the reaction of 1e in methanol, a significant amount (14%) of a methanolysis product 7 was also Under basic conditions, however, was produced the alcohol 2 as the major product instead. For example, a reaction of 1e in methanol containing sodium methoxide (0.09 M; 1 M=1 mol dm⁻³) gave 2e in 93% The formation of 2 undoubtedly arises from a B_{AC}2 reaction of the trifluoroacetates. Amines promoted this process and hence accelerated the rate of reaction; the presence of 0.01 M triethylamine accelerated the reaction rate of 1g in 70D by a factor of 4.85. Thus, the amine-induced BAC2 reaction may become a serious problem in the rate measurement for the solvolysis of the trifluoroacetates 1 when acridine is used as a monitoring base. Fortunately, however, we found that acridine did not affect significantly the rate of the solvolysis under solvolytic conditions at acridine concentrations around 10⁻⁴ M; for instance, the solvolyses of 1g in 70D in the presence of 1.0×10^{-3} M acridine showed an identical rate constant to that measured in the absence of acridine within experimental error: $k=1.58\times10^{-3}$ and 1.54×10^{-3} s⁻¹ at 25 °C, respectively.

Discussion

Table 2 indicates that a β -SiMe₃ group exerts a rate-acceleration effect of $(1-3)\times 10^5$ relative to hydrogen or t-Bu in the α -alkylbenzyl solvolysis. Although the solvolysis of α -alkylbenzyl derivatives is subjected to the steric effect of the α -alkyl groups, $^{2,9,10)}$ a rate ratio of 1a and a structurally related compound 4 provides a reasonable estimate for the β -silicon effect in the benzylic solvolysis. The rate acceleration by the β -silicon can be interpreted either by a α -participation mechanism (k_{α}) via a bridged siliconium ion intermediate 8 or by a simple ionization mechanism (k_{α}) via an open 1-aryl-2-(trimethylsilyl)ethyl cation 9 $^{3,11-15}$

The following kinetic features are informative on the structure of the transition state. First, the KIE for 1g, i.e., $k_{\rm H}/k_{\rm D}{=}1.18{-}1.19$ in aq dioxane, is comparable to the KIE, $k_{\rm H}/k_{\rm D}{=}1.18$, for the reference compound 5 which can be assumed to be a $k_{\rm c}$ substrate (Table 3). These isotope effects can be compared with KIE values for the typical $k_{\rm c}$ solvolysis of α -alkylbenzyl derivatives e.g., $k_{\rm H}/k_{\rm D}{=}1.157$ for the solvolysis of 1-(4-methoxyphenyl)ethyl chloride in aq ethanol. Apparently, the isotope effect indicates a striking resemblance in the structures of the transition state for the solvolysis of 1g and 5.

Second, solvolytic reactivities of a series of 1-aryl-2-(trimethylsilyl)ethyl trifluoroacetates **1a—1g** were well linearly correlated with $\sigma^{+ 17}$ affording a ρ^{+} value of -3.07 (R=0.9997). The application of the LArSR equation (Eq. 1)¹⁸⁾ gave an almost identical expression with a resonance parameter close to unity, r=1.05, and a reaction constant ρ =-3.05 (R=0.9997, SD=0.029).¹⁹⁾

$$\log k^{\mathrm{X}}/k^{\mathrm{H}} = \rho(\sigma^{\mathrm{o}} + r\Delta \overline{\sigma}_{\mathrm{R}}^{+}) \tag{1}$$

The limited number of π -donor substituents may not give us a precise r value; nevertheless, a rather high r value around 1.0 is apparently inconsistent with the bridged siliconium ion intermediate 8. The result is interestingly compared with the substituent effect for the α -alkylbenzyl solvolysis which has been characterized by r close to 1.15 and ρ around -5.20 A reduced r value for 1 is quite reasonable judging from the anticipated high stability of the cation 9a as compared to 1-phenylethyl cation. It has been shown that r decreases with in-

creasing stability of the benzylic cations $ArC^+R^1R^{2,20}$. The rate ratio, $k(1a)/k(3a)=1.1\times10^5$, would suggest the electronic demand of the carbenium carbon in the cation 9a to be comparable to that in the α,α -dimethylbenzyl cation which is characterized by r=1.0 by definition. 18)

It is also instructive to note that 1g and 5 showed very similar activation entropies in their solvolyses in a common solvent. For example, it is clear from Table 1 that a rate ratio of 1g to 5 observed in 50D at $25 \,^{\circ}C$ of a factor of 135 is entirely attributable to a 2.8 kcal mol⁻¹ low enthalpy of activation for 1g relative to 5. Again the result is more in accord with thr k_c mechanism than with the k_{Δ} mechanism which must involve substantial restraint of rotational motions at the transition state.

Finally it should be noted that in a log k-log k (3b) plot (Fig. 1), 1g showed an identical slope to that for 5 (Table 4). This means that 1g solvolyzes with the same susceptibility to the change in solvent ionizing power as that for 5 indicative of a marked resemblance in mechanism for ionization of the two substrates. Obviously, the solvent effect support the k_c solvolysis for 1, although we do not understand quite well the origin for deviations of aq acetone at present.

Thus, the combined results lead us to conclude that 1 solvolyzes via rate-determining formation of a classical 1aryl-2-(trimethylsilyl)ethyl cation 9. The cation must be effectively stabilized by the β-SiMe₃ group through hyperconjugation. $^{5,21)}$ It is worth stating that the k_c mechanism has been proposed also for the solvolysis of α -(pentamethyldisilanyl)benzyl halides which cleanly give 1,2-SiMe₃ rearranged products seemingly suggestive of σ -participation.²⁾ Extensive hyperconjugative interactions between the β -C-SiMe₃ σ -bond and the carbenium carbon would naturally involve changes in bond angles and bond lengths associated with the β silicon atom.⁵⁾ However, the absence of compelling evidence suggesting bond-forming interactions between the β -silicon and the benzylic carbon leads us at present to prefer a simple k_c mechanism to a σ -participated ionization. The k_c mechanism for 1 is compatible with the recent theoretical⁵⁾ and experimental results in the gas phase²²⁾ that an open structure of β -silyl-substituted alkyl cations is energetically more favorable than a bridged form except for the primary cation which preferably takes a bridged form. It can thus be said that the solvolytic generation of 1-phenyl-2-(trimethylsilyl)ethyl cation is about 7 kcal mol⁻¹ energetically more favorable than that of the corresponding α -alkylbenzyl cations.

Noteworthy is a marked reduction in ρ value for the k_c solvolysis of 1 indicative of substantial dispersion of the positive charge on the benzylic carbon to the β -C-SiMe₃ σ -bond in the transition state without significant bridging of the β -silicon. This would undoubtedly result from the electronic interaction between the empty 2p orbital and the β -C-Si bond, although it is not clear at present whether such the interaction is purely hyperconjugative or includes intramolecular charge or elec-

tron transfer interaction as illustrated by the structure 10.

The β -silicon effects in the present α -alkylbenzyl system as well as in the α -silylbenzyl system²⁾ are obviously much smaller than would be expected from a reported rate-acceleration of 2.4×10¹² in the cyclohexyl solvolysis corresponding to a reduction of activation energy by 17 kcal mol⁻¹ by a β-SiMe₃ group relative to hydrogen.³⁾ The reduced β -silicon effect would undoubtedly arise from the low electronic demands at the carbenium carbon for benzylic cations as compared to cyclohexyl cation. Li and Stone²²⁾ have shown from the gas-phase experiments that the stabilization of the carbocations afforded by a β-SiMe₃ group relative to hydrogen markedly decreases with increasing stability of the parent carbocations from 38 kcal mol⁻¹ for isopropyl cation to 22 kcal mol⁻¹ for 1-phenylethyl cation. difference in the β -silicon effect between the secondary alkyl and 1-phenylethyl cations by 16 kcal mol⁻¹ in the gas phase reasonably accounts for the observed ca. 10 kcal mol⁻¹ difference in the β -silicon effect between the α -alkylbenzyl and cyclohexyl solvolyses.

Experimental

IR spectra were recorded on a Hitachi R-215 spectrophotometer. NMR spectra were taken on a Hitachi R-20B spectrometer in carbon tetrachloride using TMS as internal standard. GLC were performed with a Hitachi 163 gas chromatograph using a 4 mm×2 m column packed with 5% Silicone GE SE-30 on Chamelite CS. UV spectra were recorded on a Hitachi 220A spectrophotometer equipped with a programmed data printer.

Dioxane was refluxed first with potassium hydroxide for 3 days, then with sodium for 3 days, and distilled. Acetone was refluxed with potassium permanganate and the distillate was dried over potassium carbonate and fractionated. Ethanol was distilled twice over sufficient amounts of magnesium ethoxide.

1-Aryl-2-(trimethylsilyl)ethyl Trifluoroacetates (1a-1g). These trifluoroacetates were prepared from the corresponding alcohols 2 according to the literature method.³⁾ The alcohols 2 were prepared by the Grignard reaction between the corresponding benzaldehyde and (trimethylsilyl)methylmagnesium chloride. A typical example is shown below:

To a stirred solution of (trimethylsilyl)methylmagnesium chloride prepared from trimethylsilylmethyl chloride (4.88 g, 40 mmol) and Mg (1.07 g) in ether (50 cm³) was added a solution of 3-chlorobenzaldehyde (5.07 g, 36 mmol) in ether (25 cm³) at room temperature. The mixture was stirred for 3 h at ambient temperature. A crude oil obtained after workup was distilled

to give 4.75 g (93%) of 1-(3-chlorophenyl)-2-(trimethylsilyl)ethanol (2e) as a colorless oil: Bp 121-121.5°C (1.5 Torr; 1 Torr=133.3 Pa); IR (neat) 3350, 1250, 860, 840, 785 cm⁻¹; ¹H NMR δ =0.0 (9H, s), 1.03—1.17 (2H, m), 2.32 (1H, broad s, OH), 4.72 (1H, t, *J*=7.2 Hz), 7.20—7.29 (4H, m). Found: C, 57.66; H, 7.46%. Calcd for C₁₁H₁₇ClOSi: C, 57.75; H, 7.49%. To a stirred solution of 2e (286 mg, 1.3 mmol) and pyridine (2.5 mmol) in ether (4 cm³) precooled in an ice-salt bath was added slowly trifluoroacetic anhydride (525 mg, 2.5 mmol) in ether (2 cm3) and the mixture was stirred for 30 min at that temperature. Pentane (15 cm³) was added. Organic layer was decanted, washed first with 10% hydrochloric acid, then with aq NaHCO3, and dried. Solvent was removed under reduced pressure affording a crude oil which was shown to be a practically pure 1-(3-chlorophenyl)-2-(trimethylsilyl)ethyl trifluoroacetate (1e; 353 mg, 87%) by ¹H NMR analysis: IR 1780, 1255, 1220, 1150, 860, 840, 780 cm⁻¹; H NMR δ =-0.06 (9H, s), 1.33—1.47 (2H, m), 5.89 (1H, t, J=7.8 Hz), 7.27 (4H, broad s). Found: C, 48.33; H, 4.97%. Calcd for C₁₃H₁₆ClF₃O₂Si: C, 48.07; H, 4.97%.

In a similar procedure, the following alcohols and their trifluoroacetates were prepared.

1-Phenyl-2-(trimethylsilyl)ethanol (2a in 98% yield): IR 3350, 1250 cm⁻¹; ¹H NMR δ=-0.09 (9H, s), 1.00—1.13 (2H, m), 1.74 (1H, s, OH), 4.68 (1H, t, J=7.8 Hz), 7.18 (5H, broad s). Found: C, 67.81; H, 9.19%. Calcd for C₁₁H₁₈Si: C, 67.98; H, 9.38%. 1a: ¹H NMR δ=-0.11 (9H, s), 1.45 (2H, d, J=7.8 Hz), 5.93 (1H, t, J=7.8 Hz), 7.33 (5H, broad s).

1-(4-Methylphenyl)-2-(trimethylsilyl)ethanol (2b; 98%): IR 3350, 1250, 860, 820 cm⁻¹; ¹H NMR δ =-0.06 (9H, s), 1.08 (2H, d, J=6.6 Hz), 1.50 (1H, s, OH), 4.70 (1H, t, J=6.6 Hz), 7.08 (4H, broad s). Found: C, 69.11; H, 9.80%. Calcd for C₁₂H₂₀OSi: C, 69.17; H, 9.67%. **1b**: ¹H NMR δ =-0.11 (9H, s), 1.44 (2H, d, J=7.8 Hz), 2.35 (3H, s), 5.89 (1H, t, J=7.8 Hz), 7.18 (4H, broad s).

1-(4-Chlorophenyl)-2-(trimethylsilyl)ethanol (2c, 95%): ¹H NMR δ=-0.04 (9H, s), 1.03—1.17 (2H, m), 1.68 (1H, s, OH), 4.73 (1H, t, J=7.2 Hz), 7.22 (4H, broad s). Found: C, 57.96; H, 7.49%. Calcd for C₁₁H₁₇ClOSi: C, 57.75; H, 7.49%. 1c: ¹H NMR δ=-0.07 (9H, s), 1.33—1.47 (2H, m), 5.90 (1H, t, J=8.4 Hz), 7.31 (4H, broad s).

1-(4-Bromophenyl)-2-(trimethylsilyl)ethanol (**2d**, 96%): IR 3350, 1250, 860, 825 cm⁻¹; ¹H NMR δ=0.03 (9H, s), 1.00—1.13 (2H, m), 1.71 (1H, s, OH), 4.72 (1H, t, J=7.2 Hz), 7.06—7.48 (4H, m). Found: C; 48.20, H; 6.27%. Calcd for C₁₁H₁₇BrOSi: C; 48.35, H; 6.27%. **1d**: ¹H NMR δ=-0.07 (9H, s), 1.32—1.47 (2H, m), 5.89 (1H, t, J=7.8 Hz), 7.16—7.58 (4H, m).

1-(3,4-Dichlorophenyl)-2-(trimethylsilyl)ethanol (2f, 93%): IR 3350, 1250, 1130, 860, 840 cm⁻¹; ¹H NMR δ=-0.02 (9H, s), 0.97—1.11 (2H, m), 1.97 (1H, s, OH), 4.70 (1H, at, J=7.2 Hz), 6.97—7.42 (3H, m). **1g**: IR 1775, 1250, 1220, 1175, 855, 840, 795 cm⁻¹; ¹H NMR δ=-0.03 (9H, s), 1.31—1.48 (2H, m), 5.88 (1H, m), 7.10—7.53 (3H, m). Found: C, 43.54; H, 4.20%. Calcd for $C_{13}H_{15}Cl_2F_3O_2Si$: C, 43.46; H, 4.21%.

1-(3,5-Dichlorophenyl)-2-(trimethylsilyl)ethanol (**2g**, 92%): IR 3350, 1250, 850, 835, 795 cm⁻¹; ¹H NMR δ=0.0 (9H, s), 0.98—1.12 (2H, m), 1.70 (1H, s, OH), 4.70 (1H, t, J=7.8 Hz), 7.18 (3H, broad s). **1g**: IR 1765, 1250, 1140, 860, 840 cm⁻¹; ¹H NMR δ=0.0 (9H, s), 1.30—1.49 (2H, m), 5.87 (1H, t, J=7.8 Hz), 7.23—7.36 (3H, m). Found: C, 43.49; H, 4.23%. Calcd for $C_{13}H_{15}Cl_2F_3O_2Si$: C, 43.46; H, 4.21%.

- **1-Phenylethyl Trifluoroacetate (3a):** Bp 33-33.5 °C (1 Torr) [lit,⁸⁾ bp 32 °C (0.5 Torr)]; IR 1785, 1230, 1160 cm⁻¹; 1 H NMR δ =1.68 (3H, d, J=6.6 Hz), 5.99 (1H, q, J=6.6 Hz), 7.33 (5H, broad s).
- **3,3-Dimethyl-1-phenylbutyl Trifluoroacetate (4):** Bp 50—55 °C (1 Torr); IR 1780, 1225, 1170, 1150 cm⁻¹; ¹H NMR δ = 0.97 (9H, s), 1.76—2.07 (2H, m), 5.84—6.05 (1H, m), 7.29 (5H, broad s). Found: C, 61.44, H, 6.28%. Calcd for C₁₄H₁₇F₃O₂: C, 61.31; H, 6.25%.
- **1-(4-Methylphenyl)ethyl** Trifluoroacetate **(5):** Bp 30—31 °C (0.5 Torr); IR 1780, 1220, 1160, 810 cm⁻¹; 1 H NMR δ =1.64 (3H, d, J=6.6 Hz), 2.34 (3H, s), 5.95 (1H, q, J=6.6 Hz), 7.16 (4H, broad s). Found: C, 56.94; H, 4.78%. Calcd for $C_{11}H_{11}F_{3}O_{2}$: C, 56.90; H, 4.78%.

Kinetic Procedure. Solvolyses were followed spectrophotometrically by measuring increase in trifluoroacetic acid as its acridinium ion at $402.5 \text{ nm}^{1)}$ or increase in producing styrenes at 252 nm by using $(0.5-2)\times10^{-4}$ M solutions. In the former case, the solvolysis was carried out in the presence of $(1-3)\times10^{-4}$ M acridine and 1.0×10^{-4} M of acridinium trifluoroacetate. The initial addition of the acridinium salt was necessary for linear response of absorbance to concentration of acridinium ion under solvolysis conditions.¹⁾

Product Studies. Solvolysis reactions were performed with 0.02—0.04 M solutions of a substrate in a given solvent at 25 °C and a crude product obtained after workup was directly analyzed by GLC using an appropriate internal standard. A reaction of 1d in ethanol qunatitatively gave p-bromostyrene (6d). A reaction of 1e in 90% aq dioxane gave m-chlorostyrene (6e) in 95% yield. A reaction of 1e in methanol gave 6e and m-chloro- α -ethoxy- α -(trimethylsilylmethyl)toluene (7e) in 86 and 14% yield, respectively. **7e**: IR 1250, 1100, 860 cm⁻¹; ¹H NMR δ =-0.04 (9H, s), 0.94-1.15 (2H, m), 3.10 (3H, s), 4.10 (1H, dd, J=8.5 and 6.6 Hz), 7.17 (4H, broad s). A reaction of 1e in methanol containing sodium methoxide (0.087 M) gave a mixure of 2e, 6e, and 7e in the ratio 1.0:0.04:0.03. A reaction of 1e in methanol in the presence of equimolar amounts of lutidine gave a mixture of 6e, 7e, and 2e in the ratio 1.0:0.37:0.02.

The present work was supported by a Grant-in-Aid for Scientific Research No. 01470025 from the Ministry of Education, Science and Culture.

References

- 1) Part I. N. Shimizu, E. Osajima, and Y. Tsuno, *Bull. Chem. Soc. Jpn.*, **64**, 1145 (1991).
- 2) N. Shimizu, C. Kinoshita, and Y. Tsuno, *Chem. Lett.*, 1990, 1937.
- 3) J. B. Lambert, G.-t. Wang, R. B. Finzel, and D. H. Teramura, J. Am. Chem. Soc., 109, 7838 (1989).

- 4) H. Bock and B. Solouki, "The Chemistry of Organic Silicon Compounds," ed by S. Patai and Z. Rappoport, John Wiley & Sons, New York (1989), Part I, Chap. 9, p. 555.
- 5) S. G. Wierschke, J. Chandrasekhar, and W. L. Jorgensen, *J. Am. Chem. Soc.*, **107**, 1496 (1985); M. R. Ibrahim and W. L. Jorgensen, *ibid.*, **111**, 819 (1989).
- 6) A. H. Fainberg and S. Winstein, J. Am. Chem. Soc., 79, 1597 (1957).
- 7) Y. Tsuno, Y. Kusuyama, M. Sawada, T. Fujii, and Y. Yukawa, *Bull. Chem. Soc. Jpn.*, **48**, 3337 (1975); Y. Tsuji, M. Fujio, and Y. Tsuno, *Mem. Fac. Sci., Kyushu Univ., Ser. C*, **17(1)**, 139 (1989).
- 8) D. S. Noyce and J. A. Virgilio, *J. Org. Chem.*, 37, 2644 (1972).
- 9) G. Baddeley, J. Chadwick, and H. T. Taylor, *J. Chem. Soc.*, **1954**, 2405.
- 10) H. Tanida and H. Matsumura, J. Am. Chem. Soc., 95, 1586 (1972).
- 11) Y. Apeloig, "The Chemistry of Organic Silicon Compounds," ed by S. Patai and Z. Rappoport, John Wiley & Sons, Chichester (1989), Part 1, Chap. 2.
- 12) L. H. Sommer and G. A. Baughman, J. Am. Chem. Soc., **83**, 3346 (1961).
- 13) A. W. P. Jarvie, A. Holt, and J. Thompson, *J. Chem. Soc. B*, **1970**, 746 and **1969**, 852.
- 14) M. A. Cook, C. Eaborn, and D. R. M. Walton, *J. Organomet. Chem.*, **24**, 301 (1970).
- 15) J. Vencl, J. Hetflejš, J. Čermák, and V. Chvalovský, *Collect. Czech. Chem. Commun.*, 38, 1256 (1973).
- 16) V. J. Shiner, Jr., W. E. Buddenbaum, B. L. Murr, and G. Lamaty, *J. Am. Chem. Soc.*, **90**, 418 (1968).
- 17) H. C. Brown and Y. Okamoto, J. Am. Chem. Soc., 80, 4979 (1958).
- 18) Y. Yukawa and Y. Tsuno, Bull. Chem. Soc. Jpn., 32, 971 (1959); idem., Nippon Kagaku Zasshi, 86, 873 (1965); Y. Yukawa, Y. Tsuno, and M. Sawada, Bull. Chem. Soc. Jpn., 39, 2274 (1966).
- 19) A similar result on the substituent effect has been reported for the solvolysis of 1-aryl-1-trifluoromethyl-2-(trimethylsilyl)ethyl 3,5-dinitrobenzoates: R. Fujiyama, K. Nagao, K. Moriwaki, and S. Kiyooka, 59th National Meeting of the Chemical Society of Japan, Yokohama, March 1990, Abstr., No. 1E408.
- 20) T. G. Traylor, W. Hanstein, H. J. Berwin, N. A. Clinton, and R. S. Brown, *J. Am. Chem. Soc.*, **93**, 5715 (1971).
- 21) M. Fujio, M. Goto, A. Murata, Y. Tsuji, M. Mishima, and Y. Tsuno, *Mem. Fac. Sci., Kyushu Univ., Ser. C*, **16(2)**, 271 (1988), and references cited therein.
- 22) X. Li and J. A. Stone, J. Am. Chem. Soc., 111, 5586 (1989).